

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 1-13.DOI: 10.13745/j.esf.sf.2025.10.5
Previous Articles Next Articles
WEN Zhang1(
), LI Yiming2, GUO Xulei1, WAN Tan1, LUO Qingshu3, ZHOU Hong3
Received:2025-09-30
Revised:2025-10-15
Online:2026-11-25
Published:2025-11-10
CLC Number:
WEN Zhang, LI Yiming, GUO Xulei, WAN Tan, LUO Qingshu, ZHOU Hong. Characteristics of surface water-groundwater interaction in the fractured riverbank of the Gezhouba Reservoir area[J]. Earth Science Frontiers, 2026, 33(1): 1-13.
Fig.2 Borehole lithological columns, hydrogeological descriptions, core imaging records, core logging data, and well-logging results: (a) ZK08; (b) ZK09. The blue boxes indicate the main water-bearing (aquifer) sections.
| 裂隙编号 | 深度/m | 介质充填情况 | 岩性 | 倾向/(°) | 倾角/(°) | 隙宽/m | |
|---|---|---|---|---|---|---|---|
| ZK09 | 1 | 49 | 无充填 | 粗晶白云岩 | 50 | 85 | 0.1 |
| 2 | 11 | 无充填 | 粗晶白云岩 | 307 | 76 | 0.03 | |
| 3 | 78.4 | 无充填 | 粗晶白云岩 | 83 | 70 | 0.08 | |
| ZK08 | 1 | 32.7 | 局部泥质充填 | 粗晶白云岩 | 48 | 86 | 0.1 |
| 2 | 20.3 | 局部泥质充填 | 粗晶白云岩 | 312 | 70 | 0.03 | |
| 3 | 44.5 | 局部方解石充填 | 粗晶白云岩 | 89 | 73 | 0.08 |
Table 1 Coordinates and characteristics of the three major fractures
| 裂隙编号 | 深度/m | 介质充填情况 | 岩性 | 倾向/(°) | 倾角/(°) | 隙宽/m | |
|---|---|---|---|---|---|---|---|
| ZK09 | 1 | 49 | 无充填 | 粗晶白云岩 | 50 | 85 | 0.1 |
| 2 | 11 | 无充填 | 粗晶白云岩 | 307 | 76 | 0.03 | |
| 3 | 78.4 | 无充填 | 粗晶白云岩 | 83 | 70 | 0.08 | |
| ZK08 | 1 | 32.7 | 局部泥质充填 | 粗晶白云岩 | 48 | 86 | 0.1 |
| 2 | 20.3 | 局部泥质充填 | 粗晶白云岩 | 312 | 70 | 0.03 | |
| 3 | 44.5 | 局部方解石充填 | 粗晶白云岩 | 89 | 73 | 0.08 |
| 描述 | 符号 | 值 |
|---|---|---|
| 浅层含水层渗透系数 | K1 | 1×10-3 m/d |
| 浅层含水层孔隙度 | θ1 | 0.2 |
| 深层含水层渗透系数 | K2 | 1×10-2 m/d |
| 深层含水层孔隙度 | θ2 | 0.25 |
| 重力加速度 | g | 10 m/s2 |
| 流体运动粘度 | v | 1×10-6 m2/s |
| 流体的动力黏度 | μ | 1×103 Pa·s |
| 裂隙隙宽 | m | 0.03、0.08、0.1 m |
Table 2 Model parameters
| 描述 | 符号 | 值 |
|---|---|---|
| 浅层含水层渗透系数 | K1 | 1×10-3 m/d |
| 浅层含水层孔隙度 | θ1 | 0.2 |
| 深层含水层渗透系数 | K2 | 1×10-2 m/d |
| 深层含水层孔隙度 | θ2 | 0.25 |
| 重力加速度 | g | 10 m/s2 |
| 流体运动粘度 | v | 1×10-6 m2/s |
| 流体的动力黏度 | μ | 1×103 Pa·s |
| 裂隙隙宽 | m | 0.03、0.08、0.1 m |
| [1] |
KRAUSE S, HANNAH D M, FLECKENSTEIN J H, et al. Interdisciplinary perspectives on processes in the hyporheic zone[J]. Ecohydrology, 2011, 4(4): 481-499.
DOI URL |
| [2] |
SOPHOCLEOUS M. Interactions between groundwater and surface water: the state of the science[J]. Hydrogeology Journal, 2002, 10(1): 52-67.
DOI URL |
| [3] | 胡春宏, 郑春苗, 王光谦, 等. “西南河流源区径流变化和适应性利用”重大研究计划进展综述[J]. 中国科学: 地球科学, 2022, 33(3): 337-359. |
| [4] | 金光球, 李凌. 河流中潜流交换研究进展[J]. 水科学进展, 2008, 19(2): 285-293. |
| [5] | 杨蕴, 郭勇, 王发飞, 等. 山谷型小流域地表水与地下水时空交互模拟研究[J]. 水文地质工程地质, 2025, 52(1): 32-41. |
| [6] | 李佳选, 王元元, 宋进喜, 等. 北洛河潜流带水交换研究[J]. 水土保持学报, 2015, 29(2): 310-313. |
| [7] |
GLEESON T, CUTHBERT M, FERGUSON G, et al. Global groundwater sustainability, resources, and systems in the Anthropocene[J]. Annual Review of Earth and Planetary Sciences, 2020, 48(1): 431-463.
DOI URL |
| [8] | 杜尧, 马腾, 邓娅敏, 等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学, 2017, 42(5): 661-673. |
| [9] | JIANG Q, JIN G, TANG H, et al. N2O production and consumption processes in a salinity-impacted hyporheic zone[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(10): e2021JG006512. |
| [10] |
BOANO F, REVELLI R, RIDOLFI L. Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics[J]. Water Resources Research, 2013, 49(7): 4089-4099.
DOI URL |
| [11] |
GOMEZ-VELEZ J D, WILSON J L, CARDENAS M B, et al. Flow and residence times of dynamic river bank storage and sinuosity-driven hyporheic exchange[J]. Water Resources Research, 2017, 53(10): 8572-8595.
DOI URL |
| [12] | 刘东升, 赵坚, 吕辉. 大坝下游河岸带冬夏季水热交换特征对比[J]. 水科学进展, 2017, 28(1): 124-132. |
| [13] | 王大博, 任杰, 代娟, 等. 水位波动对洞庭湖洲滩潜流带水热传输影响[J]. 长江流域资源与环境, 2022, 31(3): 685-697. |
| [14] | 夏继红, 林俊强, 陈永明, 等. 国外河流潜流层研究的发展过程及研究方法[J]. 水利水电科技进展, 2013, 33(4): 73-77. |
| [15] |
BRUNNER P, THERRIEN R, RENARD P, et al. Advances in understanding river-groundwater interactions[J]. Reviews of Geophysics, 2017, 55(3): 818-854.
DOI URL |
| [16] |
FLIPO N, MOUHRI A, LABARTHE B, et al. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces[J]. Hydrology and Earth System Sciences, 2014, 18(8): 3121-3149.
DOI URL |
| [17] |
KALBUS E, REINSTORF F, SCHIRMER M. Measuring methods for groundwater-surface water interactions: a review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
DOI URL |
| [18] |
IRVINE D J, SINGHA K, KURYLYK B L, et al. Groundwater-surface water interactions research: past trends and future directions[J]. Journal of Hydrology, 2024, 644: 132061.
DOI URL |
| [19] |
BOANO F, HARVEY J W, MARION A, et al. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications[J]. Reviews of Geophysics, 2014, 52(4): 603-679.
DOI URL |
| [20] |
HESTER E T, CARDENAS M B, HAGGERTY R, et al. The importance and challenge of hyporheic mixing[J]. Water Resources Research, 2017, 53(5): 3565-3575.
DOI URL |
| [21] | 束龙仓, 宫荣, 栾佳文, 等. 地下水与地表水水量交换识别及交换量计算: 以新汴河宿州段为例[J]. 水科学进展, 2022, 33(1): 57-67. |
| [22] |
GOMEZ-VELEZ J D, HARVEY J W, CARDENAS M B, et al. Denitrification in the Mississippi River network controlled by flow through river bedforms[J]. Nature Geoscience, 2015, 8(12): 941-945.
DOI |
| [23] |
GOMEZ-VELEZ J D, HARVEY J W. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins[J]. Geophysical Research Letters, 2014, 41(18): 6403-6412.
DOI URL |
| [24] | BOANO F, CAMPOREALE C, REVELLI R, et al. Sinuosity-driven hyporheic exchange in meandering rivers[J]. Geophysical Research Letters, 2006, 33(18): L18406. |
| [25] | BOANO F, DEMARIA A, REVELLI R, et al. Biogeochemical zonation due to intrameander hyporheic flow[J]. Water Resources Research, 2010, 46(2): W02511. |
| [26] |
BERKOWITZ B. Characterizing flow and transport in fractured geological media: a review[J]. Advances in Water Resources, 2002, 25(8/9/10/11/12): 861-884.
DOI URL |
| [27] | 赵敬波, 刘健, 周志超, 等. 基于离散裂隙网络模型的地下水流并行模拟方法[J]. 地质科技通报, 2023, 42(4): 55-64. |
| [28] | 毛铖鑫, 贾剑青, 刘中帅. 多裂隙优势渗流对边坡稳定性影响研究[J]. 兰州交通大学学报, 2024, 43(2): 15-21. |
| [29] | 朱余佳. 裂隙性质对含裂隙基坑土坡渗流特性影响数值模拟研究[J]. 重庆工商大学学报(自然科学版), 2021, 38(1): 105-112. |
| [30] |
WERNER A D, ROBINSON N I. Revisiting analytical solutions for steady interface flow in subsea aquifers: aquitard salinity effects[J]. Advances in Water Resources, 2018, 116: 117-126.
DOI URL |
| [31] |
ZHANG Q, WERNER A D. Integrated surface-subsurface modeling of Fuxianhu Lake catchment, Southwest China[J]. Water Resources Management, 2009, 23(11): 2189-2204.
DOI URL |
| [32] | 王肖珊. 岩体裂隙网络的渗流计算及分形特性研究[D]. 济南: 山东大学, 2014. |
| [33] |
SINGH T, WU L, GOMEZ-VELEZ J D, et al. Dynamic hyporheic zones: exploring the role of peak flow events on bedform-induced hyporheic exchange[J]. Water Resources Research, 2019, 55(1): 218-235.
DOI URL |
| [34] |
HE X, SINAN M, KWAK H, et al. A corrected cubic law for single-phase laminar flow through rough-walled fractures[J]. Advances in Water Resources, 2021, 154: 103984.
DOI URL |
| [1] | DONG Yanhui, WANG Liheng, ZHANG Qian, ZHOU Zhichao, WEN Dongguang, LI Shouding, WAN Li. Challenges and progress in fracture flow research of deep hydrogeology [J]. Earth Science Frontiers, 2026, 33(1): 296-312. |
| [2] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
| [3] | XIAO Fan, WANG Kaiqi. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling [J]. Earth Science Frontiers, 2021, 28(3): 190-207. |
| [4] | ZHANG Huatian, LI Jianghai, TAO Chunhui. Discussions on the bathymetric segmentation and tectonogenesis of the oblique spreading Southwest Indian Ridge [J]. Earth Science Frontiers, 2021, 28(2): 271-283. |
| [5] | SHU Jiang-Jian, CHEN An-Gao, GONG Gui-Lun, YI Jin, CA Jian-Xin, GONG Chao-Yang, HUANG Dong-Lin, CENG Jiao-Song, LIN Ge. Structurefluid related mineralization during the mylonitization process in the Hetai goldfield, Guangdong Province. [J]. Earth Science Frontiers, 2011, 18(5): 67-77. |
| [6] | XUE Chun-Ji, CHE Guo-Xiang, XUE Wei, CAO Ji-Hu. Relationship between hydrocarbon generation and basinal fluid flow and uranium mineralization in the Ordos Basin. [J]. Earth Science Frontiers, 2011, 18(5): 19-28. |
| [7] | CHE Guo-Xiang, XUE Chun-Ji. Principles, methods and applications of hydrodynamic studies of mineralization. [J]. Earth Science Frontiers, 2011, 18(5): 1-18. |
| [8] | Hongjun Luo, Dag Nummedal, Shaofeng Liu. 3D flexural numerical modeling of foreland basins: An example from the Upper Cretaceous across the Southwestern Wyoming. [J]. Earth Science Frontiers, 2010, 17(4): 128-139. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||