Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 1-18.DOI: 10.13745/j.esf.sf.2020.9.7
Previous Articles Next Articles
LAI Zhongping1(), YANG Anna2,3, CONG Lu2,4, LIU Weiming2, WANG Hao5
Received:
2020-06-15
Revised:
2020-08-23
Online:
2021-03-25
Published:
2021-04-03
CLC Number:
LAI Zhongping, YANG Anna, CONG Lu, LIU Weiming, WANG Hao. A review on the dating techniques for mountain hazards-induced sediments[J]. Earth Science Frontiers, 2021, 28(2): 1-18.
Fig.2 Abanico plots showing different single-grain De distributions for fluvial depositions of (a) weathered and (b) partially weathered materials. Modified after [28].
Fig.3 OSL and 14C dating results for the Gega Dammed Lake at the upstream entrance of the Yarlung Zangbo River on the Qinghai-Tibet Plateau. Modified after [61].
Fig.6 (a) Normal and (b) landslide tilted Norway spruce showing stem deformations and tree-ring structure developed under gravity. Modified after [156].
[1] |
崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014,33(2):145-152.
DOI |
[2] | 崔鹏, 何思明, 姚令侃. 汶川地震山地灾害形成机理与风险控制[M]. 北京: 科学出版社, 2011. |
[3] |
BURBANK D W. Rates of erosion and their implications for exhumation[J]. Mineralogical Magazine, 2002,66(1):25-52.
DOI URL |
[4] |
ROERING J. Landslides limit mountain relief[J]. Nature Geoscience, 2012,5(7):446-447.
DOI URL |
[5] | MACKEY B H, ROERING J J, LAMB M P. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(47):18905-18909. |
[6] |
LARSEN I J, MONTGOMERY D R. Landslide erosion coupled to tectonics and river incision[J]. Nature Geoscience, 2012,5(7):468-473.
DOI URL |
[7] |
LANG K A, HUNTINGTON K W, MONTGOMERY D R. Erosion of the Tsangpo Gorge by megafloods, eastern Himalaya[J]. Geology, 2013,41(9):1003-1006.
DOI URL |
[8] | LAMB M P, MACKEY B H, FARLEY K A. Amphitheater-headed canyons formed by megaflooding at Malad Gorge, Idaho[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(1):57-62. |
[9] |
LARSEN I J, LAMB M P. Progressive incision of the Channeled Scablands by outburst floods[J]. Nature, 2016,538(7624):229-232.
DOI URL |
[10] |
KORUP O, CLAGUE J J. Natural hazards, extreme events, and mountain topography[J]. Quaternary Science Reviews, 2009,28(11):977-990.
DOI URL |
[11] |
KORUP O. Earth’s portfolio of extreme sediment transport events[J]. Earth-Science Reviews, 2012,112(3/4):115-125.
DOI URL |
[12] | 尹金辉. 地质灾害事件的14C年代学研究[D]. 北京: 中国地震局地质研究所, 2006. |
[13] | 杨银科, 彭建兵, 刘聪, 等. 滑坡年代学研究方法应用进展[J]. 灾害学, 2015,30(2):133-137. |
[14] |
HUNTLEY D J, GODFREY-SMITH D I, THEWALT M L W. Optical dating of sediments[J]. Nature, 1985,313:105-107.
DOI URL |
[15] |
赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013,32(5):683-693.
DOI |
[16] |
MADSEN A T, MURRAY A S. Optically stimulated luminescence dating of young sediments: a review[J]. Geomorphology, 2009,109(1/2):3-16.
DOI URL |
[17] | MURRAY A S, OLLEY J M. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review[J]. Geochronometria, 2002,21:1-16. |
[18] |
LIU X J, LAI Z P, MADSEN D, et al. Lake level variations of Qinghai Lake in northeastern Qinghai-Tibetan Plateau since 3.7 ka based on OSL dating[J]. Quaternary International, 2011,236:57-64.
DOI URL |
[19] |
LAI Z P, MISCHKE S, MADSEN D. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau[J]. Journal of Paleolimnology, 2014,51(2):197-210.
DOI URL |
[20] |
LAI Z P. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol[J]. Journal of Asian Earth Sciences, 2010,37(2):176-185.
DOI URL |
[21] |
THOMSEN K J, MURRAY A S, JAIN M, et al. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J]. Radiation Measurements, 2008,43(9/10):1474-1486.
DOI URL |
[22] |
LI B, LI S H. Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction[J]. Quaternary Geochronology, 2011,6(5):468-479.
DOI URL |
[23] | 卢演俦. 沉积物的光释光测年简介[J]. 地质地球化学, 1990,18(1):36-40. |
[24] |
LAI Z P, WINTLE A G. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence[J]. The Holocene, 2006,16(6):893-899.
DOI URL |
[25] | 覃金堂, 周力平. 沙漠边缘厚层黄土上部光释光测年的初步研究[J]. 第四纪研究, 2007,27(4):546-552. |
[26] |
MURRAY A S, WINTLE A G. Luminescence dating of quartz using an improved regenerative-dose protocol[J]. Radiation Measurements, 2000,32(1):57-73.
DOI URL |
[27] |
MURRAY A S, ROBERTS R G. Determining the burial time of single grains of quartz using optically stimulated luminescence[J]. Earth and Planetary Science Letters, 1997,152:163-180.
DOI URL |
[28] | SMEDLEY R K, SKIRROW G K A. Luminescence dating in fluvial settings: overcoming the challenge of partial bleaching[M]// HERGET J, FONTANA A. Palaeohydrology. Berlin: Springer, 2020: 155-168. |
[29] |
WALLINGA J. Optically stimulated luminescence dating of fluvial deposits: a review[J]. Boreas, 2002,31(4):303-322.
DOI URL |
[30] | PREUSSER F, DEGERING D, FUCHS M, et al. Luminescence dating: basics, methods and applications[J]. Eiszeitalter and Gegenwart Quaternary Science Journal, 2008,57(1/2):95-149. |
[31] |
RICHARDS B W M. Luminescence dating of Quaternary sediments in the Himalaya and High Asia: a practical guide to its use and limitations for constraining the timing of glaciation[J]. Quaternary International, 2000, 65-66:49-61.
DOI URL |
[32] | CHAUDHARY S. Optically stimulated luminescence (osl) dating of sediments from Himalaya[J]. Journal of the Indian Institute of Science, 2015,95(2):135-146. |
[33] |
BENN D I, OWEN L A. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains[J]. Quaternary International, 2002, 97-98:3-25.
DOI URL |
[34] |
LUKAS S, SPENCER J Q G, ROBINSON R A J, et al. Problems associated with luminescence dating of Late Quaternary glacial sediments in the NW Scottish Highlands[J]. Quaternary Geochronology, 2007,2(1/2/3/4):243-248.
DOI URL |
[35] |
OWEN L A, BAILEY R M, RHODES E J, et al. Style and timing of glaciation in the Lahul Himalaya, northern India: a framework for reconstructing late Quaternary palaeoclimatic change in the western Himalayas[J]. Journal of Quaternary Science, 1997,12(2):83-109.
DOI URL |
[36] |
OWEN L A, FINKEL R C, CAFFEE M W, et al. Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: defined by cosmogenic radionuclide dating of moraines[J]. Geological Society of America Bulletin, 2002,114(5):593-604.
DOI URL |
[37] |
RHODES E J. Observations of thermal transfer OSL signals in glacigenic quartz[J]. Radiation Measurements, 2000,32(5/6):595-602.
DOI URL |
[38] |
SPENCER J Q, OWEN L A. Optically stimulated luminescence dating of Late Quaternary glaciogenic sediments in the upper Hunza valley: validating the timing of glaciation and assessing dating methods[J]. Quaternary Science Reviews, 2004,23(1/2):175-191.
DOI URL |
[39] |
OU X J, XU L B, LAI Z P, et al. Potential of quartz OSL dating on moraine deposits from eastern Tibetan Plateau using SAR protocol[J]. Quaternary Geochronology, 2010,5(2/3):257-262.
DOI URL |
[40] |
ZENG L H, OU X J, LAI Z P, et al. Optically stimulated luminescence dating of young glacial sediments from the eastern Qinghai-Tibetan Plateau[J]. Journal of Mountain Science, 2016,13(7):1174-1185.
DOI URL |
[41] |
DAVIDS F, DULLER G A T, ROBERTS H M. Testing the use of feldspars for optical dating of hurricane overwash deposits[J]. Quaternary Geochronology, 2010,5(2/3):125-130.
DOI URL |
[42] |
WANG H, CUI P, LIU D Z, et al. Evolution of a landslide-dammed lake on the southeastern Tibetan Plateau and its influence on river longitudinal profiles[J]. Geomorphology, 2019,343:15-32.
DOI URL |
[43] |
PIETSCH T J, OLLEY J M, NANSON G C. Fluvial transport as a natural luminescence sensitiser of quartz[J]. Quaternary Geochronology, 2008,3(4):365-376.
DOI URL |
[44] |
PREUSSER F, RAMSEYER K, SCHLÜCHTER C. Characterisation of low OSL intensity quartz from the New Zealand Alps[J]. Radiation Measurements, 2006,41(7/8):871-877.
DOI URL |
[45] |
PREUSSER F, CHITHAMBO M L, GÖTTE T, et al. Quartz as a natural luminescence dosimeter[J]. Earth-Science Reviews, 2009,97(1/2/3/4):184-214.
DOI URL |
[46] |
RHODES E J, BAILEY R M. Thermal transfer effects observed in the luminescence of quartz from recent glacio-fluvial sediments[J]. Quaternary Science Reviews, 1997,16(3):291-298.
DOI URL |
[47] |
RHODES E J, POWNALL L. Zeroing of the OSL signal in quartz from young glaciofluvial sediments[J]. Radiation Measurements, 1994,23(2/3):581-585.
DOI URL |
[48] |
HÜTT G, JAEK I, TCHONKA J. Optical dating: K-feldspars optical response stimulation spectra[J]. Quaternary Science Reviews, 1988,7(3/4):381-385.
DOI URL |
[49] |
GODFERY-SMITH D I, HUNTLEY D J, CHEN W H. Optical dating studies of quartz and feldspar sediment extracts[J]. Quaternary Science Reviews, 1988,7(3/4):373-380.
DOI URL |
[50] | PREUSSER F. Bleaching characteristics of some optically stimulated luminescence signals[J]. Ancient TL, 1999,17(1):11-14. |
[51] |
KLASEN N, FIEBIG M, PREUSSER F, et al. Luminescence properties of glaciofluvial sediments from the Bavarian Alpine Foreland[J]. Radiation Measurements, 2006,41(7/8):866-870.
DOI URL |
[52] |
WINTLE A G. Anomalous fading of thermoluminescence in mineral samples[J]. Nature, 1973,245:143-144.
DOI URL |
[53] |
HUNTLEY D J, LAMOTHE M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating[J]. Canadian Journal of Earth Sciences, 2001,38(7):1093-1106.
DOI URL |
[54] |
AUCLAIR M, LAMOTHE M, HUOT S. Measurement of anomalous fading for feldspar IRSL using SAR[J]. Radiation Measurements, 2003,37(4/5):487-492.
DOI URL |
[55] |
LAMOTHE M, AUCLAIR M, HAMZAOUI C, et al. Towards a prediction of long-term anomalous fading of feldspar IRSL[J]. Radiation Measurements, 2003,37(4/5):493-498.
DOI URL |
[56] |
WALLINGA J, BOS A J J, DORENBOS P, et al. A test case for anomalous fading correction in IRSL dating[J]. Quaternary Geochronology, 2007,2(1/2/3/4):216-221.
DOI URL |
[57] | 李国强, 赵晖, 文星, 等. 钾长石矿物在全新世样品光释光测年中的应用与校正问题[J]. 第四纪研究, 2010,30(1):54-61. |
[58] | 张文敬. 南迦巴瓦峰跃动冰川的某些特征[J]. 山地研究, 1985,3(4):234-238. |
[59] | MONTGOMERY D R, HALLEY B, YUPING L, et al. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet[J]. Quaternary Reviews, 2004,62(2):201-207. |
[60] | 陈建军, 季建清, 龚俊峰, 等. 雅鲁藏布江大峡谷的形成[J]. 地质通报, 2008,27(4):491-499. |
[61] |
LIU W M, LAI Z P, HU K H, et al. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau[J]. Geomorphology, 2015,246:370-376.
DOI URL |
[62] |
ROBERTS H M, DULLER G A T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots[J]. Radiation Measurements, 2004,38(2):241-252.
DOI URL |
[63] |
LAI Z. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau[J]. Radiation Measurements, 2006,41(1):9-16.
DOI URL |
[64] |
LIU W M, CUI P, GE Y G, et al. Paleosols identified by rock magnetic properties indicate dam-outburst events of the Min River, eastern Tibetan Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018,508:139-147.
DOI URL |
[65] |
PHARTIYAL B, SHARMA A, SRIVASTAVA P, et al. Chronology of relict lake deposits in the Spiti River, NW Trans Himalaya: implications to Late Pleistocene-Holocene climate-tectonic perturbations[J]. Geomorphology, 2009,108(3/4):264-272.
DOI URL |
[66] |
GUO X H, SUN Z, LAI Z P, et al. Optical dating of landslide-dammed lake deposits in the upper Yellow River, Qinghai-Tibetan Plateau, China[J]. Quaternary International, 2016,392:233-238.
DOI URL |
[67] |
GUO X H, WEI J C, SONG Z J, et al. Optically stimulated luminescence chronology and geomorphic imprint of Xiazangtan landslide upon the upper Yellow River valley on the northeastern Tibetan Plateau[J]. Geological Journal, 2020,55(7):5498-5507.
DOI URL |
[68] | KALE V S, GUPTA A, SINGHVI A K. Late Pleistocene-Holocene Palaeohydrology of monsoon Asia[J]. Journal of the Geological Society of India, 2004,64(4):403-417. |
[69] |
WASSON R J, SUNDRIYAL Y P, CHAUDHARY S, et al. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India[J]. Quaternary Science Reviews, 2013,77:156-166.
DOI URL |
[70] |
MARGOLD M, JANSEN J D, CODILEAN A T, et al. Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60000 years[J]. Quaternary Science Reviews, 2018,187:41-61.
DOI URL |
[71] | HERGET J. Reconstruction of Pleistocene ice-dammed lake outburst floods in the Altai Mountains, Siberia[J]. Special Paper of the Geological Society of America, 2005,386:1-118. |
[72] | 卢演俦, 魏兰英, 尹金辉, 等. 北京西山古山洪堆积: 马兰砾石形成环境及年代[J]. 第四纪研究, 2003,23(6):611-620. |
[73] |
ZHAO Q, THOMSEN K J, MURRAY A S, et al. Testing the use of OSL from quartz grains for dating debris flows in Miyun, northeast Beijing, China[J]. Quaternary Geochronology, 2015,30:320-327.
DOI URL |
[74] |
THOMSEN K J, MURRAY A S, BØTTOR-JENSEN L, et al. Variation with depth of dose distributions in single grains of quartz extracted from an irradiated concrete block[J]. Radiation Measurements, 2003,37(4/5):315-321.
DOI URL |
[75] |
WU T S, JAISWAL M K, LIN Y N, et al. Residual luminescence in modern debris flow deposits from western Taiwan: a single grain approach[J]. Journal of Asian Earth Sciences, 2010,38(6):274-282.
DOI URL |
[76] |
ZHAO Q Y, THOMSEN K J, MURRAY A S, et al. Single-grain quartz OSL dating of debris flow deposits from Men Tou Gou, south west Beijing, China[J]. Quaternary Geochronology, 2017,41:62-69.
DOI URL |
[77] |
LANG A, MOYA J, COROMINAS J, et al. Classic and new dating methods for assessing the temporal occurrence of mass movements[J]. Geomorphology, 1999,30(1/2):33-52.
DOI URL |
[78] |
FUCHS M, LANG A. Luminescence dating of hillslope deposits: a review[J]. Geomorphology, 2009,109(1/2):17-26.
DOI URL |
[79] |
LANG A, WAGNER G A. Infrared stimulated luminescence dating of archaeosediments[J]. Archaeometry, 1996,38(1):129-141.
DOI URL |
[80] |
DITLEFSEN C. Bleaching of K-feldspars in turbid water suspensions: a comparison of photo- and thermoluminescence signals[J]. Quaternary Science Reviews, 1992,11(1/2):33-38.
DOI URL |
[81] |
RITTENOUR T M. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research[J]. Boreas, 2008,37(4):613-635.
DOI URL |
[82] |
OLLEY J M, CAITHEON G C, MURRAY A S. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications for dating young sediments[J]. Quaternary Science Reviews, 1998,17(11):1033-1040.
DOI URL |
[83] |
GALBRAITH R F, ROBERTS R G, LASLETT G M, et al. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, northern Australia: Part I, Experimental design and statistical models[J]. Archaeometry, 1999,41(2):339-364.
DOI URL |
[84] | TRUELSEN J L, WALLINGA J. Zeroing of the OSL signal as a function of grain size: investigating bleaching and thermal transfer for a young fluvial sample[J]. Geochronometria, 2003,22:1-8. |
[85] |
GALBRAITH R F, LASLETT G M. Statistical models for mixed fission track ages[J]. Nuclear Tracks and Radiation Measurements, 1993,21:459-470.
DOI URL |
[86] | GALBRAITH R F, GREEN P F. Estimating the component ages in a finite mixture[J]. Nuclear Tracks and Radiation Measurements, 1990,17(3):197-206. |
[87] |
DULLER G A T. Luminescence dating of Quaternary sediments: recent advances[J]. Journal of Quaternary science, 2004,19(2):183-192.
DOI URL |
[88] |
GUEDES C C F, SAWAKUCHI A O, GIANNINI P C F, et al. Luminescence characteristics of quartz from Brazilian sediments and constraints for OSL dating[J]. Annals of the Brazilian Academy of Sciences, 2013,85(4):1303-1316.
DOI URL |
[89] |
JUSCHUS O, PREUSSER F, MELLES M, et al. Applying SAR-IRSL methodology for dating fine-grained sediments from Lake El’gygytgyn, northeastern Siberia[J]. Quaternary Geochronology, 2007,2(1/2/3/4):187-194.
DOI URL |
[90] | 周洪福, 韦玉婷, 聂德新. 黄河上游戈龙布滑坡高速下滑成因机制及堵江分析[J]. 工程地质学报, 2009,17(4):483-488. |
[91] | SINGHVI A K, WAGNER G A. Thermoluminescence dating and its application to young sedimentary deposits[M]//HURFORD A J, JAGER E, TEN C J A M. Dating young sediments. Bangkok: CCOP Technical Secretariat, 1986: 159-197. |
[92] | 郭海婷. 黄河上游戈龙布滑坡及其堰塞湖沉积物光释光年代研究[D]. 南京: 南京师范大学, 2015. |
[93] |
TURZEWSKI M D, HUNTINGTON K W, LICHT A, et al. Provenance and erosional impact of Quaternary megafloods through the Yarlung-Tsangpo Gorge from zircon U-Pb geochronology of flood deposits, eastern Himalaya[J]. Earth and Planetary Science Letters, 2020,535:116113.
DOI URL |
[94] | 张克旗, 吴中海, 吕同艳, 等. 光释光测年法: 综述及进展[J]. 地质通报, 2015,34(1):183-203. |
[95] | LIBBY W F. Radiocarbon dating[M]. Chicago: University of Chicago Press, 1952. |
[96] | 尹金辉, 焦文强, 卢演俦, 等. Fe、H2法加速器质谱仪(AMS)14C测年石墨靶制备系统的建立[C]. 北京: 全国同位素地质年代学同位素地球化学学术讨论会, 1997: 241-243. |
[97] | 余华贵, 周卫健. 14C-AMS测年在考古学中的应用[J]. 地质科技情报, 2007,26(1):46-50. |
[98] | 侯圣山, 李昂, 陈亮, 等. 临夏盆地巴谢河流域晚更新世以来滑坡发育历史重建[J]. 水文地质工程地质, 2019,46(4):26-33. |
[99] | 杨丽娟, 李华亮, 易顺华. 陕西五曲湾滑坡发育特征和14C测龄[J]. 灾害学, 2010,25(3):49-52. |
[100] | 吴玮江, 叶伟林, 孟兴民, 等. 武都汉林沟流域古滑坡年龄的14C厘定[J]. 地球科学进展, 2011,26(12):1276-1281. |
[101] | 李昂, 侯圣山, 王立朝, 等. 临夏盆地巴谢河流域典型滑坡多期次活动年代学证据[J]. 中国地质灾害与防治学报, 2018,29(2):61-65. |
[102] | 刘进峰, 陈杰, 尹金辉, 等. 龙门山映秀—北川断裂带擂鼓探槽剖面古地震事件测年[J]. 地震地质, 2010,32(2):191-199. |
[103] | 王兰生, 王小群, 许向宁, 等. 岷江叠溪古堰塞湖的研究意义[J]. 第四纪研究, 2012,32(5):998-1010. |
[104] |
SCHOTTON F W. An example of hard-water error in radiocarbon dating of vegetable organic matter[J]. Nature, 1972,240:460-461.
DOI URL |
[105] |
HOU J Z, D’ANDREA W J, D’ANDREA W J . The influence of14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau[J]. Quaternary Science Reviews, 2012,48:67-79.
DOI URL |
[106] | 吴艳宏, 王苏民, 周力平, 等. 岱海14C测年的现代碳库效应研究[J]. 第四纪研究, 2007,27(4):507-510. |
[107] |
SONG Y, LAI Z P, LI Y, et al. Comparison between luminescence and radiocarbon dating of Late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015,30:405-410.
DOI URL |
[108] | BIERMAN P R. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: a review from the geomorphic perspective[J]. Journal of Geophysical Research: Solid Earth, 1994,99(B7):13885-13896. |
[109] |
CERLING T E, CRAIG H. Geomorphology and in-situ cosmogenic isotopes[J]. Annual Review of Earth and Planetary Sciences, 1994,22:273-317.
DOI URL |
[110] |
GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application[J]. Quaternary Science Reviews, 2001,20(14):1475-1560.
DOI URL |
[111] |
GOSSE J C, KLEIN J, LAWN B, et al. Beryllium-10 dating of the duration and retreat of the last Pinedale glacial sequence[J]. Science, 1995,268(5215):1329-1333.
DOI URL |
[112] |
WELLS S G, MCFADDEN L D, POTHS J, et al. Cosmogenic 3He surface-exposure dating of stone pavements: implications for landscape evolution in deserts[J]. Geology, 1995,23(7):613-616.
DOI URL |
[113] |
PHILLIPS W M, MCDONALD E V, RENEAU S L, et al. Dating soils and alluvium with cosmogenic 21Ne depth profiles: case studies from the Pajarito Plateau, New Mexico, USA[J]. Earth and Planetary Science Letters, 1998,160(1/2):209-223.
DOI URL |
[114] |
CERLING T E, WEBB R H, POREDA R J, et al. Cosmogenic 3He ages and frequency of late Holocene debris flows from Prospect Canyon, Grand Canyon, USA[J]. Geomorphology, 1999,27(1/2):93-111.
DOI URL |
[115] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences[M]. Cambridge: Cambridge University Press, 2010: 1-133. |
[116] |
LAL D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991,104(2/3/4):424-439.
DOI URL |
[117] | MULLER R. Radioisotope dating with accelerators[J]. Physics Today, 1979,32(2):23-30. |
[118] | FABEL D, HARBOR J. The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology[J]. Annal Glaciology, 1999,28:103-110. |
[119] |
BRINER J P, KAUFMAN D S, MANLEY W F, et al. Cosmogenic exposure dating of Late Pleistocene moraine stabilization in Alaska[J]. Geological Society of America Bulletin, 2005,117(7/8):1108-1120.
DOI URL |
[120] |
HALLET B, PUTKONEN J. Surface dating of dynamic landforms: young boulders on aging moraines[J]. Science, 1994,265(5174):937-940.
DOI URL |
[121] |
PUTKONEN J, SWANSON T. Accuracy of cosmogenic ages for moraines[J]. Quaternary Research, 2003,59(2):255-261.
DOI URL |
[122] |
ZECH R, GLASER B, SOSIN P, et al. Evidence for long-lasting landform surface instability on hummocky moraines in the Pamir Mountains (Tajikistan) from 10Be surface exposure dating[J]. Earth and Planetary Science Letters, 2005,237(3/4):453-461.
DOI URL |
[123] | LE ROUX O, STEPHANE S, GANOND J F, et al. CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics[J]. Earth & Planetary Science Letters, 2009,280(1/2/3/4):236-245. |
[124] |
IVY-OCHS S, POSCHINGER A V, SYNAL H A, et al. Surface exposure dating of the Flims Landslide, Graubüenden, Switzerland[J]. Geomorphology, 2009,103(1):104-112.
DOI URL |
[125] |
CLAUDE A, IVY-OCHS S, KOBER F, et al. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution[J]. Swiss Journal of Geosciences, 2014,107(2):273-291.
DOI URL |
[126] | DÜHNFORTH M, DENSMORE A L, IVY-OCHS S, et al. Timing and patterns of debris flow deposition on Shepherd and Symmes creek fans, Owens Valley, California, deduced from cosmogenic 10Be[J]. Journal of Geophysical Research Atmospheres, 2007, 112(F3): F03S15. |
[127] |
MARCHETTI D W, CERLING T E. Cosmogenic 3He exposure ages of Pleistocene debris flows and desert pavements in Capitol Reef National Park, Utah[J]. Geomorphology, 2005,67(3/4):423-435.
DOI URL |
[128] | BROWN E T, BENDICK R, BOURLÈS D L, et al. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines[J]. Journal of Geophysical Research, 2002, 107(B9): ESE 7-1-ESE 7-13. |
[129] |
BENN D I, OWEN L A, FINKEL R C, et al. Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: implications for the interpretation of intermontane lacustrine records[J]. Quaternary Science Reviews, 2006,25(21/22):2729-2748.
DOI URL |
[130] |
BEATY C B. Great big boulders I have known[J]. Geology, 1989,17(4):349-352.
DOI URL |
[131] |
HUBERT J F, FILIPOV A J. Debris-flow deposits in alluvial fans on the west flank of the White Mountains, Owens Valley, California, USA[J]. Sedimentary Geology, 1989,61(3/4):177-205.
DOI URL |
[132] |
GROSSWALD M G, RUDOY A N. Quaternary glacier-dammed lakes in the mountains of Siberia[J]. Polar Geography, 1996,20(3):180-198.
DOI URL |
[133] |
KOMATSU G, BAKER V R, ARZHANNIKOV S G, et al. Catastrophic flooding, palaeolakes, and late Quaternary drainage reorganization in northern Eurasia[J]. International Geology Review, 2016,58(14):1693-1722.
DOI URL |
[134] |
LAMB M P, FONSTAD M A. Rapid formation of a modern bedrock canyon by a single flood event[J]. Nature Geoscience, 2010,3(7):477-481.
DOI URL |
[135] |
HEYMAN J, STROEVEN A P, HARBOR J M, et al. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages[J]. Earth and Planetary Science Letters, 2011,302(1/2):71-80.
DOI URL |
[136] |
BALCO G, STONE J O, LIFTON N A, et al. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements[J]. Quaternary Geochronology, 2008,3(3):174-195.
DOI URL |
[137] |
OWEN L A, CAFFEE M W, FINKEL R C, et al. Quaternary glaciation of the Himalayan-Tibetan orogeny[J]. Journal Quaternary Science, 2008,23(6/7):513-531.
DOI URL |
[138] |
BROOK E J, KURZ M D. Surface-exposure chronology using in situ cosmogenic 3He in Antarctic quartz sandstone boulders[J]. Quaternary Research, 1993,39(1):1-10.
DOI URL |
[139] | APPLEGATE P J, URBAN N M, LAABS B J C, et al. Modeling the statistical distributions of cosmogenic exposure dates from moraines[J]. Geoscientific Model Development Discussions, 2010,3:293-307. |
[140] |
IVY-OCHS S, KERSCHNER H, SCHLÜECHTER C. Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: the Alpine perspective[J]. Quaternary International, 2007,164/165:53-63.
DOI URL |
[141] |
LOWE D J. Tephrochronology and its application: a review[J]. Quaternary Geochronology, 2011,6(2):107-153.
DOI URL |
[142] | THORARINSSON S. Tefrokronologiska studier på Island[J]. Geografiska Annaler, 1944,26:1-217. |
[143] | 陈宣谕, 徐义刚, MENZIES M. 火山灰年代学:原理与应用[J]. 岩石学报, 2014,30(12):3491-3500. |
[144] |
OCKLEY S P E, PYNE-O’DONNELL S D F, LOWE J J, et al. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments[J]. Quaternary Science Reviews, 2005,24(16/17):1952-1960.
DOI URL |
[145] |
LIM C, IKEHARA K, TOYODA K. Cryptotephra detection using high-resolution trace-element analysis of Holocene marine sediments, southwest Japan[J]. Geochimica et Cosmochimica Acta, 2008,72(20):5022-5036.
DOI URL |
[146] |
TOMLINSON E L, THORDARSON T, MÜLLER W, et al. Microanalysis of tephra by LA-ICP-MS: strategies, advantages and limitations assessed using the Thorsmörk ignimbrite (southern Iceland)[J]. Chemical Geology, 2010,279(3/4):73-89.
DOI URL |
[147] | LOWE J, BARTON N, BLOCKLEY S, et al. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(34):13532-13537. |
[148] |
LANE C S, BRAUER A, BLOCKLEY S P E, et al. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas[J]. Geology, 2013,41(12):1251-1254.
DOI URL |
[149] |
ALBERT P G, TOMLINSON E L, LANE C S, et al. Late glacial explosive activity on Mount Etna: implications for proximal-distal tephra correlations and the synchronisation of Mediterranean archives[J]. Journal of Volcanology and Geothermal Research, 2013,265:9-26.
DOI URL |
[150] | 赵宏丽, 刘嘉麒. 东北龙岗火山区孤山屯泥炭中显微火山灰的发现及其意义[J]. 地震地质, 2012,34(3):516-530. |
[151] |
DOUGLASS A E. Evidence of climatic effects in the annual rings of trees[J]. Ecology, 1920,1:24-32.
DOI URL |
[152] | 唐亚, 谢嘉穗, 李蓬勃, 等. 树木年代学在山地自然灾害研究中的应用[J]. 工程科学与技术, 2018,50(3):24-32. |
[153] | 穆叶赛尔·吐地, 吉力力·阿不都外力, 姜逢清. 树木年轮学方法在自然灾害研究中的应用[J]. 干旱区研究, 2014,31(2):267-273. |
[154] |
JACOBY G C. Application of tree ring analysis to paleoseismology[J]. Reviews of Geophysics, 1997,35(2):109-124.
DOI URL |
[155] |
STOFFEL M. Magnitude-frequency relationships of debris flows: a case study based on field surveys and tree-ring records[J]. Geomorphology, 2010,116(1/2):67-76.
DOI URL |
[156] |
WISTUBA M, MALIK I, GÄRTNER H, et al. Application of eccentric growth of trees as a tool for landslide analyses: the example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe)[J]. Catena, 2013,111:41-55.
DOI URL |
[157] |
STOFFEL M, LIÈVRE I, CONUS D, et al. 400 Years of debris-flow activity and triggering weather conditions: Ritigraben, Valais, Switzerland[J]. Arctic, Antarctic, and Alpine Research, 2005,37(3):387-395.
DOI URL |
[158] |
BALLESTEROS J A, STOFFEL M, BODOQUE J M, et al. Changes in wood anatomy in tree rings of Pinus pinaster Ait. Following Wounding by Flash Floods[J]. Tree Ring Research, 2010,66(2):93-103.
DOI URL |
[159] | 洪婷, 白世彪, 王建, 等. 利用树轮重建九房山滑坡活动年份[J]. 山地学报, 2012,30(1):57-64. |
[160] | 铁永波, IRENEUSZ M, OWCZAREK P. 树木年代学在高寒山区泥石流历史事件重建中的应用:以磨西河流域倒灶沟为例[J]. 山地学报, 2014,32(2):226-232. |
[161] | 杨桃. 树轮长年表在全球变化相关领域中的应用研究进展: 以14C曲线校正、环境考古和地质灾害事件定年为例[J]. 中国沙漠, 2017,37(2):247-253. |
[162] |
TUMAJER J, TREML V. Meta-analysis of dendrochronological dating of mass movements[J]. Geochronometria, 2012,40:59-76.
DOI URL |
[163] | 李有利, 杨景春. 地衣形态量计在同震滑坡研究中的应用[J]. 山地研究, 1998,16(3):167-170. |
[164] | RAPP A, NYBERG R. Alpine debris flows in northern Scandinavia: morphology and dating by lichenometry[J]. Geografiska Annaler: Series A, Physical Geography, 1981,63(3/4):183-196. |
[165] |
WINCHESTER V, CHAUJAR R K. Lichenometric dating of slope movements, Nant Ffrancon, north Wales[J]. Geomorphology, 2002,47(1):61-74.
DOI URL |
[166] |
INNES J L. Lichenometric dating of debris-flow deposits on alpine colluvial fans in southwest Norway[J]. Earth Surface Processes and Landforms, 1985,10(5):519-524.
DOI URL |
[167] | BUNDS M, EMERMAN S H, ANDERSON R B, et al. Using lichenometry to assess long term GLOF and landslide frequency in the Nepal Himalaya[C]//Proceedings of the 11th IAEG Congress. Auckland: CRC Press, 2010. |
[168] |
BAJGIER-KOWALSKA M. Lichenometric dating of landslide episodes in the Western part of the Polish Flysch Carpathians[J]. Catena, 2008,72(2):224-234.
DOI URL |
[169] | WORSLEY P. Lichenometry[M]//GOUDIE A, ANDERSON M, BURT T, et al. Geomorphological Techniques. London: George Allen and Unwin, 1981: 302-306. |
[170] | WINCHESTER V. An evaluation of lichenometry: with field studies in Lappland, Britain and the Western Alps[D]. Oxford: University of Oxford, 1989. |
[171] | INNES J L. Lichenometry[J]. Progress in Physical Geography, 1985,9:187-254. |
[172] | BRUM F A, CENDRERO A, COROMINAS J, et al. Final National Report, Universidad de Cantabria, Santander, Spain[C]//DIKAU R, SCHROTT L, DEHN M, et al. The temporal stability and activity of landslides in Europe with respect to climatic change (TESLEC). Final report, Part II, National Reports. European Community. CEC. Environment Programme, Brussels, 1996, EV5V-CT94-0454:191-262. |
[173] |
KARLÉN W. Holocene glacier and climatic variations, Kebnekaise mountains, Swedish Lappland-Geogr[J]. Geografiska Annaler: Series A, Physical Geography, 1973,55(1):29-63.
DOI URL |
[174] |
CALKIN P E, ELLIS J M. A lichenometric dating curve and its application to Holocene glacier studies in the central Brooks Range, Alaska[J]. Arctic and Alpine Research, 1980,12(3):245-264.
DOI URL |
[175] |
WINCHESTER V, HARRISON S. A development of the lichenometric method applied to the dating of glacially influenced debris flows in southern Chile[J]. Earth Surface Processes and Landforms, 1994,19(2):137-151.
DOI URL |
[176] | 钟敦伦, 谢洪, 韦方强, 等. 论山地灾害链[J]. 山地学报, 2013,31(3):314-326. |
[177] |
CARRIVICK J L, TWEED F S. Proglacial lakes: character, behaviour and geological importance[J]. Quaternary Science Reviews, 2013,78:34-52.
DOI URL |
[178] |
DUFRESNE A, BÖSMEIER A, BÖSMEIER A . Sedimentology of rock avalanche deposits: case study and review[J]. Earth-Science Reviews, 2016,163:234-259.
DOI URL |
[179] | CARLING P A, MARTINI I P, JURGEN H, et al. Megaflood sedimentary valley fill: Altai Mountains, Siberia[M]//DEVON M B, CARLING P A, VICTOR R B. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press, 2009. |
[180] |
COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin, 1988,100(7):1054-1068.
DOI URL |
[1] | XU Jishan, PENG Jianbing, SUI Wanghua, AN Haibo, LI Zuodong, XU Wenjie, DONG Peijie. Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section [J]. Earth Science Frontiers, 2024, 31(3): 470-481. |
[2] | TANG Minggao, LIU Xinxin, LI Guang, ZHAO Huanle, XU Qiang, ZHU Xing, LI Weile. Mechanism of ice avalanche in the Sedongpu sag, Yarlung Zangbo River basin-an experimental study [J]. Earth Science Frontiers, 2023, 30(4): 405-417. |
[3] | SUN Dong, YANG Tao, CAO Nan, QIN Liang, HU Xiao, WEI Meng, MENG Minghui, ZHANG Wei. Characteristics and mitigation of coseismic geohazards associated with the Luding MS 6.8 earthquake [J]. Earth Science Frontiers, 2023, 30(3): 476-493. |
[4] | SUN Yongshuai, HU Ruilin. Effect of bedrock slope angle on deformation and failure of overlying rock-soil mixture: Insight into the evolution of landslides [J]. Earth Science Frontiers, 2023, 30(3): 494-504. |
[5] | CHEN Jian, CHEN Ruichen, CUI Zhijiu. Research progress on the morphology and sedimentology of long runout landslides [J]. Earth Science Frontiers, 2021, 28(4): 349-360. |
[6] | ZHANG Yongshuang, LIU Xiaoyi, WU Rui’an, GUO Changbao, REN Sanshao. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 94-105. |
[7] | CHEN Jian, CUI Zhijiu, CHEN Ruichen, ZHENG Xinxin. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River [J]. Earth Science Frontiers, 2021, 28(2): 85-93. |
[8] | LI Dewen, LI Linlin, MA Baoqi, ZHANG Jian. Characteristics of lake sediment response to earthquakes and the reconstruction of paleoseismic sequences [J]. Earth Science Frontiers, 2021, 28(2): 232-245. |
[9] | WANG Hao, CUI Peng, Paul A.CARLING. The sedimentology of high-energy outburst flood deposits: an overview [J]. Earth Science Frontiers, 2021, 28(2): 140-167. |
[10] | HUANG Xiaolong, WU Zhonghai, LIU Feng, TIAN Tingting, HUANG Xiaojin, ZHANG Duo. Tectonic interpretation of the main paleoseismic landslides and their distribution characteristics in the Chenghai fault zone, Northwest Yunnan [J]. Earth Science Frontiers, 2021, 28(2): 125-139. |
[11] | WANG Yufeng, CHENG Qiangong, LIN Qiwen, LI Kun, SHI Anwen. Observations on the sedimentary structure of prehistoric rock avalanches on the Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 106-124. |
[12] | ZHANG Xiaolin, SU Peidong, SU Shaofan, MA Yunchang, YANG Feng. Quantitative study of shallow natural gas source in tunnels in the Longquanshan structural zone [J]. Earth Science Frontiers, 2020, 27(3): 262-268. |
[13] | LUO Hongdong,LI Ruidong,ZHANG Bo,CAO Bo. An early warning model system for predicting meteorological risk associated with geological disasters in the Longnan area, Gansu Province based on the information value method [J]. Earth Science Frontiers, 2019, 26(6): 289-297. |
[14] | . [J]. Earth Science Frontiers, 2017, 24(4): 102-111. |
[15] | . Quantitative evaluation of geological disaster liability based on RS & GIS analysis: A case study of Wufeng County, [J]. Earth Science Frontiers, 2012, 19(6): 221-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||