Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 450-468.DOI: 10.13745/j.esf.sf.2023.7.1
Previous Articles Next Articles
Anastasiya SERGEEVA(), Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA
Received:
2023-05-12
Accepted:
2023-06-28
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
Anastasiya SERGEEVA, Pavel ZHEGUNOV, Elena SKILSKAIA, Mariya NAZAROVA, Elena KARTASHEVA, Anna KUZMINA, Svetlana MOSKALEVA, Olesya ZOBENKO, Sharapat KUDAEVA, Ekaterina PLUTAKHINA, Kseniya SHISHKANOVA. Secondary minerals in basalts of the Evevpenta gold occurrence (North Kamchatka, Russia) as indicators of ore forming processes[J]. Earth Science Frontiers, 2023, 30(5): 450-468.
Fig.1 Geological scheme of (a) the Evevpenta gold occurrence and (b) volcanic belts of the Kamchatka Peninsula (Tsukanov 2015) 1-proluvial Quaternary sediments; 2-lavas and pyroclastic rocks of the Tolyatovayam volcanic formation (Late Miocene-Early Pliocene); 3-lavas and pyroclastic rocks of the Umuvayam volcanic formation (Middle-Late Miocene); 4-subvolcanic bodies of andesites of the Tolyatovayam volcanic formation; 5-basalt dikes Tolyatovayam volcanic formation; 6-subvolcanicdacite bodies Umuvayam volcanic formation; 7-argillic alteration; 8-propylitic alteration; 9-adularia-quartz stockwork; 10-adularia-quartz veins; 11-faults; 12-faults covered by Quaternary sediments.
Fig.2 Specimen of olivine basalt from a geological exploration surface mine working in the study area with radiant sun aggregates of modernite (a), and core samples obtained as a result of core drilling (depth 112-1145 m) of the Evevpenta ore occurrence representing a zone of propylitic alterations with calcite veins in basalt (b)
Fig.3 X-ray diffraction (XRD) diffractograms for alteration mineral assemblages of I-IV microzones from which sample of olivine basalt (abbreviations given in Table 1).
Stage | Mineral assemblages |
---|---|
I (host rock) | Rock-forming minerals: plagioclase (labradorite-andesine)+monoclinic pyroxene relicts of olivine Secondary minerals: fluorapatite+aluminum- and fluorine-rich titanite |
II (chloritization) | Secondary minerals: clinochlore+quartz+calcite |
III (zeolitization) | Secondary minerals: calcite+stilbite+quartz+montmorillonite |
IV (zeolitization) | Secondary minerals: calcite+mordenite |
Table 1 Mineral assemblages found in hydrothermally altered olivine basalt from the Evevpenta gold occurrence
Stage | Mineral assemblages |
---|---|
I (host rock) | Rock-forming minerals: plagioclase (labradorite-andesine)+monoclinic pyroxene relicts of olivine Secondary minerals: fluorapatite+aluminum- and fluorine-rich titanite |
II (chloritization) | Secondary minerals: clinochlore+quartz+calcite |
III (zeolitization) | Secondary minerals: calcite+stilbite+quartz+montmorillonite |
IV (zeolitization) | Secondary minerals: calcite+mordenite |
Mineral name, Symmetry group | Chemical Formula | Unit-cell parameters/Å |
---|---|---|
Clinochlore, C2 | [Mg3.29Al1.30Fe1.13Mn0.04][Al0.74Si3.26]O10(OH)8 | a: 5.36 b: 9.20 c: 14.24 β: 95.59 |
Calcite R-3/2c | CaCO3 | a: 4.99 c: 17.02 |
Mordenite, Cmcm | Na0.47Ca0.25K0.05[Al1.05Si4.95]O12·nH2O | a: 18.13 b: 20.43 c: 7.52 |
Diopside, C2/c | [Mg0.84Ca0.83Fe0.25Na0.02Al0.02Ti0.02Mn0.01]Al0.12Si1.88O6 | a:9.82 b:8.87 c: 5.23 β:105.79 |
Labradorite-andesine, C-1 | A | a:8.17 b: 12.85 c:7.10 α: 93.45 β: 116.04 γ: 90.12 |
Table 2 Composition and unit-cell parameters of secondary minerals from the Evevpenta gold occurrence
Mineral name, Symmetry group | Chemical Formula | Unit-cell parameters/Å |
---|---|---|
Clinochlore, C2 | [Mg3.29Al1.30Fe1.13Mn0.04][Al0.74Si3.26]O10(OH)8 | a: 5.36 b: 9.20 c: 14.24 β: 95.59 |
Calcite R-3/2c | CaCO3 | a: 4.99 c: 17.02 |
Mordenite, Cmcm | Na0.47Ca0.25K0.05[Al1.05Si4.95]O12·nH2O | a: 18.13 b: 20.43 c: 7.52 |
Diopside, C2/c | [Mg0.84Ca0.83Fe0.25Na0.02Al0.02Ti0.02Mn0.01]Al0.12Si1.88O6 | a:9.82 b:8.87 c: 5.23 β:105.79 |
Labradorite-andesine, C-1 | A | a:8.17 b: 12.85 c:7.10 α: 93.45 β: 116.04 γ: 90.12 |
Absorption bands/cm-1 | Assignment | Mineral | |
---|---|---|---|
Chloritized basalt | Mordenite sample | ||
3596 | ν(H2O) | Mordenite | |
3561 | ν(OH) | Clinochlore | |
3448 | ν(H2O) | Mordenite | |
3422 | Clinochlore | ||
3258 | ν(H2O) | Mordenite | |
1638 | 1646 | δ(H2O) | Mordenite Clinochlore |
1440 | 1426 | ν3(CO3) | Calcite |
1223 | ν(SiO4)as | Mordenite | |
1174 | ν(SiO4)as | Mordenite | |
1052 | ν(SiO4)as | Mordenite | |
1022 | ν(TO4)as | Plagioclase | |
877 | ν2(CO3) | Calcite | |
794 | ν(TO4)s | Mordenite | |
714 | ν(AlO4)s | Mordenite | |
776 | ν(SiO4) | Plagioclase | |
639 | δ(O-T-O) | Plagioclase | |
622 | ν(TO4) 5-rings (channel) | Mordenite | |
586 | δ(O-T-O) | Plagioclase | |
540 | δ(O-T-O) | Plagioclase | |
550 | ν(TO4) 5-rings (channel) | Mordenite | |
451 | δ(O-T-O) | Mordenite | |
460 | δ(O-T-O) | SiO4-phase | |
439 | δ(O-T-O) | Plagioclase | |
400 | δ(O-T-O) | Plagioclase |
Table 3 Absorption bands of host rock and mordenite-calcite assemblages (T: Si Al)
Absorption bands/cm-1 | Assignment | Mineral | |
---|---|---|---|
Chloritized basalt | Mordenite sample | ||
3596 | ν(H2O) | Mordenite | |
3561 | ν(OH) | Clinochlore | |
3448 | ν(H2O) | Mordenite | |
3422 | Clinochlore | ||
3258 | ν(H2O) | Mordenite | |
1638 | 1646 | δ(H2O) | Mordenite Clinochlore |
1440 | 1426 | ν3(CO3) | Calcite |
1223 | ν(SiO4)as | Mordenite | |
1174 | ν(SiO4)as | Mordenite | |
1052 | ν(SiO4)as | Mordenite | |
1022 | ν(TO4)as | Plagioclase | |
877 | ν2(CO3) | Calcite | |
794 | ν(TO4)s | Mordenite | |
714 | ν(AlO4)s | Mordenite | |
776 | ν(SiO4) | Plagioclase | |
639 | δ(O-T-O) | Plagioclase | |
622 | ν(TO4) 5-rings (channel) | Mordenite | |
586 | δ(O-T-O) | Plagioclase | |
540 | δ(O-T-O) | Plagioclase | |
550 | ν(TO4) 5-rings (channel) | Mordenite | |
451 | δ(O-T-O) | Mordenite | |
460 | δ(O-T-O) | SiO4-phase | |
439 | δ(O-T-O) | Plagioclase | |
400 | δ(O-T-O) | Plagioclase |
Fig.5 BSE-images showing mordenite enclosed in silica (a); Sr-bearing barite (b); and inclusion of Sb-bearing phase in mordenite (c) Abbreviations of minerals given according to Warr (2021): Mor-mordenite; Silicate-silica minerals; Sr-Brt-Sr-bearing barite.
Fig.6 Representative BSE images of hydrothermally altered basalts from the Evevpenta gold occurrence a-plagioclase phenocrysts are rimmed by several layers of secondary minerals; b-enlarged fragment of 6a showing details of a chlorite rim in plagioclase; c-plagioclase microlites overgrown by titanite and adularia; d-inclusion of fluorapatite in diopside; e-fluorapatite and silica minerals intergrown with clinochlore; f-amygdala filled with early (Chl I) and late (Chl II) chlorite; g-titanomagnetite in association with groundmass diopside and plagioclase; h-aluminum- and fluorine-rich titanite between plagioclase microlites in groundmass. Abbreviations of minerals given according to Warr (2021): Pl-plagioclase, Chl-chlorite, Tnt-titanite, Adl-adularia, Cpx-clinopyroxene, Ap-apatite, Mag-magnetite, Silicate-silica minerals, Ca-Pl-calcic plagioclase, Na-Pl-sodic plagioclase.
Minerals | wB/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | CaO | F | TFeO | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | V2O5 | |
Fluorapatite | 0 | 53.45 | 3.71 | 0.65 | 0 | 0.52 | 0 | 0 | 40.19 | 0.49 | 0 | 0 |
Diopside | 3.3 | 20.93 | 0 | 7.96 | 0 | 15.06 | 0.29 | 0.27 | 0 | 50.41 | 0.88 | 0 |
Clinochlore | 16.71 | 1.02 | 0 | 12.74 | 0 | 21.63 | 0.63 | 0 | 0 | 33.22 | 0 | 0 |
Plagioclase | 28.31-20.51 | 11.21-1.57 | 0 | 0.97-0.61 | 1.06-1.72 | 0.00-0.32 | 0 | 4.34-8.91 | 0 | 53.16-61.91 | 0 | 0 |
Sanidine | 20.17 | 1.19 | 0 | 0.62 | 9.69 | 0 | 0 | 3.96 | 0 | 63.95 | 0 | 0 |
Titanite | 6.16 | 27.04 | 1.67 | 1.39 | 0 | 0 | 0 | 0 | 0 | 32.81 | 27.17 | 1.09 |
Table 4 EPMA data for minerals from altered basalt
Minerals | wB/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | CaO | F | TFeO | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | V2O5 | |
Fluorapatite | 0 | 53.45 | 3.71 | 0.65 | 0 | 0.52 | 0 | 0 | 40.19 | 0.49 | 0 | 0 |
Diopside | 3.3 | 20.93 | 0 | 7.96 | 0 | 15.06 | 0.29 | 0.27 | 0 | 50.41 | 0.88 | 0 |
Clinochlore | 16.71 | 1.02 | 0 | 12.74 | 0 | 21.63 | 0.63 | 0 | 0 | 33.22 | 0 | 0 |
Plagioclase | 28.31-20.51 | 11.21-1.57 | 0 | 0.97-0.61 | 1.06-1.72 | 0.00-0.32 | 0 | 4.34-8.91 | 0 | 53.16-61.91 | 0 | 0 |
Sanidine | 20.17 | 1.19 | 0 | 0.62 | 9.69 | 0 | 0 | 3.96 | 0 | 63.95 | 0 | 0 |
Titanite | 6.16 | 27.04 | 1.67 | 1.39 | 0 | 0 | 0 | 0 | 0 | 32.81 | 27.17 | 1.09 |
Fig.7 Classification diagrams of chlorite from the Evevpenta gold occurrence, based on: a-Fe/(Fe+Mg) versus Si values (after Hey 1954); b-octahedral Al versus tetrahedral Al; c-Mg/(Fe+Mg) versus Al octahedral (after Bailey 1988); d-(Mg+Fe) versus Si values (Wiewióra and Weiss 1990; Ilalova and Gulbin 2019)
Fig.8 Scheme of geocrystallochemical classification of chlorites (Kotelnikov et al., 2009) 1-chlorites from kimberlites; 2-Mg-chlorites from serpentinites; 3-Mg-chlorites from halites and Mg-K-salts of high stages of salinization of basins; 4-Fe-Mg-chlorites of basic igneous rocks; 5-Fe-Mg-chlorites of clastogenic formations; 6-Fe-chlorites of iron ores; 7-ditrioctahedral Al-Fe-Mg-chlorites; 8-Mg-chlorites of evaporate chemogenic-terigenous formations; 9-chlorites of the Evevpenta gold occurrence.
Fig.9 Scheme of the stages of mineral formation of the Evevpenta ore occurrence based on alteration mineral assemblages I-fluorapatite aluminum- and fluorine-rich titanite mineral assemblages, the hydrothermal acidic fluid was accompanied by acid-volatile species such as HCl and HF; II-clinochlore quartz calcite mineral assemblages, the hydrothermal fluid was near-neutral containing NaCl, CO2, NaHCO3; III-calcite stilbite mordenite quartz montmorillonite mineral assemblages, the hydrothermal fluid was alkaline containing NaCl, NaHCO3, Na2CO3 and meteoric waters.
[1] | ABIEV R S, BIBIK E E, VLASOV E A, et al., 2004. A new handbook of chemist for technology: electrode processes, chemical kinetics and diffusion, colloidal chemistry[M]. SPb: ANO NGO Professional: 1-838. |
[2] |
ALEKSANDROV S M, TRONEVA M A, 2007. Composition, mineral assemblages, and genesis of titanite and malayaite in skarns[J]. Geochemistry International, 45 (10): 1012-1024.
DOI URL |
[3] |
ATKINSON A J, CARPENTER M A, SALJE E K H, 1999. Hard mode infrared spectroscopy of plagioclase feldspars[J]. European Journal of Mineralogy, 11 (1): 7-21.
DOI URL |
[4] | BAERLOCHER C, MCCUSKER L B, OLSON D H, 2007. Atlas of zeolite framework types[M]. 6th ed. Piscataway: Elsevier: 1-284. |
[5] | BAILEY S W, 1988. Chlorites: structures and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 19 (1): 347-403. |
[6] | BASHARINA L A, 1958. Fumarole gases of Klyuchevskoy and Sheveluch volcanoes[J]. Proceedings of the Laboratory of Volcanology of the Academy of Sciences of the USSR, 13 (1): 155-159. |
[7] |
BAZIN P, ALENDA A, THIBAULT-STARZYK F, 2010. Interaction of water and ammonium in NaHY zeolite as detected by combined IR and gravimetric analysis (AGIR)[J]. Dalton Transactions, 39 (36): 8432-8436.
DOI URL |
[8] |
BROOM-FENDLEY S, SIEGFRIED P R, WALL F, et al., 2021. The origin and composition of carbonatite-derived carbonate-bearing fluor apatite deposits[J]. Mineralium Deposita, 56 (5): 863-884.
DOI |
[9] |
CATHELINEAU M, 1988. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 23: 471-485.
DOI URL |
[10] | DRAKE B D, CAMPBELL K A, ROWLAND J V, et al., 2014. Evolution of a dynamic paleo-hydrothermal system at Mangatete Taupo Volcanic Zone[J]. New Zealand Journal of Volcanology and Geothermal Research, 282: 19-35. |
[11] |
DUFFELL H J, OPPENHEIMER C, PYLE D M, et al., 2003. Changes in gas composition prior to a minor explosive eruption at Masaya volcano Nicaragua[J]. Journal of Volcanology and Geothermal Research, 126 (3/4): 327-339.
DOI URL |
[12] |
FAURE K, MATSUHISA Y, METSUGI H, et al., 2002. The Hishikari Au-Ag epithermal deposit Japan: oxygen and hydrogen isotope evidence in determining the source of paleohydrothermal fluids[J]. Economic Geology, 97 (3): 481-498.
DOI URL |
[13] |
GAO X B, XU M, HU Q H, et al., 2016. Leaching behavior of trace elements in coal spoils from Yangquan coal mine, northern China[J]. Journal of Earth Science, 27 (5): 891-900.
DOI URL |
[14] |
GÓMEZ-HORTIGÜELA L, PINAR A B, PÉREZ-PARIENTE J, et al., 2014. Ion-exchange in natural zeolite stilbite and significance in defluoridation ability[J]. Microporous and Mesoporous Materials, 193: 93-102.
DOI URL |
[15] |
HEY M H, 1954. A new review of the chlorites[J]. Mineralogical Magazine and Journal of the Mineralogical Society, 30 (224): 277-292.
DOI URL |
[16] |
ILALOVA R K, GULBIN Y L, 2019. Thermometry of nickel bearing chlorites from the Kolskii Massif (northern Urals)[J]. Geology of Ore Deposits, 61 (8): 736-746.
DOI |
[17] |
JANSEN J C, VAN DER GAAG F J, VAN BEKKUM H, 1984. Identification of ZSM-type and other 5-ring containing zeolites by IR spectroscopy[J]. Zeolites, 4 (4): 369-372.
DOI URL |
[18] | JOWETT E C, 1991. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer[C]// Geological Association of Canada, Mineralogical Association of Canada, US Society of Economic Geologists Joint Annual Meeting, Abstracts 16: A62. |
[19] |
KALACHEVA E G, RYCHAGOV S N, KOROLEVA G P, et al., 2016. The geochemistry of steam hydrothermal occurrences in the Koshelev volcanic massif southern Kamchatka[J] Journal of Volcanology and Seismology, 10 (3): 188-202.
DOI URL |
[20] |
KALACHEVA E G, TARAN Y A, KOTENKO T A, et al., 2017. The hydrothermal system of Mendeleev Volcano Kunashir Island Kuril Islands: the geochemistry and the transport of magmatic components[J]. Journal of Volcanology and Seismology, 11 (5): 335-352.
DOI URL |
[21] |
KALACHEVA E G, TARAN Y A, VOLOSHINA E V, et al., 2018. Geochemistry of thermal waters of Ketoi Island Kuril island arc[J]. Journal of Volcanology and Seismology, 12 (3): 172-186.
DOI |
[22] |
KIRYUKHIN A V, VOROZHEIKINA L A, VORONIN P О, et al., 2017. Thermal and permeability structure and recharge conditions of the low temperature Paratunsky geothermal reservoirs in Kamchatka Russia[J]. Geothermics, 70: 47-61.
DOI URL |
[23] |
KIRYUKHIN A V, POLYAKOV A Y, USACHEVA O O, et al., 2018. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka Russia)[J]. Journal of Volcanology and Geothermal Research, 356: 36-55.
DOI URL |
[24] | KIRYUKHIN A V, KIRYUKHIN V A, MANUKHIN Y F, 2010. Hydrogeology of volcanogenes[M]. SPb: Nauka: 1-395 (in Russian). |
[25] |
KONSTANTINOVSKAIA E A, 2001. Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia)[J]. Tectonophysics, 333 (1/2): 75-94.
DOI URL |
[26] | KOTELNIKOV A R, SUK N I, KOTELNIKOVA Z A, et al., 2012. Mineral geothermometers for low-temperature paragenesis[J]. Vestnik Otdelenia nauk o Zemle, 4: NZ9001. |
[27] | KOTELNIKOV D D, ZINCHUK N N, ZHUKHLISTOV A P, 2009. Crystallochemical morphological and genetic characteristics of chlorites in the Earth's mantle. Article 1: sources of formation and identification of chlorite varieties[J]. Proceedings of Higher Education Institutions Geology and Exploration, 4: 9-19. |
[28] |
KRANIDIOTIS P, MACLEAN W H, 1987. Systematics of chlorite alteration at the P helps dodge massive sulfide deposit Matagami Quebec[J]. Economic Geology, 82: 1898-1911.
DOI URL |
[29] |
LEI H, XU H, 2018. A review of ultrahigh temperature metamorphism[J]. Journal of Earth Science, 29 (5): 1167-1180.
DOI |
[30] |
MAHABOLE M P, LAKHANE M A, CHOUDHARI A L, et al., 2013. Comparative study of natural calcium stilbite and magnesium exchanged stilbite for ethanol sensing[J]. Journal of Porous Materials, 20 (4): 607-617.
DOI URL |
[31] | Map of mineral resources of Kamchatka region at a scale of 1∶500 000, 1999. Brief explanatory note. Catalog of mineral deposits occurrences mineralization points and mineral dispersion halos[M]. Saint-Petersburg: Vsegei:563. |
[32] | MOROZ Y F, SAMOILOVA O M, 2018. On the geoelectrical difference between the Kuril-Kamchatka and Bering Sea segments of the Pacific Transition Zone[J]. Geodynamicsand Tectonophysics, 9 (2): 489-501. |
[33] |
MOROZ Y F, SAMOILOVA O M, MOROZ T A, 2015. Electric conductivity at depth: the southern coast of North Kamchatka[J]. Journal of Volcanology and Seismology, 9 (2): 125-139.
DOI URL |
[34] |
PEREVOZNIKOVA E V, MIROSHNICHENKO N V, 2009. Tausonite and aluminum-fluorine titanite from the metamorphosed metalliferous sediments of the Triassic chert formation of the Sikhote Alin[J]. Russian Journal of Pacific Geology, 3 (3): 294-297.
DOI URL |
[35] | RAN S L, SHEN S Y, CHENG X Z, 2004. Research on the occurrence of titanium in coal-measure kaoline in Songyi Hubei[J]. Journal of Earth Science, 15: 20180716015235. |
[36] |
RATEEV M A, SADCHIKOVA T A, SHABROVA V P, 2008. Clay minerals in Recent sediments of the world ocean and their relation to types of lithogenesis[J]. Lithology and Mineral Resources, 43 (2): 125-135.
DOI URL |
[37] |
RYCHAGOV S N, DAVLETBAEV R G, KOVINA O V, et al., 2012. Cation migration in hydrothermal clays: the problem of mineralization criteria in gas-hydrothermal fluids of hydrothermal fields in southern Kamchatka[J]. Journal of Volcanology and Seismology, 6(4): 230-242.
DOI URL |
[38] | RYCHAGOV S N, SANDIMIROVA Е I, CHERNOV M S, et al., 2022. Mineral formation at the East Pauzhetka thermal field (South Kamchatka) as an indication of influence of a deep-seated alkaline fluid and an epithermal ore-forming system[J]. Russian Geology and Geophysics, 10: 34-40. |
[39] | SANDIMIROVA E I, RYCHAGOV S N, SERGEEVA A V, et al., 2022. Zeolite mineralization in mudstones of the East Pauzhetka thermal field as an indicator of the discharge of alkaline fluids in a present-day hydrothermal system Southern Kamchatka[J]. Volcanolog Seismol, 16: 432-450. |
[40] | SHAFIGULLINA G T, ZNAMENSKII S E, KOSAREV A M, 2020. Conditions for the formation of gold-porphyry mineralization of the Bolshoi Karan deposit (southern Urals) according to chlorite geothermometry[J]. Geological Bulletin, 2: 45-53. |
[41] |
SAWYER G M, OPPENHEIMER C, TSANEV V I, et al., 2008. Magmatic degassing at Erta’Ale volcano Ethiopia[J]. Journal of Volcanology and Geothermal Research, 178 (4): 837-846.
DOI URL |
[42] | SERGEEVA A V, DENISOV D K, NAZAROVA M A, 2019. Clay mineral assemblages in recent thermal anomalies of southern Kamchatka Russian[J]. Geology and Geophysics, 60 (11): 1267-1277. |
[43] |
SERGEEVA A V, ZHITOVA E S, NUZHDAEV A A, et al., 2022. Modeling the process of mineral generation in thermal anomalies with ammonium sulfate thermal waters: the role of рН[J]. Journal of Volcanology and Seismology, 16(1): 35-48.
DOI |
[44] |
SHAROVA O I, CHUDNENKO K V, AVCHENKO O V, et al., 2012. Aluminum-fluorine sphene (titanite) as an indicator of Fluorine fluid[J]. Doklady Earth Sciences, 442: 126-130.
DOI URL |
[45] | SLYADNEV B I, BOROVTSOV A K, SIDORENKO V I, et al., 2013. State geological map of the Russian Federation scale 1∶1 000 000 (third generation) Koryak-Kuril series Sheet O-58-Ust-Kamchatsk[M]. Saint-Petersburg: Vsegei. |
[46] |
TARAN Y A, BERNARD A, GAVILANES J C, et al., 2001. Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico: implications for magmatic gas-atmosphere interaction[J]. Journal of Volcanology and Geothermal Research, 108 (1/2/3/4): 245-264.
DOI URL |
[47] | TSUKANOV N V, 2015. Tectono-stratigraphic terranes of Kamchatka active margins: structure composition and geodynamics[C]// GORDEEV E I. Materials of the Annual Conference “Volcanism and Related Processes”. Kamchatka Krai, Russia: Petropavlovsk-Kamchatsky: 97-103. |
[48] |
VOLKOV A V, PROKOF’EV V Y, 2011. Formation conditions and composition of ore-forming fluids in the Promezhutochnoe gold and silver deposit (Central Chukchi Peninsula, Russia)[J]. Russian Geology and Geophysics, 52 (11): 1448-1460.
DOI URL |
[49] |
WARR L N, 2021. IMA-CNMNC approved mineral symbols[J]. Mineralogical Magazine, 85 (3): 291-320.
DOI URL |
[50] |
WIEWIÓRA A, WEISS Z, 1990. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II the chlorite group[J]. Clay Minerals, 25 (1): 83-92.
DOI URL |
[51] |
XIAO B, CHEN H, HOLLINGS P, et al., 2018. Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems: insights from chlorite chemistry[J]. Ore Geology Reviews, 102: 437-448.
DOI URL |
[52] | ZANG W, FYFE W S, 1995. Chloritization of the hydrothermally altered bedrocks at the Igarapé Bahia gold deposit Carajás Brazil[J]. Mineralium Deposita, 30: 30-38. |
[53] | ZENTILLI M, OMELON C R, HANLEY J, et al., 2019. Paleo-hydrothermal predecessor to perennial spring activity in thick permafrost in the Canadian High Arctic, and its relation to deep salt structures: expedition fiord axel Heiberg Island, Nunavut[J]. Geofluids. DOI:10.1155/2019/9502904. |
[54] | ZHEGUNOV P S, KUTYREV A V, ZHITOVA E S, et al., 2023. Mineralization of the Evevpenta epithermal gold-silver ore occurrence (Kamchatka Peninsula Russia)[J]. Volcanology and Seismology, Under review. |
[55] | ZINCHENKO A V, IZOTOVA S G, RUMYANTSEV A V, 2004. A new handbook of chemist and technologist: chemical equilibrium properties of solutions[M]. SPb: ANO NGO Professional: 1-998. |
[56] |
ZIEMANN M A, FÖRSTER H J, HARLOV D E, et al., 2005. Origin of fluorapatite-monazite assemblages in a metamorphosed sillimanite-bearing pegmatoid Reinbolt Hills East Antarctica[J]. European Journal of Mineralogy, 17 (4): 567-579.
DOI URL |
[1] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[2] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[3] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[4] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
[5] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[6] | GAO Wei, HU Ruizhong, LI Qiuli, LIU Jianzhong, LI Xianhua. Research advances on the geochronology of Carlin-type gold deposits in the Youjiang Basin, southwestern China [J]. Earth Science Frontiers, 2024, 31(1): 267-283. |
[7] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[8] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[9] | DONG Xiaoyu, KONG Ruoyan, YAN Danping, QIU Liang, QIU Junting. Origin and gold mineralization significance of Late Triassic syn-tectonic dykes in the Qingchengzi area, Liaodong Peninsula [J]. Earth Science Frontiers, 2023, 30(2): 215-238. |
[10] | ZHU Pingping, LIU Yue, CHENG Qiuming. Quantitative determinations of the dispersion pattern and geological significance of geochemical anomalies in Biguo area, Jiaodong Terrane [J]. Earth Science Frontiers, 2023, 30(2): 440-446. |
[11] | LÜ Chengxun, ZHANG Da, XU Yaqing, GUO Tao, WANG Zongyong, HUO Qinglong, YUAN Yuelei. Calculation of metallogenic depth in the Jiaodong gold deposits: Tectonic correction method and metallogenic prediction [J]. Earth Science Frontiers, 2022, 29(1): 427-438. |
[12] | LI Shengrong, SHEN Junfeng, LI Lin, ZHANG Huafeng. Considerations on big data-based genetic mineralogical research [J]. Earth Science Frontiers, 2021, 28(3): 76-86. |
[13] | LI Nan, CAO Rui, YE Huishou, LI Qiang, WANG Yitian, LÜ Xiping, GUO Na, SU Yuanxiang, HAO Jianrui, XIAO Yang, ZHANG Shuai, CHU Wenkai. Three-dimensional modeling and comprehensive quantitative mineral resources assessment: A case study of the Haoyaoerhudong gold deposit in Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(3): 170-189. |
[14] | SHAO Xuewei, PENG Yongming, WANG Gongwen, ZHAO Xianyong, TANG Jiayang, HUANG Leilei, LIU Xiaoning, ZHAO Xiandong. Application of SWIR, XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(3): 236-251. |
[15] | QIN Kezhang, ZHAO Junxing, FAN Hongrui, TANG Dongmei, LI Guangming, YU Kelong, CAO Mingjian, SU Benxun. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 271-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||