

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 14-24.DOI: 10.13745/j.esf.sf.2025.10.35
Previous Articles Next Articles
WU Mohan1,2,3(
), SU Xiaosi1,2,3, SONG Tiejun1,2,3,*(
), HAO Yuan1,2,3
Received:2025-06-20
Revised:2025-09-12
Online:2026-01-25
Published:2025-11-10
CLC Number:
WU Mohan, SU Xiaosi, SONG Tiejun, HAO Yuan. Adsorption-desorption behavior and release flux of nitrogen and phosphorus in sediments of the reservoir drawdown zone under water level fluctuations[J]. Earth Science Frontiers, 2026, 33(1): 14-24.
| 测试指标 | 测试方法 |
|---|---|
| 库水pH | 现场测试 |
| 库水氨氮 | 纳氏试剂分光光度法[ |
| 库水磷酸根 | 钼酸铵分光光度法[ |
| 沉积物pH | 电位法 |
| 沉积物粒径组成 | Bettersize2000 激光粒度仪 |
| 沉积物各形态可转化态氮 | 改进的沉积物分级浸提分离方法[ |
| 沉积物各形态可转化态磷 | SMT分离法[ |
| 沉积物总氮 | 硫酸-催化剂消解法[ |
| 沉积物总磷 | 硫酸-高氯酸消解法[ |
Table 1 Testing indicators and methods for reservoir water and sediment samples
| 测试指标 | 测试方法 |
|---|---|
| 库水pH | 现场测试 |
| 库水氨氮 | 纳氏试剂分光光度法[ |
| 库水磷酸根 | 钼酸铵分光光度法[ |
| 沉积物pH | 电位法 |
| 沉积物粒径组成 | Bettersize2000 激光粒度仪 |
| 沉积物各形态可转化态氮 | 改进的沉积物分级浸提分离方法[ |
| 沉积物各形态可转化态磷 | SMT分离法[ |
| 沉积物总氮 | 硫酸-催化剂消解法[ |
| 沉积物总磷 | 硫酸-高氯酸消解法[ |
Fig.5 Changes in total nitrogen, total phosphorus, and their speciation concentrations in reservoir drawdown zone sediments during the inundation-recession cycle in 2024
| 时间 | 沉积物总氮 释放通量/ (mg·kg-1) | 沉积物总磷 释放通量/ (mg·kg-1) | 库水总氮 变化量/t | 库水总磷 变化量/t |
|---|---|---|---|---|
| 淹水过程 | -719.523 | -1 026.092 | 782.402 | 18.122 |
| 退水过程 | 1 043.669 | 1 034.267 | -92.172 | -3.708 |
| 合计 | 324.15 | 8.18 | 690.23 | 14.414 |
Table 2 Variations in total nitrogen and phosphorus concentrations in reservoir water and drawdown zone sediments during flood and post-flood periods
| 时间 | 沉积物总氮 释放通量/ (mg·kg-1) | 沉积物总磷 释放通量/ (mg·kg-1) | 库水总氮 变化量/t | 库水总磷 变化量/t |
|---|---|---|---|---|
| 淹水过程 | -719.523 | -1 026.092 | 782.402 | 18.122 |
| 退水过程 | 1 043.669 | 1 034.267 | -92.172 | -3.708 |
| 合计 | 324.15 | 8.18 | 690.23 | 14.414 |
| [1] | 李丹敏, 宋高飞, 田楚铭, 等. 三峡水库支流水华研究进展[J]. 水生生物学报, 2025, 49(10): 210-221. |
| [2] | 季鹏飞, 许海, 詹旭, 等. 长江中下游湖泊水体氮磷比时空变化特征及其影响因素[J]. 环境科学, 2020, 41(9): 4030-4041. |
| [3] | 王洪伟, 王少明, 张敏, 等. 春季潘家口水库沉积物-水界面氮磷赋存特征及迁移通量[J]. 中国环境科学, 2021, 41(9): 4284-4293. |
| [4] |
VOCROESMARTY C J, MEINTYRE P B; GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561.
DOI |
| [5] |
POWERS S M, BRUULSEMA T W, BURT T P, et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins[J]. Nature Geoscience, 2016, 9(5): 353-356.
DOI |
| [6] | 张全军, 于秀波, 钱建鑫, 等. 鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12): 3656-3669. |
| [7] | 李荣富, 廖文成, 吴虎彬, 等. 干湿交替条件下鄱阳湖洲滩湿地土壤磷形态转化与释放风险研究[J]. 环境科学学报, 2024, 44(3): 365-376. |
| [8] | 姜斯乔, 谢舒恬, 郑元铸, 等. 四种常见湖泊沉积物氮磷通量估算方法对比分析[J]. 湖泊科学, 2022, 34(6): 1923-1938. |
| [9] | 杜奕衡, 刘成, 陈开宁, 等. 白洋淀沉积物氮磷赋存特征及其内源负荷[J]. 湖泊科学, 2018, 30(6): 1537-1551. |
| [10] |
YIN H, YAO H, YUAN W, et al. Determination of the isotopic composition of aqueous mercury in a paddy ecosystem using diffusive gradients in thin films[J]. Analytical Chemistry, 2023, 95(33): 12290-12297.
DOI PMID |
| [11] | PETTER A L, STEEL R J, MOHRIG D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. Bulletin, 2013, 125(3/4): 578-593. |
| [12] |
孙浩然, 豆佳乐, 李南, 等. 基于随机模拟的火山CO2释放通量预测研究: 以意大利埃特纳火山为例[J]. 地学前缘, 2024, 31(4): 429-437.
DOI |
| [13] |
TESTA J M, BRADY D C, DI TORO D M, et al. Sediment flux modeling: simulating nitrogen, phosphorus, and silica cycles[J]. Estuarine, Coastal and Shelf Science, 2013, 131: 245-263.
DOI URL |
| [14] |
WU Y, WEN Y, ZHOU J, et al. Phosphorus release from lake sediments: effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 2014, 18(1): 323-329.
DOI URL |
| [15] | 何卓识, 霍守亮, 马春子, 等. 气候变化对小流域氮、磷通量的影响: 以延安市河流流域为例[J]. 环境工程技术学报, 2020, 10(6): 964-970. |
| [16] |
BURNET S H, WILHELM F M. Estimates of internal loading of phosphorus in a western US reservoir using 3 methods[J]. Lake and Reservoir Management, 2021, 37(3): 261-274.
DOI URL |
| [17] |
BARJAU-AGUILAR M, MERINO-IBARRA M, RAMIREZ-ZIEROLD J A, et al. Nitrogen and phosphorous retention in tropical eutrophic reservoirs with water level fluctuations: a case study using mass balances on a long-term series[J]. Water, 2022, 14(14): 2144.
DOI URL |
| [18] | 张玉. 小球藻联合介质阻挡放电等离子体处理有机废水的效果及可行性评价[D]. 杨凌: 西北农林科技大学, 2025. |
| [19] | 张爽, 刘涛, 郝紫玉, 等. 东北黑土区农田土壤固氮微生物特征研究进展[J]. 水土保持学报, 2025, 39(6): 1-14. |
| [20] | 长春市九台区自然资源局. 长春市九台区东湖街道(规划区)压覆重要矿产资源调查报告[R]. 长春: 吉林省煤田地质勘察设计研究院, 2021. |
| [21] | 环境保护部. HJ 535—2009 水质氨氮的测定纳氏试剂分光光度法[S]. 北京: 中国环境科学出版社, 2009. |
| [22] | 国家环境保护局. GB 11893—89 水质总磷的测定钼酸铵分光光度法[S]. 北京: 中国标准出版社, 1989. |
| [23] | 国家环境保护部. HJ 634—2012土壤氨氮、亚硝酸盐氮、 硝酸盐氮的测定氯化钾溶液提取: 分光光度法[S]. 北京: 中国环境科学出版社, 2012. |
| [24] | 杨柳, 唐振, 郝原芳. 化学连续提取法对太湖沉积物中磷的各种形态测定[J]. 世界地质, 2013, 32(3): 634-639. |
| [25] | 国家林业局. LYT 1228—2015 森林土壤氮的测定[S]. 北京: 中国标准出版社, 2015. |
| [26] | 国家林业局. LYT1232—2015 森林土壤磷的测定[S]. 北京: 中国标准出版社, 2015. |
| [27] | 王哲, 王丽玲, 王雅娟, 等. 受污染城市河道沉积物磷吸附特征及其影响因素[J]. 环境工程学报, 2023, 17(7): 2412-2423. |
| [28] |
WANG Z, LI J, ZHANG G, et al. Characterization of acid-aged biochar and its ammonium adsorption in an aqueous solution[J]. Materials, 2020, 13(10): 2270.
DOI URL |
| [29] | 李琴, 詹聪, 桂双林, 等. 猪粪生物炭对水体磷酸盐的吸附特性[J]. 环境科学, 2025, 46(8): 5379-5390. |
| [30] | 裴佳瑶, 冯民权. 环境因子对雁鸣湖沉积物氮磷释放的影响[J]. 环境工程学报, 2020, 14(12): 3447-3459. |
| [31] | 罗芳. 三峡库区澎溪河回水区库湾消落带土壤氮磷分布及其通量研究[D]. 重庆: 重庆三峡学院, 2020. |
| [32] | 程瑞梅, 王晓荣, 肖文发, 等. 三峡库区消落带水淹初期土壤物理性质及金属含量初探[J]. 水土保持学报, 2009, 23(5): 156-161. |
| [33] | 宫兆宁, 李洪, 阿多, 等. 官厅水库消落带土壤有机质空间分布特征[J]. 生态学报, 2017, 37(24): 8336-8347. |
| [34] | 杨翊辰, 刘攀, 张杨, 等. 考虑消落带碳排放的丹江口水库生态调度研究[J]. 水资源研究, 2024, 2(13): 105-115. |
| [35] | 宗玉清, 李辉, 吴东浩, 等. 不同水深下太湖草/藻型湖区沉积物污染特征及释放通量[J]. 湖泊科学, 2025, 38(1): 1-13. |
| [36] |
时瑶, 张雷, 秦延文, 等. 四川邛海水体氮、 磷浓度时空分布特征及其生态环境响应研究[J]. 地学前缘, 2023, 30(2): 495-505.
DOI |
| [37] |
钟林健, 郭朝晖, 谢慧民, 等. 地下水位对尾矿中重金属释放及其在土壤中吸附的影响研究[J]. 地学前缘, 2025, 32(2): 484-494.
DOI |
| [38] | 王侧容, 郑春霞, 张漫漫, 等. 微生物异化硝酸盐和亚硝酸盐产铵研究进展[J]. 微生物学报, 2023, 63(4): 1340-1355. |
| [39] | 林静婕. 亚热带河流-河口系统微生物驱动的氮转化及其水文调控[D]. 厦门: 厦门大学, 2021. |
| [40] | 郑一坤. 贵州草海氮磷时空动态、释放通量及沉积物污染评价[D]. 贵阳: 贵州师范大学, 2025. |
| [41] |
黄思宇, 蒲俊兵, 潘谋成, 等. 岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响[J]. 地学前缘, 2024, 31(5): 387-396.
DOI |
| [42] | LIU D, CHEN Q, MAAVARA T, et al. Nitrogen cycling in reservoir drawdown areas and the impacts on water quality[J]. Global Biogeochemical Cycles, 2024, 38(7): e2024GB008136. |
| [43] | 方博, 王超, 王翀, 等. 三峡库区澎溪河流域不同高程消落带土壤磷形态特征[J]. 重庆大学学报, 2018, 41(12): 20-29. |
| [44] |
ANDELKOVIC A, JOKANOVIC V N, JOKANOVIC D, et al. Vegetation cover as a driver of sedimentary organic matter in small water reservoirs[J]. Water, 2025, 17(8): 1148.
DOI URL |
| [45] |
ZHANG X, CHEN Y, YAN D, et al. Effects of wet-dry alternation on organic phosphorus dynamics and sediment characteristics in the intertidal zone of Nansi Lake[J]. Ecotoxicology and Environmental Safety, 2024, 281: 116668.
DOI URL |
| [46] |
CHANG M Y, JUANG R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay[J]. Journal of Colloid and Interface science, 2004, 278(1): 18-25.
DOI URL |
| [47] | 刘哲炜, 蒋煜峰, 何蕊, 等. 泰乐菌素在黄土中的吸附持留能力及影响因素研究[J]. 环境科学研究, 2024, 37(9): 2006-2019. |
| [48] |
SAN T Z, PARK J H, WIN M Z, et al. Enhanced ammonia adsorption-desorption properties of synthesized zeolite-carbon composite with the effect of Si/Al ratio[J]. Separation and Purification Technology, 2025, 353: 128560.
DOI URL |
| [49] |
RABIEE ABYANCH M, NABI BIDHENDI G, Pb (ΙΙ), Cd (ΙΙ), and Mn (ΙΙ) adsorption onto pruning-derived biochar: physicochemical characterization, modeling and application in real landfill leachate[J]. Scientific Reports, 2024, 14(1): 3426.
DOI |
| [50] |
LI P, LIU P, ZHOU J, et al. Adsorption performance of different wetland substrates for ammonia nitrogen: an experimental study[J]. Water, 2024, 16(1): 174.
DOI URL |
| [51] | 郑婧婧. 污泥类藻酸盐胞外聚合物凝胶形成机制及除磷性能研究[D]. 杭州: 浙江大学, 2024. |
| [52] |
ZHOU Z, HENKEL S, KASTEN S, et al. The iron “redox battery” in sandy sediments: its impact on organic matter remineralization and phosphorus cycling[J]. Science of the Total Environment, 2023, 865: 161168.
DOI URL |
| [53] | LEWIS A S L, BREEF-PILZ A, HOWARD D W, et al. Reservoir drawdown highlights the emergent effects of water level change on reservoir physics, chemistry, and biology[J]. Journal of Geophysical Research: Biogeosciences, 2024, 129(2): e2023JG007780. |
| [54] |
LARSON J H, BAILEY S W, MAKI R P, et al. Possible influence of water level management on nutrient flux in nearshore sediments of Kabetogama Lake, Minnesota, USA[J]. Ecosphere, 2025, 16(2): e70176.
DOI URL |
| [1] | ZHANG Xuehang, HE Baonan, HE Jiangtao, MA Shuo, LIU Fei, YANG Shanshan, SHI Yuanyuan, HE Wei, YANG Baiju. Study on groundwater pollution risk evolution in Yongding River recharge area [J]. Earth Science Frontiers, 2025, 32(4): 523-536. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||