

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 25-38.DOI: 10.13745/j.esf.sf.2025.10.10
Previous Articles Next Articles
ZHOU Shiyu1(
), YANG Yiqun1, DAI Junyi1, GAO Di1, LI Shenyan1, WANG Lichun1,2,3,*(
)
Received:2025-07-19
Revised:2025-09-20
Online:2026-01-25
Published:2025-11-10
CLC Number:
ZHOU Shiyu, YANG Yiqun, DAI Junyi, GAO Di, LI Shenyan, WANG Lichun. Study on the critical thresholds of identifying the transitions of dominant controlling factors for CO2 production in vertical hyporheic zones[J]. Earth Science Frontiers, 2026, 33(1): 25-38.
| 参数 | 值 | 单位 | 说明 |
|---|---|---|---|
| L | 0.16 | m | 波纹长度 |
| H | 0.016 | m | 波纹高度 |
| Lc | 0.13 | m | 坡面对应长度 |
| μmax_AR | 65 | mg/(L·d) | 最大呼吸速率 |
| μmax_NI | 4.32 | mg/(L·d) | 最大硝化速率 |
| KDO | 0.2[ | mg/L | DO反应半饱和常数 |
| KDOC | 3.21[ | mg/L | DOC反应半饱和常数 |
| 0.09[ | mg/L | ||
| CDOC | 150 | mg/L | DOC初始浓度 |
| 5 | mg/L | ||
| θ | 0.37 | 孔隙度 | |
| τ | θ1/3 | 曲度因子 | |
| a | -0.15[ | 温度因子参数 | |
| b | 1.9[ | 温度因子参数 | |
| Topt | 26.3[ | ℃ | 最佳反应温度 |
| CDO,lim | 2 | mg/L | DO极限浓度 |
| αL | 0.003 | m | 横向弥散性 |
| αT | αL/10 | m | 纵向弥散性 |
| Dm | 1×10-10 | m2/s | 扩散系数 |
Table 1 List of main parameters of the numerical model[24-25,50-51]
| 参数 | 值 | 单位 | 说明 |
|---|---|---|---|
| L | 0.16 | m | 波纹长度 |
| H | 0.016 | m | 波纹高度 |
| Lc | 0.13 | m | 坡面对应长度 |
| μmax_AR | 65 | mg/(L·d) | 最大呼吸速率 |
| μmax_NI | 4.32 | mg/(L·d) | 最大硝化速率 |
| KDO | 0.2[ | mg/L | DO反应半饱和常数 |
| KDOC | 3.21[ | mg/L | DOC反应半饱和常数 |
| 0.09[ | mg/L | ||
| CDOC | 150 | mg/L | DOC初始浓度 |
| 5 | mg/L | ||
| θ | 0.37 | 孔隙度 | |
| τ | θ1/3 | 曲度因子 | |
| a | -0.15[ | 温度因子参数 | |
| b | 1.9[ | 温度因子参数 | |
| Topt | 26.3[ | ℃ | 最佳反应温度 |
| CDO,lim | 2 | mg/L | DO极限浓度 |
| αL | 0.003 | m | 横向弥散性 |
| αT | αL/10 | m | 纵向弥散性 |
| Dm | 1×10-10 | m2/s | 扩散系数 |
| 工况 | DO边界浓度/(mg·L-1) | 边界温度/℃ |
|---|---|---|
| M1 | 常量DOavg | 常量Tavg |
| M2 | 变量DO(t) | 常量Tavg |
| M3 | 常量DOavg | 变量T(t) |
| M4 | 变量DO(t) | 变量T(t) |
Table 2 Boundary condition settings for comparison experiments
| 工况 | DO边界浓度/(mg·L-1) | 边界温度/℃ |
|---|---|---|
| M1 | 常量DOavg | 常量Tavg |
| M2 | 变量DO(t) | 常量Tavg |
| M3 | 常量DOavg | 变量T(t) |
| M4 | 变量DO(t) | 变量T(t) |
Fig.6 Decreasing trend (Case 1 and Case 2) between correlation coefficients and averaged river temperature (Tavg) in a and c, and temporal dynamics of the CO2 production rate in b and d
| 模型案例 | τRT/h | TA/℃ | T/℃ | ||
|---|---|---|---|---|---|
| 案例1 | 0.69 | 26.3 | 23.3 | ||
| 案例2 | 8.40 | 7.7 | 7.9 |
Table 3 The critical temperature thresholds for different cases with varying mean residence times
| 模型案例 | τRT/h | TA/℃ | T/℃ | ||
|---|---|---|---|---|---|
| 案例1 | 0.69 | 26.3 | 23.3 | ||
| 案例2 | 8.40 | 7.7 | 7.9 |
| [1] |
BATTIN T J, LUYSSAERT S, KAPLAN L A, et al. The boundless carbon cycle[J]. Nature Geoscience, 2009, 2(9): 598-600.
DOI |
| [2] |
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359.
DOI |
| [3] |
BURROWS R M, RUTLIDGE H, BOND N R, et al. High rates of organic carbon processing in the hyporheic zone of intermittent streams[J]. Scientific Reports, 2017, 7: 13198.
DOI PMID |
| [4] |
HARVEY J W, WAGNER B J, BENCALA K E. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange[J]. Water Resources Research, 1996, 32(8): 2441-2451.
DOI URL |
| [5] | 金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293. |
| [6] | STONEDAHL S H, HARVEY J W, WÖRMAN A, et al. A multiscale model for integrating hyporheic exchange from ripples to meanders[J]. Water Resources Research, 2010, 46(12): 2009WR008865. |
| [7] |
BOANO F, HARVEY J W, MARION A, et al. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications: hyporheic flow and transport processes[J]. Reviews of Geophysics, 2014, 52(4): 603-679.
DOI URL |
| [8] |
GOOSEFF M N. Defining hyporheic zones-advancing our conceptual and operational definitions of where stream water and groundwater meet[J]. Geography Compass, 2010, 4(8): 945-955.
DOI URL |
| [9] | 苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351. |
| [10] |
DELVECCHIA A G, SHANAFIELD M, ZIMMER M A, et al. Reconceptualizing the hyporheic zone for nonperennial rivers and streams[J]. Freshwater Science, 2022, 41(2): 167-182.
DOI URL |
| [11] |
NAEGELI M W, UEHLINGER U. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed-river[J]. Journal of the North American Benthological Society, 1997, 16(4): 794-804.
DOI URL |
| [12] |
PUSCH M, SCHWOERBEL J. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest)[J]. Archiv Für Hydrobiologie, 1994, 130(1): 35-52.
DOI URL |
| [13] |
BATTIN T J, KAPLAN L A, NEWBOLD J D, et al. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function[J]. Freshwater Biology, 2003, 48(6): 995-1014.
DOI URL |
| [14] |
FELLOWS C S, VALETT M H, DAHM C N. Whole stream metabolism in two montane streams: Contribution of the hyporheic zone[J]. Limnology and Oceanography, 2001, 46(3): 523-531.
DOI URL |
| [15] | SON K, FANG Y L, GOMEZ-VELEZ J D, et al. Spatial microbial respiration variations in the hyporheic zones within the Columbia River Basin[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(11): e2021JG006654. |
| [16] |
GARCÍA F C, CLEGG T, O’NEILL D B, et al. The temperature dependence of microbial community respiration is amplified by changes in species interactions[J]. Nature Microbiology, 2023, 8(2): 272-283.
DOI PMID |
| [17] | COGSWELL C, HEISS J W. Climate and seasonal temperature controls on biogeochemical transformations in unconfined coastal aquifers[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(12): e2021JG006605. |
| [18] | 马瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技通报, 2013, 32(2): 131. |
| [19] | MANNING D W P, ROSEMOND A D, GULIS V, et al. Nutrients and temperature additively increase stream microbial respiration[J]. Global Change Biology, 2018, 24(1): e233-e247 |
| [20] |
DEMARS B O L, THOMPSON J, MANSON J R. Stream metabolism and the open diel oxygen method: Principles, practice, and perspectives[J]. Limnology and Oceanography: Methods, 2015, 13(7): 356-374.
DOI URL |
| [21] | 杜尧, 马腾, 邓娅敏, 等. 潜流带水文-生物地球化学:原理、方法及其生态意义[J]. 地球科学, 2017, 42(5): 661-673. |
| [22] |
TUREŢCAIA A B, GARAYBURU-CARUSO V A, KAUFMAN M H, et al. Rethinking aerobic respiration in the hyporheic zone under variation in carbon and nitrogen stoichiometry[J]. Environmental Science & Technology, 2023, 57(41): 15499-15510.
DOI URL |
| [23] | 彭闯, 干牧凡, 车景璐, 等. 河流潜流带水交换作用对氮迁移转化过程的影响[J]. 生态学报, 2024, 44(23): 10794-10806. |
| [24] |
TRAUTH N, SCHMIDT C, VIEWEG M, et al. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 910-928.
DOI URL |
| [25] | WINNICK M J. Stream transport and substrate controls on nitrous oxide yields from hyporheic zone denitrification[J]. AGU Advances, 2021, 2(4): e2021AV000517. |
| [26] | NOGUEIRA G E H, SCHMIDT C, BRUNNER P, et al. Transit-time and temperature control the spatial patterns of aerobic respiration and denitrification in the riparian zone[J]. Water Resources Research, 2021, 57(12): e2021WR030117. |
| [27] | BOANO F, DEMARIA A, REVELLI R, et al. Biogeochemical zonation due to intrameander hyporheic flow[J]. Water Resources Research, 2010, 46(2): 2008WR007583. |
| [28] | 张佩瑶, 文章, 李一鸣. 连续河水位波动对河床潜流带硝酸盐转化效率的影响[J]. 地球科学, 2024, 49(7): 2637-2649. |
| [29] |
OMLIN M, BRUN R, REICHERT P. Biogeochemical model of Lake Zürich: sensitivity, identifiability and uncertainty analysis[J]. Ecological Modelling, 2001, 141(1/2/3): 105-123.
DOI URL |
| [30] |
WARD B A, FRIEDRICHS M A M, ANDERSON T R, et al. Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models[J]. Journal of Marine Systems, 2010, 81(1/2): 34-43.
DOI URL |
| [31] | 王辉, 刘军生, 王荆, 等. 基于参数随机分布的潜流带地下水数值模拟研究[J]. 人民黄河, 2025, 47(2): 107-112, 155. |
| [32] | 蔡奕, 邢婧文, 阮西科, 等. 河流潜流带氮素迁移转化数值模拟研究进展[J]. 水资源保护, 2023, 39(1): 181-189. |
| [33] |
JIAQI LI, YUEQING XIE, LIWEN WU, et al. Effects of stream DO and DOC on streambed respiration under varying groundwater upwelling conditions[J]. Journal of Hydrology, 2025, 650: 132506.
DOI URL |
| [34] | ZARNETSKE J P, HAGGERTY R, WONDZELL S M, et al. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones[J]. Water Resources Research, 2012, 48(11): 2012WR011894. |
| [35] | GOOSEFF M N, GHOSH R N, CANTRELL E, et al. Hyporheic oxygen dynamics in the East River, Colorado: insights from an in-situ, high frequency time series during two distinct flow seasons[J]. Water Resources Research, 2023, 59(7): e2021WR031139. |
| [36] |
MARZADRI A, TONINA D, BELLIN A. Quantifying the importance of daily stream water temperature fluctuations on the hyporheic thermal regime: implication for dissolved oxygen dynamics[J]. Journal of Hydrology, 2013, 507: 241-248.
DOI URL |
| [37] |
GROFFMAN P M, BARON J S, BLETT T, et al. Ecological thresholds: the key to successful environmental management or an important concept with No practical application?[J]. Ecosystems, 2006, 9(1): 1-13.
DOI URL |
| [38] |
LUOTO T P, RANTALA M V, KIVILÄ E H, et al. Biogeochemical cycling and ecological thresholds in a High Arctic lake (Svalbard)[J]. Aquatic Sciences, 2019, 81(2): 34.
DOI |
| [39] |
BIRCH H F. Mineralisation of plant nitrogen following alternate wet and dry conditions[J]. Plant and Soil, 1964, 20(1): 43-49.
DOI URL |
| [40] |
TOLHURST T J, WATTS C W, VARDY S, et al. The effects of simulated rain on the erosion threshold and biogeochemical properties of intertidal sediments[J]. Continental Shelf Research, 2008, 28(10/11): 1217-1230.
DOI URL |
| [41] |
KRAUSE S, LEWANDOWSKI J, GRIMM N B, et al. Ecohydrological interfaces as hot spots of ecosystem processes[J]. Water Resources Research, 2017, 53(8): 6359-6376.
DOI URL |
| [42] |
STEGEN J C, FREDRICKSON J K, WILKINS M J, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover[J]. Nature Communications, 2016, 7: 11237.
DOI PMID |
| [43] | CARDENAS M B, WILSON J L. Dunes, turbulent eddies, and interfacial exchange with permeable sediments[J]. Water Resources Research, 2007, 43(8): 2006WR005787. |
| [44] | WILCOX D. A half century historical review of the k-omega model[C]// Proceedings of the 29th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1991: AIAA 1991-615. |
| [45] | JANSSEN F, CARDENAS M B, SAWYER A H, et al. A comparative experimental and multiphysics computational fluid dynamics study of coupled surface-subsurface flow in bed forms[J]. Water Resources Research, 2012, 48(8): 2012WR011982. |
| [46] |
ZHENG L Z, CARDENAS M B, WANG L C, et al. Ripple effects: bed form morphodynamics cascading into hyporheic zone biogeochemistry[J]. Water Resources Research, 2019, 55(8): 7320-7342.
DOI URL |
| [47] |
BARDINI L, BOANO F, CARDENAS M B, et al. Nutrient cycling in bedform induced hyporheic zones[J]. Geochimica et Cosmochimica Acta, 2012, 84: 47-61.
DOI URL |
| [48] |
O’CONNELL A M. Microbial decomposition (respiration) of litter in eucalypt forests of South-Western Australia: an empirical model based on laboratory incubations[J]. Soil Biology and Biochemistry, 1990, 22(2): 153-160.
DOI URL |
| [49] |
SCHIPPER L A, HOBBS J K, RUTLEDGE S, et al. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures[J]. Global Change Biology, 2014, 20(11): 3578-3586.
DOI URL |
| [50] |
ZHENG L Z, CARDENAS M B, WANG L C. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(4): 1086-1103.
DOI URL |
| [51] |
DIEM S, CIRPKA O A, SCHIRMER M. Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach[J]. Journal of Hydrology, 2013, 505: 352-363.
DOI URL |
| [52] |
REHAGE H, KIND M. The first Damköhler number and its importance for characterizing the influence of mixing on competitive chemical reactions[J]. Chemical Engineering Science, 2021, 229: 116007.
DOI URL |
| [53] | JIANG Q H, SHRIVASTAVA S, JIN G Q, et al. Enhanced removal of river-borne nitrate in bioturbated hyporheic zone[J]. Geophysical Research Letters, 2024, 51(13): e2024GL108673. |
| [54] |
GAO D, WANG L C, ZHENG L Z, et al. The streamline-based approach for delineating porous and fractured bedform-induced hyporheic zone[J]. Journal of Hydrology, 2025, 650: 132548.
DOI URL |
| [55] |
GOMEZ-VELEZ J D, HARVEY J W, CARDENAS M B, et al. Denitrification in the Mississippi River network controlled by flow through river bedforms[J]. Nature Geoscience, 2015, 8(12): 941-945.
DOI |
| [1] | XIE Xiangang, ZHAO Wenbin, ZHANG Maoliang, GUO Zhengfu, XU Sheng. Carbon output fluxes of volcanic activity during typical geological periods on the Tibetan Plateau and related environmental implications [J]. Earth Science Frontiers, 2025, 32(3): 350-361. |
| [2] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
| [3] | YANG Hui, FAN Huaiwei, XU Xiao, ZHANG Yunhui, WANG Wenfeng, YAN Zhaojin, WANG Cheng, WANG Junhui, LIU Lei, WANG Ran, CI Hui. Analysis of spatio-temporal variations and influencing factors of atmospheric CO2 concentrations in energy resources development areas [J]. Earth Science Frontiers, 2024, 31(4): 147-164. |
| [4] | LÜ Lianghua, WANG Shui. Quantitative analysis of scaling tendency of karstic geothermal water coupled with CO2 degassing [J]. Earth Science Frontiers, 2024, 31(3): 402-409. |
| [5] | YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States [J]. Earth Science Frontiers, 2024, 31(1): 327-339. |
| [6] | XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin [J]. Earth Science Frontiers, 2023, 30(5): 510-525. |
| [7] | CHEN Xueqian, ZHANG Lifei. Carbon sequestration, transport, transfer, and degassing: Insights into the deep carbon cycle [J]. Earth Science Frontiers, 2023, 30(3): 313-339. |
| [8] | ZHANG Yuan, ZHANG Min, LIU Renjing, CHEN Junjie. Investigation of CO2 flooding considering the effect of confinement on phase behavior [J]. Earth Science Frontiers, 2023, 30(2): 306-315. |
| [9] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
| [10] | XIAO Fan, WANG Kaiqi. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling [J]. Earth Science Frontiers, 2021, 28(3): 190-207. |
| [11] | LI Fuxing, CHEN Fulong, CAI Wenjing, HE Chaofei, LONG Aihua. Multiscale runoff prediction based on the EMD combined model [J]. Earth Science Frontiers, 2021, 28(1): 428-437. |
| [12] | XU Yongqiang,LI Zijing,GUO Jilong,CHEN Jiawei. Experimental study on the shale reservoir-supercritical CO2-simulated fracturing fluid interaction and its environmental significance. [J]. Earth Science Frontiers, 2018, 25(4): 245-254. |
| [13] | LI Xu-Feng, CHANG Chun, GUO Jian-Jiang, XU Jing-Chun. Experimental study of CO2 residual gas sequestration applied to Ordovician reef limestone of Tarim Basin. [J]. Earth Science Frontiers, 2011, 18(6): 190-194. |
| [14] | DING Hu, LIU Cong-Jiang, LANG Bin-Chao, LIU Wen-Jing. Variations of dissolved carbon and δ13CDIC of surface water during rainfall events in a typical karst peak clusterdepression catchment, SW China. [J]. Earth Science Frontiers, 2011, 18(6): 182-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||