Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 81-92.DOI: 10.13745/j.esf.sf.2021.8.7
Previous Articles Next Articles
TANG Yong1(), QIN Shanxian1,2, ZHAO Jingyu3, LÜ Zhenghang1, LIU Xiqiang1,2, WANG Hong1,2, CHEN Jianzheng1,2, ZHANG Hui1,*(
)
Received:
2020-06-20
Revised:
2021-01-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
ZHANG Hui
CLC Number:
TANG Yong, QIN Shanxian, ZHAO Jingyu, LÜ Zhenghang, LIU Xiqiang, WANG Hong, CHEN Jianzheng, ZHANG Hui. Solubility of rare metals as a constraint on mineralization of granitic pegmatite[J]. Earth Science Frontiers, 2022, 29(1): 81-92.
序号 | ASI | 矿物 | 等式 | R2 | 斜率 | H/(kJ·mol-1) |
---|---|---|---|---|---|---|
1 | 1.00 | 锂辉石 | lg [w(Li)/10-6]=-0.37×[1 000/(T/K)]+4.56 | 0.44 | 0.37 | 7.1 |
2 | 1.00 | 绿柱石 | lg [w(BeO)/10-6] =-2.75×[1 000/(T/K)]+5.89 | 0.95 | 3.32 | 63.6 |
3 | >1.00 | 绿柱石 | lg [w(BeO)/10-6] =-4.21×[1 000/(T/K)]+6.86 | 0.91 | 4.21 | 80.6 |
4 | 0.60 | 铌锰矿 | lg [ | 0.78 | 2.32 | 44.4 |
5 | 1.00 | 铌锰矿 | lg [ | 0.98 | 5.56 | 106.5 |
6 | 1.20 | 铌锰矿 | lg [ | 1.00 | 8.06 | 154.3 |
7 | 0.90 | 钽锰矿 | lg [ | 0.98 | 5.28 | 101.1 |
8 | 1.00 | 钽锰矿 | lg [ | 0.94 | 7.01 | 134.2 |
9 | 1.10 | 钽锰矿 | lg [ | 0.94 | 5.19 | 99.4 |
Table 1 Effect of temperature on solubility of rare metal minerals. Data adapted from [10-13,15-21].
序号 | ASI | 矿物 | 等式 | R2 | 斜率 | H/(kJ·mol-1) |
---|---|---|---|---|---|---|
1 | 1.00 | 锂辉石 | lg [w(Li)/10-6]=-0.37×[1 000/(T/K)]+4.56 | 0.44 | 0.37 | 7.1 |
2 | 1.00 | 绿柱石 | lg [w(BeO)/10-6] =-2.75×[1 000/(T/K)]+5.89 | 0.95 | 3.32 | 63.6 |
3 | >1.00 | 绿柱石 | lg [w(BeO)/10-6] =-4.21×[1 000/(T/K)]+6.86 | 0.91 | 4.21 | 80.6 |
4 | 0.60 | 铌锰矿 | lg [ | 0.78 | 2.32 | 44.4 |
5 | 1.00 | 铌锰矿 | lg [ | 0.98 | 5.56 | 106.5 |
6 | 1.20 | 铌锰矿 | lg [ | 1.00 | 8.06 | 154.3 |
7 | 0.90 | 钽锰矿 | lg [ | 0.98 | 5.28 | 101.1 |
8 | 1.00 | 钽锰矿 | lg [ | 0.94 | 7.01 | 134.2 |
9 | 1.10 | 钽锰矿 | lg [ | 0.94 | 5.19 | 99.4 |
[1] | LINNEN R L, SAMSON I M, WILLIAMS-JONES A E, et al. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 543-568. |
[2] |
LINNEN R L, VAN LICHTERVELDE M, ČERNÝ P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
DOI URL |
[3] |
LIN Y, POLLARD P J, HU S X, et al. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China[J]. Economic Geology, 1995, 90(3):577-585.
DOI URL |
[4] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学:地球科学, 2017, 47(8):871-880. |
[5] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36. |
[6] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4):792-814. |
[7] |
XU Z Q, FU X F, WANG R C, et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet[J]. Lithos, 2020, 354/355:105281.
DOI URL |
[8] |
WANG H, GAO H, ZHANG X Y, et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos, 2020, 360/361:105449.
DOI URL |
[9] |
XIONG Y Q, JIANG S Y, WEN C H, et al. Granite-pegmatite connection and mineralization age of the giant Renli Ta-Nb deposit in South China: constraints from U-Th-Pb geochronology of coltan, monazite, and zircon[J]. Lithos, 2020, 358/359:105422.
DOI URL |
[10] |
ASERI A A, LINNEN R L, CHE X D, et al. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts[J]. Ore Geology Reviews, 2015, 64:736-746.
DOI URL |
[11] |
BARTELS A, HOLTZ F, LINNEN R L. Solubility of manganotantalite and manganocolumbite in pegmatitic melts[J]. American Mineralogist, 2010, 95(4):537-544.
DOI URL |
[12] |
FIEGE A, KIRCHNER C, HOLTZ F, et al. Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts: an experimental study[J]. Lithos, 2011, 122(3/4):165-174.
DOI URL |
[13] |
FIEGE A, SIMON A, LINSLER S A, et al. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation[J]. Ore Geology Reviews, 2018, 94:383-395.
DOI URL |
[14] |
KEPPLER H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J]. Contributions to Mineralogy and Petrology, 1993, 114(4):479-488.
DOI URL |
[15] |
LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7):1013-1025.
DOI URL |
[16] |
LINNEN R L. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts[J]. Lithos, 2005, 80(1/2/3/4):267-280.
DOI URL |
[17] |
LINNEN R L, KEPPLER H. Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust[J]. Contributions to Mineralogy and Petrology, 1997, 128(2/3):213-227.
DOI URL |
[18] |
TANG Y, ZHANG H, RAO B. The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts[J]. American Mineralogist, 2016, 101(2):415-422.
DOI URL |
[19] |
CHEVYCHELOV V Y, BORODULIN G P, ZARAISKY G P. Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650-850 ℃ and 30-400 MPa: an experimental investigation[J]. Geochemistry International, 2010, 48(5):456-464.
DOI URL |
[20] |
EVENSEN J M, LONDON D, WENDLANDT R F. Solubility and stability of beryl in granitic melts[J]. American Mineralogist, 1999, 84(5/6):733-745.
DOI URL |
[21] |
MANETA V, BAKER D R, MINARIK W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy and Petrology, 2015, 170(1):1-16.
DOI URL |
[22] |
VAN LICHTERVELDE M, HOLTZ F, HANCHAR J M. Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts[J]. Contributions to Mineralogy and Petrology, 2010, 160(1):17-32.
DOI URL |
[23] | STEWART D B. Petrogenesis of lithium-rich pegmatites[J]. American Mineralogist, 1978, 63:970-980. |
[24] |
LONDON D, MORGAN G B. Experimental crystallization of the Macusani obsidian, with applications to lithium-rich granitic pegmatites[J]. Journal of Petrology, 2017, 58(5):1005-1030.
DOI URL |
[25] | LONDON D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites[J]. American Mineralogist, 1984, 69(11/12):995-1004. |
[26] | 张辉. 岩浆-热液过渡阶段体系中不相容元素地球化学行为及其机制: 以新疆阿尔泰3号伟晶岩脉研究为例[D]. 贵阳: 中国科学院地球化学研究所, 2001. |
[27] | 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006. |
[28] | 饶灿. 福建南平31号花岗伟晶岩的矿物学研究与岩浆-热液演化示踪[D]. 南京: 南京大学, 2009. |
[29] |
ČERNÝ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.
DOI URL |
[30] |
EVENSEN J M, LONDON D. Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite[J]. Geochimica et Cosmochimica Acta, 2002, 66(12):2239-2265.
DOI URL |
[31] |
MANER J L IV, LONDON D, ICENHOWER J P. Enrichment of manganese to spessartine saturation in granite-pegmatite systems[J]. American Mineralogist, 2019, 104(11):1625-1637.
DOI URL |
[32] |
TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic composition and concentration of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2004, 68(20):4167-4178.
DOI URL |
[33] | TOMASCAK P B, MAGNA T, DOHMEN R. Lithium in the deep earth: mantle and crustal systems[M]// Advances in lithium isotope geochemistry. Berlin: Springer, 2016: 119-156. |
[34] | 付小芳, 侯立玮, 梁斌, 等. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型[M]. 北京: 科学出版社, 2017. |
[35] |
LONDON D, MORGAN G B, HERVIG R L. Vapor-undersaturated experiments with Macusani glass+H2O at 200 MPa, and the internal differentiation of granitic pegmatites[J]. Contributions to Mineralogy and Petrology, 1989, 102(1):1-17.
DOI URL |
[36] |
STILLING A, ČERNÝ P, VANSTONE P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.
DOI URL |
[37] |
TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265.
DOI URL |
[38] |
GREW E S. Beryllium in metamorphic environments (emphasis on aluminous compositions)[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1):487-549.
DOI URL |
[39] |
LONDON D, EVENSEN J M. Beryllium in silicic magmas and the origin of beryl-bearing pegmatites[J]. Reviews in Mineralogy and Geochemistry, 2002, 50(1):445-486.
DOI URL |
[40] |
WEBSTER J D, THOMAS R, RHEDE D, et al. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 1997, 61(13):2589-2604.
DOI URL |
[41] |
CUNEY M, MARIGNAC C, WEISBROD A. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization[J]. Economic Geology, 1992, 87(7):1766-1794.
DOI URL |
[42] | MCNEIL A G. Crystallization processes and solubility of columbite-(Mn), tantalite-(Mn), microlite, pyrochlore, wodginite and titanowodginite in highly fluxed haplogranitic melts[D]. London: The university of Western Ontario, 2018. |
[43] |
ZAJACZ Z, HALTER W E, PETTKE T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8):2169-2197.
DOI URL |
[44] |
COLOMBO F, SFRAGULLA J, DEL TÁNAGO J G. The garnet-phosphate buffer in peraluminous granitic magmas: a case study from pegmatites in the Pocho District, Córdoba, Argentina[J]. The Canadian Mineralogist, 2012, 50(6):1555-1571.
DOI URL |
[45] |
GAMMEL E M, NABELEK P I. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J]. American Mineralogist, 2016, 101(8):1906-1915.
DOI URL |
[46] |
KONTAK D J, DOSTAL J, KYSER T K, et al. A petrological, geochemical, isotopic and fluid-inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada[J]. The Canadian Mineralogist, 2002, 40(5):1249-1286.
DOI URL |
[47] |
LONDON D, HUNT L E, SCHWING C R, et al. Feldspar thermometry in pegmatites: truth and consequences[J]. Contributions to Mineralogy and Petrology, 2019, 175(1):1-21.
DOI URL |
[48] |
MORGAN VI G B, LONDON D. Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California[J]. Contributions to Mineralogy and Petrology, 1999, 136(4):310-330.
DOI URL |
[49] |
SIEGEL K, WAGNER T, TRUMBULL R B, et al. Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (Northern Sweden)[J]. Chemical Geology, 2016, 421:1-16.
DOI URL |
[50] |
CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551.
DOI URL |
[51] |
ACOSTA-VIGIL A, LONDON D, MORGAN G B, et al. Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700-800 ℃ and 200 MPa, and applications of the aluminum saturation index[J]. Contributions to Mineralogy and Petrology, 2003, 146(1):100-119.
DOI URL |
[52] |
BURNHAM C W, DAVIS N F. The role of H2O in silicate melts: Si3O8-H2O to 10 kilobars and 700-1 000 ℃[J]. American Journal of Science, 1974, 274:902-940.
DOI URL |
[53] |
LONDON D. Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine[J]. Geochimica et Cosmochimica Acta, 1987, 51(3):403-420.
DOI URL |
[54] |
LONDON D, MORGAN G B, BABB H A, et al. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa(H2O)[J]. Contributions to Mineralogy and Petrology, 1993, 113(4):450-465.
DOI URL |
[55] |
BORCHERT M, WILKE M, SCHMIDT C, et al. Partitioning of Ba, La, Yb and Y between haplogranitic melts and aqueous solutions: an experimental study[J]. Chemical Geology, 2010, 276(3/4):225-240.
DOI URL |
[56] | HU X Y, BI X W, SHANG L B, et al. An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma[J]. Chinese Science Bulletin, 2009, 54(6):1087-1097. |
[57] | ČERNÝ P. Characteristics of pegmatite deposits of tantalum[M]// Lanthanides, tantalum and niobium. Berlin: Springer-Verlag, 1989: 195-239. |
[58] |
PARTINGTON G A, MCNAUGHTON N J, WILLIAMS I S. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia[J]. Economic Geology, 1995, 90(3):616-635.
DOI URL |
[59] | ČERNÝ P. The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons[M]// Rare-element geochemistry of ore deposits. St John’s: Geological Association of Canada, 2005: 127-158. |
[60] |
RAO C, WANG R C, HU H, et al. Complex internal textures in oxide minerals from the Nanping No.31 dyke of granitic pegmatite, Fujian Province, Southeastern China[J]. The Canadian Mineralogist, 2009, 47(5):1195-1212.
DOI URL |
[61] |
BREITER K, KORBELOVÁ Z, CHLÁDEK S, et al. Diversity of Ti-Sn-W-Nb-Ta oxide minerals in the classic granite-related magmatic-hydrothermal Cínovec/Zinnwald Sn-W-Li deposit (Czech Republic)[J]. European Journal of Mineralogy, 2017, 29(4):727-738.
DOI URL |
[62] |
WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan deposit, Nanling Range, Southeastern China[J]. Economic Geology, 2017, 112(4):855-887.
DOI URL |
[63] |
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun Granite-Marginal Pegmatite, Southeastern China[J]. Economic Geology, 2018, 113(4):937-960.
DOI URL |
[64] |
VAN LICHTERVELDE M, BEZIAT D, SALVI S, et al. Textures and chemical evolutions in tantalum oxides: a discussion of magmatic versus metasomatic origins for Ta mineralization in the Tanco Lower Pegmatite, Manitoba, Canada[J]. Economic Geology, 2007, 102(2):257-276.
DOI URL |
[65] |
MCNEIL A G, LINNEN R L, FLEMMING R L, et al. An experimental approach to examine fluid-melt interaction and mineralization in rare-metal pegmatites[J]. American Mineralogist, 2020, 105(7):1078-1087.
DOI URL |
[66] | LONDON D. Geochemistry of alkalis and alkaline earths in ore-forming granites, pegmatites, and rhyolites[M]// Rare-element geochemistry of ore deposits. St John’s: Geological Association of Canada, 2005: 17-43. |
[67] | LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[M]// Rare-element geochemistry and mineral deposits. St John’s: Geological Association of Canada, 2005: 45-67. |
[68] | 王汝成, 谢磊, 诸泽颖, 等. 云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1):69-75. |
[69] |
BREITER K, VANKOVÁ M, GALIOVÁ M V, et al. Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS[J]. Mineralogical Magazine, 2017, 81(1):15-33.
DOI URL |
[70] |
LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65:793-810.
DOI URL |
[71] | LONDON D. Pegmatite[M]. Quebec: Mineralogical Association of Canada, 2018. |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[3] | WENG Wei, WU Shuo, HE Yunchao, LIN Wenjing, FENG Meigui, GAN Haonan, LI Xiaodong. New technologies, methodology and application in directional high-temperature hard rock drilling—a critical review [J]. Earth Science Frontiers, 2024, 31(6): 120-129. |
[4] | LONG Xiting, LI Shuheng, XIE Heping, SUN Licheng, GAO Tianyi, XIA Entong, LI Biao, WANG Jun, LI Cunbao, MO Zhengyu, DU Min. System design and performance analysis of a modular thermoelectric generator for low- and medium-temperature geothermal resource [J]. Earth Science Frontiers, 2024, 31(6): 215-223. |
[5] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[6] | XU Changgui, GAO Yangdong, LIU Jun, PENG Guangrong, CHEN Zhaoming, LI Hongbo, CAI Junjie, MA Qingyou. Discovery of “detachment-core complex type” basins offshore the northern South China Sea and their oil and gas geological conditions:A case study of the Kaiping sag in the northern South China Sea [J]. Earth Science Frontiers, 2024, 31(6): 381-404. |
[7] | ZHAO Zengfeng, WANG Chuyou, QIU Xiaocong, ZHOU Ruijuan, YANG Qiangqiang, ZHAO Ruizhi. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia [J]. Earth Science Frontiers, 2024, 31(6): 462-473. |
[8] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[9] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[10] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[11] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[12] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[13] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[14] | QIAO Hui, ZHANG Yonggui, NIE Haikuan, PENG Yongmin, ZHANG Ke, SU Haikun. Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 89-102. |
[15] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||