Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 308-325.DOI: 10.13745/j.esf.sf.2024.12.128
Previous Articles Next Articles
ZHONG Jingyu(), ZHANG Yanan*(
), SU Shangguo, CHEN Xuegen
Received:
2024-09-06
Revised:
2024-12-28
Online:
2025-09-25
Published:
2025-10-14
Contact:
ZHANG Yanan
CLC Number:
ZHONG Jingyu, ZHANG Yanan, SU Shangguo, CHEN Xuegen. Types, characteristics of apatite and its metallogenic indications in the Oubulage porphyry copper-gold deposit, Inner Mongolia[J]. Earth Science Frontiers, 2025, 32(5): 308-325.
Fig.3 Microscopic characteristics of two types of apatite in the Oubulage Cu-Au deposit (a) Apatite is enclosed within hornblende; (b) Apatite in the quartz porphyry matrix; (c) Apatite distributed within sulfides; (d) Garnet fractured and filled with mineral assemblage of rutile, apatite, and K-feldspar. Ap—apatite; Hb—hornblende; Sul—sulfides; Grt—garnet; Kp—K-feldspar; Rt—rutile.
Fig.4 CL images of two types of apatite in the Oubulage Cu-Au deposit Ap—apatite; Hb—hornblende; Cal—calcite; Rt—rutile; Sul—sulfides; Qtz—quartz. (a) CL image of apatite encluded within hornblende; (b) CL image of broken hornblende filled with calcite and apatite; (c) CL image of the paragenetic assemblage of calcite, rutile and apatite; (d) CL image of quartz and apatite distributed in sulfides.
样品号 | wB/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | Cr2O3 | FeO | Nb2O5 | SiO2 | SnO2 | Ta2O5 | TiO2 | V2O3 | WO3 | ZrO2 | K2O | CaO | Total | |
B1-Rt-1 | 0.07 | 0.02 | 0.63 | 0.62 | 0.06 | 0.79 | 0.07 | 97.04 | 0.41 | 0.25 | 0.30 | — | — | 100.26 |
B1-Rt-2 | 0.03 | 0.01 | 0.50 | 0.54 | 0.14 | 0.27 | 0.03 | 98.01 | 0.31 | 0.04 | 0.12 | — | — | 100.00 |
B1-Rt-3 | 0.07 | — | 0.65 | 0.47 | 0.27 | 0.28 | 0.04 | 97.42 | 0.34 | 0.20 | 0.09 | — | — | 99.83 |
B1-Rt-4 | 0.12 | 0.02 | 0.55 | 0.58 | 0.34 | 0.28 | 0.09 | 96.58 | 0.25 | 0.40 | 0.11 | — | — | 99.32 |
B1-Rt-5 | 0.03 | 0.05 | 0.66 | 0.45 | 0.17 | 0.44 | 0.05 | 97.20 | 0.51 | 0.26 | 0.14 | — | — | 99.96 |
B2042-Rt-1 | 0.45 | — | 1.72 | — | 0.32 | — | — | 96.03 | — | — | 0.11 | 0.18 | 0.04 | 98.85 |
B2042-Rt-2 | 0.21 | 0.02 | 1.03 | — | 0.12 | — | — | 98.58 | — | — | 0.11 | 0.17 | 0.04 | 100.28 |
B2042-Rt-3 | 0.31 | — | 2.19 | — | 0.30 | — | — | 95.70 | — | — | 0.16 | 0.07 | 0.07 | 98.80 |
B2042-Rt-4 | 0.28 | — | 0.96 | — | 0.08 | — | — | 98.79 | — | — | 0.17 | 0.16 | 0.04 | 100.48 |
B2042-Rt-5 | 0.32 | — | 0.33 | — | 0.48 | — | — | 97.87 | — | — | 0.12 | 0.15 | 0.20 | 99.47 |
Table 3 Major elements of rutile
样品号 | wB/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | Cr2O3 | FeO | Nb2O5 | SiO2 | SnO2 | Ta2O5 | TiO2 | V2O3 | WO3 | ZrO2 | K2O | CaO | Total | |
B1-Rt-1 | 0.07 | 0.02 | 0.63 | 0.62 | 0.06 | 0.79 | 0.07 | 97.04 | 0.41 | 0.25 | 0.30 | — | — | 100.26 |
B1-Rt-2 | 0.03 | 0.01 | 0.50 | 0.54 | 0.14 | 0.27 | 0.03 | 98.01 | 0.31 | 0.04 | 0.12 | — | — | 100.00 |
B1-Rt-3 | 0.07 | — | 0.65 | 0.47 | 0.27 | 0.28 | 0.04 | 97.42 | 0.34 | 0.20 | 0.09 | — | — | 99.83 |
B1-Rt-4 | 0.12 | 0.02 | 0.55 | 0.58 | 0.34 | 0.28 | 0.09 | 96.58 | 0.25 | 0.40 | 0.11 | — | — | 99.32 |
B1-Rt-5 | 0.03 | 0.05 | 0.66 | 0.45 | 0.17 | 0.44 | 0.05 | 97.20 | 0.51 | 0.26 | 0.14 | — | — | 99.96 |
B2042-Rt-1 | 0.45 | — | 1.72 | — | 0.32 | — | — | 96.03 | — | — | 0.11 | 0.18 | 0.04 | 98.85 |
B2042-Rt-2 | 0.21 | 0.02 | 1.03 | — | 0.12 | — | — | 98.58 | — | — | 0.11 | 0.17 | 0.04 | 100.28 |
B2042-Rt-3 | 0.31 | — | 2.19 | — | 0.30 | — | — | 95.70 | — | — | 0.16 | 0.07 | 0.07 | 98.80 |
B2042-Rt-4 | 0.28 | — | 0.96 | — | 0.08 | — | — | 98.79 | — | — | 0.17 | 0.16 | 0.04 | 100.48 |
B2042-Rt-5 | 0.32 | — | 0.33 | — | 0.48 | — | — | 97.87 | — | — | 0.12 | 0.15 | 0.20 | 99.47 |
样品号 | ZrO2含量/% | t/℃ |
---|---|---|
B1-Q1-Rt-1 | 0.30 | 879.00 |
B1-Q1-Rt-2 | 0.12 | 769.39 |
B1-Q1-Rt-3 | 0.09 | 740.43 |
B1-Q1-Rt-4 | 0.11 | 759.70 |
B1-Q1-Rt-5 | 0.14 | 789.32 |
B2042-Q4-Rt-3 | 0.11 | 763.20 |
B2042-Q4-Rt-4 | 0.11 | 761.68 |
B2042-Q5-Rt-1 | 0.16 | 803.76 |
B2042-Q5-Rt-2 | 0.17 | 808.74 |
B2042-Q5-Rt-4 | 0.12 | 771.63 |
Table 4 Crystallization temperatures of rutile
样品号 | ZrO2含量/% | t/℃ |
---|---|---|
B1-Q1-Rt-1 | 0.30 | 879.00 |
B1-Q1-Rt-2 | 0.12 | 769.39 |
B1-Q1-Rt-3 | 0.09 | 740.43 |
B1-Q1-Rt-4 | 0.11 | 759.70 |
B1-Q1-Rt-5 | 0.14 | 789.32 |
B2042-Q4-Rt-3 | 0.11 | 763.20 |
B2042-Q4-Rt-4 | 0.11 | 761.68 |
B2042-Q5-Rt-1 | 0.16 | 803.76 |
B2042-Q5-Rt-2 | 0.17 | 808.74 |
B2042-Q5-Rt-4 | 0.12 | 771.63 |
Fig.10 Hand specimen photographs of rocks and ores from the Oubulage porphyry copper-gold deposit a—Quartz porphyry with sulfide droplets; b—Ore with vesicles.
[1] | SINGER D A, BERGER V I, MENZIE W D, et al. Porphyry copper deposit density[J]. Economic Geology, 2005, 100(3): 491-514. |
[2] | SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41. |
[3] | 高俊, 朱明田, 王信水, 等. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 2019, 93(1): 24-71. |
[4] | HURTIG N C, MIGDISOV A A, WILLIAMS-JONES A E. Are vapor-like fluids viable ore fluids for Cu-Au-Mo porphyry ore formation?[J]. Economic Geology, 2021, 116(7): 1599-1624. |
[5] | CALDER M F, CHANG Z S, ARRIBAS A, et al. High-grade copper and gold deposited during postpotassic chlorite-white mica-albite stage in the far southeast porphyry deposit, Philippines[J]. Economic Geology, 2022, 117(7): 1573-1596. |
[6] | 陈浩宇, 和文言. 岩浆演化过程中硫化物饱和对斑岩型Cu-Au矿床形成的控制[J]. 现代地质, 2024, 38(4): 947-958. |
[7] | 寇冠玉, 周晔, 郑远川, 等. 伊朗马斯杰德达吉(Masjed Daghi)始新世斑岩成因: 来自光谱学与U-Pb年代学和地球化学的证据[J]. 现代地质, 2021, 35(2): 535-551. |
[8] | 侯增谦. 斑岩Cu-Mo-Au矿床: 新认识与新进展[J]. 地学前缘, 2004, 11(1): 131-144. |
[9] | 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817. |
[10] | TATNELL L, ANENBURG M, LOUCKS R. Porphyry copper deposit formation: identifying garnet and amphibole fractionation with REE pattern curvature modeling[J]. Geophysical Research Letters, 2023, 50(14): e2023GL103525. |
[11] | 张少颖, 和文言, 肖仪武. 镁铁质岩浆周期性补给对云南普朗斑岩Cu-Au矿床的制约: 能量约束下热力学模拟[J]. 现代地质, 2024, 38(4): 922-933. |
[12] | MAO J W, ZHANG J D, PIRAJNO F, et al. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China: a linked ore system[J]. Ore Geology Reviews, 2011, 43(1): 203-216. |
[13] | ZHAI D G, WILLIAMS-JONES A E, LIU J J, et al. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113(6): 1359-1382. |
[14] | 倪培, 迟哲, 潘君屹, 等. 热液矿床的成矿流体与成矿机制: 以中国若干典型矿床为例[J]. 矿物岩石地球化学通报, 2018, 37(3): 369-394, 560. |
[15] | 韩润生, 赵冻. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 2022, 29(5): 420-437. |
[16] | 罗照华, 卢欣祥, 郭少丰, 等. 透岩浆流体成矿体系[J]. 岩石学报, 2008, 24(12): 2669-2678. |
[17] | 罗照华. 流体-熔体强相互作用的成矿功能[J]. 矿物学报, 2011, 31(增刊1): 503-504. |
[18] | BURET Y, VON QUADT A, HEINRICH C, et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)[J]. Earth and Planetary Science Letters, 2016, 450: 120-131. |
[19] | POLLARD P J, TAYLOR R G, PETERS L. Ages of intrusion, alteration, and mineralization at the grasberg Cu-Au deposit, Papua, Indonesia[J]. Economic Geology, 2005, 100(5): 1005-1020. |
[20] | BALLARD J R, PALIN J M, CAMPBELL I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144(3): 347-364. |
[21] | PICCOLI P M, CANDELA P A. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 255-292. |
[22] | DING T, MA D S, LU J J, et al. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: implications for petrogenesis and metallogenesis[J]. Ore Geology Reviews, 2015, 69: 104-117. |
[23] | PAN L C, HU R Z, WANG X S, et al. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China[J]. Lithos, 2016, 254: 118-130. |
[24] | 陈雷, 闫臻, 王宗起, 等. 东秦岭160-140 Ma Cu(Mo)和Mo(W)矿床磷灰石成分特征[J]. 地质学报, 2017, 91(9): 1925-1941. |
[25] | 邢凯, 舒启海. 磷灰石在矿床学研究中的应用[J]. 矿床地质, 2021, 40(2): 189-205. |
[26] | 谭侯铭睿, 黄小文, 漆亮, 等. 磷灰石化学组成研究进展: 成岩成矿过程示踪及对矿产勘查的指示[J]. 岩石学报, 2022, 38(10): 3067-3087. |
[27] | HUANG M L, ZHU J J, BI X W, et al. Low magmatic Cl contents in giant porphyry Cu deposits caused by early fluid exsolution:a case study of the Yulong belt and implication for exploration[J]. Ore Geology Reviews, 2022, 141: 104664. |
[28] | 李华伟, 杨志明. 岩浆锆石和磷灰石矿物化学及在斑岩矿床领域的应用[J]. 地质学报, 2023, 97(4): 973-1001. |
[29] | 李俊建, 骆辉, 陈安蜀, 等. 内蒙阿拉善地区成矿远景区划[J]. 矿床地质, 2002, 21(增刊1): 152-155. |
[30] | 李俊建, 翟裕生, 桑海清, 等. 内蒙古阿拉善欧布拉格铜-金矿床的成矿时代[J]. 矿物岩石地球化学通报, 2010, 29(4): 323-327 |
[31] | 张勇. 内蒙古乌拉特后旗欧布拉格金铜矿地质特征及找矿方向[J]. 内蒙古科技与经济, 2015(3): 75-77. |
[32] | SHEN P, PAN H D, HATTORI K, et al. Large Paleozoic and Mesozoic porphyry deposits in the Central Asian Orogenic Belt: geodynamic settings, magmatic sources, and genetic models[J]. Gondwana Research, 2018, 58: 161-194. |
[33] | 霍晓燕. 内蒙古欧布拉格铜金矿床的成矿特征与成矿机制[D]. 北京: 中国地质大学(北京), 2021. |
[34] | 吴晓蔓. 内蒙古欧布拉格铜金矿闪长玢岩成因及对成矿的指示意义[D]. 北京: 中国地质大学(北京), 2021. |
[35] | 邵积东, 王守光, 赵文涛, 等. 内蒙古北山: 阿拉善地区重要成矿带成矿地质特征及找矿潜力分析[J]. 西部资源, 2009(2): 53-55. |
[36] | 杨福新. 内蒙狼山地区构造地质演化及铀矿化分布格局的探讨[J]. 铀矿地质, 1994, 10(2): 78-86. |
[37] | 杨崇文, 任太平, 杨崇美. 内蒙古阿拉善铜-金矿床的地质地球化学特征[J]. 科技传播, 2011, 3(24): 91, 96. |
[38] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[39] | LIU M Y, ZHOU M F, SU S G, et al. Contrasting geochemistry of apatite from peridotites and sulfide ores of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Economic Geology, 2021, 116(5): 1073-1092. |
[40] | YAO C L, LU J J, GUO W M. Compositional differencce between three generation of apatite from Tongchang porphyry deposit, Jiangxi Province, Southeast China[J]. Acta Mineralogica Sinica, 2007, 27(1): 31-40. |
[41] | 邓华兴. 磷灰石的阴极射线发光研究[J]. 地球化学, 1980, 9(4): 368-374. |
[42] | WAYCHUNAS G A. Apatite luminescence[J]. Reviews inMineralogy and Geochemistry, 2002, 48(1): 701-742. |
[43] | 周瑶琪, 史冰洁, 李素, 等. 副矿物地球化学研究进展[J]. 中国石油大学学报(自然科学版), 2013, 37(4): 59-70. |
[44] | BOUZARI F, HART C J R, BISSIG T, et al. Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits[J]. Economic Geology, 2016, 111(6): 1397-1410. |
[45] | 苏尚国, 崔晓亮, 罗照华, 等. 流体晶、 流体晶矿物组合、 流体岩及其研究意义[J]. 地学前缘, 2018, 25(6): 283-289. |
[46] | 罗照华. 流体地球科学与地球系统科学[J]. 地学前缘, 2018, 25(6): 277-282. |
[47] | BELOUSOVA E A, WALTERS S, GRIFFIN W L, et al. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland[J]. Australian Journal of Earth Sciences, 2001, 48(4): 603-619. |
[48] | CHU M F, WANG K L, GRIFFIN W L, et al. Apatitecomposition: tracing petrogenetic processes in transhimalayan granitoids[J]. Journal of Petrology, 2009, 50(10): 1829-1855. |
[49] | ZHANG X B, GUO F, ZHANG B, et al. Magmatic evolution and post-crystallization hydrothermal activity in the Early Cretaceous Pingtan intrusive complex, SE China: records from apatite geochemistry[J]. Contributions to Mineralogy and Petrology, 2020, 175(4): 35. |
[50] | 张晓兵, 郭锋, 张博. 福建漳州花岗闪长岩成因: 来自磷灰石地球化学的约束[J]. 地球化学, 2022, 51(5): 585-597. |
[51] | 王启博, 张寿庭, 唐利, 等. 豫西杨山萤石矿床成因: 萤石稀土元素组成和流体包裹体热力学制约[J]. 现代地质, 2023, 37(6): 1524-1537. |
[52] | CAO M J, LI G M, QIN K Z, et al. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: implications for petrogenesis and mineralization[J]. Resource Geology, 2012, 62(1): 63-83. |
[53] | MILES A J, GRAHAM C M, HAWKESWORTH C J, et al. Apatite:a new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta, 2014, 132: 101-119. |
[54] | 邢凯, 舒启海, 赵鹤森, 等. 滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义[J]. 岩石学报, 2018, 34(5): 1427-1440. |
[55] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
[56] | BELOUSOVA E A, GRIFFIN W L, O’REILLY S Y, et al. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69. |
[57] | SUN S J, YANG X Y, WANG G J, et al. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: implications for petrogenesis and metallogeny[J]. Chemical Geology, 2019, 510: 200-214. |
[58] | 左琼华, 王伟, 王天华, 等. 云南镇康地区铅锌多金属矿成矿规律[J]. 地质找矿论丛, 2016, 31(4): 496-505. |
[59] | MEINHOLD G. Rutile and its applications in earth sciences[J]. Earth-Science Reviews, 2010, 102(1/2): 1-28. |
[60] | 陶克勤, 闫峻, 李超, 等. 皖东蚌埠—五河地区重晶石石英脉中金红石特征与成因[J]. 矿物学报, 2023, 43(2): 201-214. |
[61] | 高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-432. |
[62] | 孙紫坚, 方维萱, 鲁佳, 等. 云南因民铁铜矿区辉长岩类中黑云母-金红石化特征及其指示意义[J]. 现代地质, 2017, 31(2): 267-277. |
[63] | ZACK T, MORAES R, KRONZ A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148(4): 471-488. |
[64] | WATSON E B, WARK D A, THOMAS J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433. |
[65] | CHEN X, SU S, SANTOSH M, et al. The role of fluid overpressure in Cu-Au porphyry mineralization: evidence from the Oubulage deposit, Inner Mongolia, China[J]. Geochemistry, 2025, 85(1):126258. |
[66] | SHEN A H, KEPPLER H. Direct observation of complete miscibility in the albite-H2O system[J]. Nature, 1997, 385(6618): 710-712. |
[67] | 倪怀玮. 超临界地质流体的性质和效应[J]. 矿物岩石地球化学通报, 2020, 39(3): 443-447, 440. |
[68] | 倪怀玮. 超临界地质流体研究进展简介[J]. 中国科学: 地球科学, 2023, 53(10): 2430-2433. |
[69] | OHMOTO H. Stable isotope geochemistry of ore deposits[J]. Review in Mineralogy and Geochemistry, 1986, 16(1): 491-559. |
[70] | 王中良, 林木森, 周瑞辉. 滇东南荒田钨矿床白钨矿原位U-Pb年代学、 Sr同位素组成及成矿启示[J]. 现代地质, 2025, 39(1): 133-145. |
[71] | 王佳新, 焦建刚, 马云飞, 等. 内蒙古中部乌兰陶勒盖铜镍矿床形成时代与岩浆源区[J]. 现代地质, 2024, 38(4): 991-1012. |
[72] | ZHANG Y, XUE S, SU S, et al. Timing of S-saturation in the formation of the Oubulage porphyry Cu-Au deposit, Inner Mongolia, Northern China[J]. Journal of Asian Earth Sciences, 2025, 280:106399. |
[73] | 疏孙平, 李秋根, 刘树文, 等. 斑岩型铜、金、钼矿床成岩成矿特征差异的原因和意义[J]. 地学前缘, 2018, 25(5): 237-250. |
[74] | 侯增谦, 杨志明, 王瑞, 等. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 2020, 27(2): 20-44. |
[75] | 杨志明, 侯增谦. 初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿床地质, 2009, 28(5): 515-538. |
[76] | WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6(11): 917-925. |
[77] | 於崇文. 固体地球系统的复杂性与自组织临界性[J]. 地学前缘, 1998, 5(3): 347-368. |
[1] | WU Ke, YAN Xiangyu, YANG Donghong. Petrogenesis of the Early Cretaceous Jiguanshan granite porphyry in the Liaodong Peninsula: Constraints from geochemistry and single mineral U-Pb-Hf-Nd isotopes [J]. Earth Science Frontiers, 2025, 32(4): 388-404. |
[2] | LIU Meiyu, SU Shangguo, LIU Xinran, GUO Xudong, LI Yiming. Magmatic conduit metallogenic system of Jinchuan Cu-Ni (PGE) sulfide deposit: Evidence from mineralogy [J]. Earth Science Frontiers, 2025, 32(2): 390-411. |
[3] | LIU Jinping, WANG Gaiyun, JIAN Xiaoling, ZHU Chuanqing, HU Xiaoqiang, YUAN Xiaoqiang, WANG Chao. Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin [J]. Earth Science Frontiers, 2024, 31(4): 206-218. |
[4] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[5] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[6] | ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution [J]. Earth Science Frontiers, 2021, 28(5): 175-185. |
[7] | TANG Li, ZHANG Shouting, WANG Liang, PEI Qiuming, FANG Yi, CAO Huawen, ZOU Hao, YIN Shaobo. Exploration of concealed fluorite deposit in shallow overburden areas: A case study in Elimutai, Inner Mongolia, China [J]. Earth Science Frontiers, 2021, 28(3): 208-220. |
[8] | OUYANG Xin, ZHANG Yongmei, GU Xuexiang, LIU Li, WANG Luzhi, GAO Liye. Characteristics of fluid inclusions in and metallogensis of the Zhuanshanzi gold deposit in Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(2): 320-332. |
[9] | LUO Shaoyong, ZHOU Yuefei, LIU Xing. Effect of apatite on the stability of ferrihydrite in lacustrine sediments [J]. Earth Science Frontiers, 2020, 27(5): 218-226. |
[10] | LI Yuan, WANG Changqiu, LU Anhuai, LI Yan, YANG Chongqing, LI Kang. Mineralogical characteristics and distribution patterns of different types of calcification in a cerebrovascular atherosclerotic lesion [J]. Earth Science Frontiers, 2020, 27(5): 291-299. |
[11] | ZHOU Qiushi, WANG Rui. Advances in chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 42-67. |
[12] | ZHANG Dayu, FU Xiang, WEI Ouxiang, YE Longxiang, JIANG Hua, ZHANG Yong, XIN Houtian. Discovery of the Silurian andesitic porphyry in the Xiaohulishan Mo-polymetallic deposit, the Beishan district, Inner Mongolia, and its geological significance [J]. Earth Science Frontiers, 2020, 27(3): 222-238. |
[13] | PENG Runmin, WANG Jianping. Confirmation and metallogenesis of the Neoproterozoic rift in the western section of the northern margin of the North China Craton [J]. Earth Science Frontiers, 2020, 27(2): 420-441. |
[14] | WANG Yinhong, LIU Jiajun, ZHANG Mei, ZHANG Fangfang, WANG Kang, XIAN Xuechen, GUO Lingjun. Fluid inclusion and C-O-S-Pb isotopic studies of the Azhahada Cu-Bi deposit in Inner Mongolia, China [J]. Earth Science Frontiers, 2020, 27(2): 391-404. |
[15] | ZHAO Xinfu, ZENG Liping, LIAO Wang, LI Wanting, HU Hao, LI Jianwei. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and its implication for ore genesis [J]. Earth Science Frontiers, 2020, 27(2): 197-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||