Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 140-167.DOI: 10.13745/j.esf.sf.2020.9.17
Previous Articles Next Articles
WANG Hao1(), CUI Peng1,*(
), Paul A.CARLING2
Received:
2020-08-30
Revised:
2020-09-16
Online:
2021-03-25
Published:
2021-04-03
Contact:
CUI Peng
CLC Number:
WANG Hao, CUI Peng, Paul A.CARLING. The sedimentology of high-energy outburst flood deposits: an overview[J]. Earth Science Frontiers, 2021, 28(2): 140-167.
[1] | BAKER V R. Overview of megaflooding: Earth and Mars[M]// BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press, 2009: 12. |
[2] | BAKER V R. Global megaflood paleohydrology[M]// HERGET J, FONTANA A. Palaeohydrology: traces, tracks and trails of extreme events. Dordrecht: Springer, 2020: 3-28. |
[3] |
BAKER V R. The channeled scabland: a retrospective[J]. Annual Review of Earth and Planetary Sciences, 2009,37:393-411.
DOI URL |
[4] |
BAKER V R. The Spokane flood controversy and the Martian outflow channels[J]. Science, 1978,202(4374):1249-1256.
DOI URL |
[5] | BAKER V R. Erosional processes in channelized water flows on Mars[J]. Journal of Geophysical Research: Solid Earth, 1979,84(B14):7985-7993. |
[6] | BAKER V R, KOCHEL R C. Martian channel morphology: Maja and Kasei Valles[J]. Journal of Geophysical Research: Solid Earth, 1979,84(B14):7961-7983. |
[7] |
BRETZ J H. Bars of channeled scabland[J]. Geological Society of America Bulletin, 1928,39(3):643-701.
DOI URL |
[8] |
CARLING P A. Freshwater megaflood sedimentation: what can we learn about generic processes?[J]. Earth-Science Reviews, 2013,125:87-113.
DOI URL |
[9] |
HANSON M A, LIAN O B, CLAGUE J J. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula[J]. Quaternary Science Reviews, 2012,31:67-81.
DOI URL |
[10] |
CLAGUE J J, BARENDREGT R, ENKIN R J, et al. Paleomagnetic and tephra evidence for tens of Missoula floods in southern Washington[J]. Geology, 2003,31(3):247-250.
DOI URL |
[11] |
LOPES C, MIX A C. Pleistocene megafloods in the northeast Pacific[J]. Geology, 2009,37(1):79-82.
DOI URL |
[12] |
BENITO G, O’CONNOR J E. Number and size of last-glacial Missoula floods in the Columbia River valley between the Pasco Basin, Washington, and Portland, Oregon[J]. Geological Society of America Bulletin, 2003,115(5):624-638.
DOI URL |
[13] |
ATWATER B F. Periodic floods from glacial Lake Missoula into the Sanpoil arm of glacial Lake Columbia, northeastern Washington[J]. Geology, 1984,12(8):464-467.
DOI URL |
[14] |
ATWATER B F. Status of glacial Lake Columbia during the last floods from glacial Lake Missoula[J]. Quaternary Research, 1987,27(2):182-201.
DOI URL |
[15] |
SMITH L N. Stratigraphic evidence for multiple drainings of glacial Lake Missoula along the Clark Fork River, Montana, USA[J]. Quaternary Research, 2006,66(2):311-322.
DOI URL |
[16] |
WAITT R B. Case for periodic, colossal jkulhlaups from Pleistocene glacial Lake Missoula[J]. Geological Society of America Bulletin, 1985,96(10):1271-1286.
DOI URL |
[17] |
SMITH L N. Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington[J]. Geological Society of America Bulletin, 1993,105(1):77-100.
DOI URL |
[18] |
DENLINGER R P, O’CONNELL D R H. Simulations of cataclysmic outburst floods from Pleistocene glacial Lake Missoula[J]. Geological Society of America Bulletin, 2010,122(5/6):678-689.
DOI URL |
[19] |
TELLER J T. Lake Agassiz during the Younger Dryas[J]. Quaternary Research, 2013,80(3):361-369.
DOI URL |
[20] |
LEVERINGTON D W, MANN J D, TELLER J T. Changes in the bathymetry and volume of glacial Lake Agassiz between 9200 and 7700 14C yr BP[J]. Quaternary Research, 2002,57(2):244-252.
DOI URL |
[21] |
FISHER T G. Megaflooding associated with glacial Lake Agassiz[J]. Earth-Science Reviews, 2020,201:102974.
DOI URL |
[22] |
COLLIER J S, OGGIONI F, GUPTA S, et al. Streamlined islands and the English Channel megaflood hypojournal[J]. Global and Planetary Change, 2015,135:190-206.
DOI URL |
[23] |
GUPTA S, COLLIER J S, GARCIA-MORENO D, et al. Two-stage opening of the Dover Strait and the origin of island Britain[J]. Nature Communications, 2017,8:15101.
DOI URL |
[24] |
TOUCANNE S, ZARAGOSI S, BOURILLET J F, et al. Timing of massive ‘Fleuve Manche’ discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2[J]. Quaternary Science Reviews, 2009,28(13/14):1238-1256.
DOI URL |
[25] |
COHEN K M, GIBBARD P L, WEERTS H J T. North Sea palaeogeographical reconstructions for the last 1 Ma[J]. Netherlands Journal of Geosciences, 2014,93(1/2):7-29.
DOI URL |
[26] |
GARCÍA-MORENO D, GUPTA S, COLLIER J S, et al. Middle-Late Pleistocene landscape evolution of the Dover Strait inferred from buried and submerged erosional landforms[J]. Quaternary Science Reviews, 2019,203:209-232.
DOI URL |
[27] | GIBBARD P L, COHEN K M. Quaternary evolution of the North Sea and the English Channel[J]. Proceedings of the Open University Geological Society, 2015,1:63-74. |
[28] | GIBBARD P L. The formation of the Strait of Dover[M]//PREECE R C. Island Britain: a quaternary perspective. London: Geological Society, 1995: 15. |
[29] |
SMITH A J. A catastrophic origin for the palaeovalley system of the eastern English Channel[J]. Marine Geology, 1985,64(1/2):65-75.
DOI URL |
[30] |
GUPTA S, COLLIER J S, PALMER-FELGATE A, et al. Catastrophic flooding origin of shelf valley systems in the English Channel[J]. Nature, 2007,448(7151):342-345.
DOI URL |
[31] | SOULET G, MÉNOT G, BAYON G, et al. Abrupt drainage cycles of the Fennoscandian ice sheet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(17):6682-6687. |
[32] | BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars[M]. Cambridge: Cambridge University Press, 2009. |
[33] |
MANGERUD J, JAKOBSSON M, ALEXANDERSON H, et al. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation[J]. Quaternary Science Reviews, 2004,23(11/12/13):1313-1332.
DOI URL |
[34] |
MANGERUD J, ASTAKHOV V, JAKOBSSON M, et al. Huge Ice-age lakes in Russia[J]. Journal of Quaternary Science, 2001,16(8):773-777.
DOI URL |
[35] |
GROSSWALD M G. Late Weichselian ice sheet of northern Eurasia[J]. Quaternary Research, 1980,13(1):1-32.
DOI URL |
[36] |
MANGERUD J, ASTAKHOV V I, MURRAY A, et al. The chronology of a large ice-dammed lake and the Barents-Kara Ice Sheet advances, northern Russia[J]. Global and Planetary Change, 2001,31(1/2/3/4):321-336.
DOI URL |
[37] |
ASTAKHOV V I. Evidence of Late Pleistocene ice-dammed lakes in west Siberia[J]. Boreas, 2006,35(4):607-621.
DOI URL |
[38] |
GORLACH A, HANG T, KALM V. GIS-based reconstruction of Late Weichselian proglacial lakes in northwestern Russia and Belarus[J]. Boreas, 2017,46(3):486-502.
DOI URL |
[39] |
WECKWERTH P, WYSOTA W, PIOTROWSKI J A, et al. Late Weichselian glacier outburst floods in north-eastern Poland: landform evidence and palaeohydraulic significance[J]. Earth-Science Reviews, 2019,194:216-233.
DOI URL |
[40] |
KOMATSU G, BAKER V R, ARZHANNIKOV S G, et al. Catastrophic flooding, palaeolakes, and late Quaternary drainage reorganization in northern Eurasia[J]. International Geology Review, 2016,58(14):1693-1722.
DOI URL |
[41] |
MARGOLD M, JANSEN J D, CODILEAN A T, et al. Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60000 years[J]. Quaternary Science Reviews, 2018,187:41-61.
DOI URL |
[42] |
CARLING P, VILLANUEVA I, HERGET J, et al. Unsteady 1D and 2D hydraulic models with ice dam break for Quaternary megaflood, Altai Mountains, southern Siberia[J]. Global and Planetary Change, 2010,70(1/2/3/4):24-34.
DOI URL |
[43] |
BOHORQUEZ P, JIMENEZ-RUIZ P J, JIMENEZ-RUIZ P J . Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia[J]. Earth-Science Reviews, 2019,197. DOI: 10.1016/j.earscirev.2019.102892.
DOI |
[44] | HERGET J. Reconstruction of Pleistocene ice-dammed lake outburst floods in the Altai Mountains, Siberia[M]//Ice-dammed lake outburst floods in the Altai Mountains, Siberia. Boulder: Geological Society of America, 2005. |
[45] |
KOMATSU G, ARZHANNIKOV S G, GILLESPIE A R, et al. Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River[J]. Geomorphology, 2009,104(3/4):143-164.
DOI URL |
[46] |
MARGOLD M, JANSSON K N, STROEVEN A P, et al. Glacial Lake Vitim, a 3000-km 3 outburst flood from Siberia to the Arctic Ocean[J]. Quaternary Research, 2011,76(3):393-396.
DOI URL |
[47] |
BAKER V R. Water and the Martian landscape[J]. Nature, 2001,412(6843):228-236.
DOI URL |
[48] |
ALKAMA R, KAGEYAMA M, RAMSTEIN G, et al. Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate[J]. Climate Dynamics, 2008,30(7/8):855-869.
DOI URL |
[49] |
LARSEN I J, LAMB M P. Progressive incision of the Channeled Scablands by outburst floods[J]. Nature, 2016,538(7624):229-232.
DOI URL |
[50] | COLLIER J. A megaflood in the English Channel[J]. Astronomy & Geophysics, 2017,58(2):38-42. |
[51] |
TELLER J T, LEVERINGTON D W, MANN J D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation[J]. Quaternary Science Reviews, 2002,21(8/9):879-887.
DOI URL |
[52] |
MURTON J B, BATEMAN M D, DALLIMORE S R, et al. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[J]. Nature, 2010,464(7289):740-743.
DOI URL |
[53] |
LI Y X, TÖRNQVIST T E, NEVITT J M, et al. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago[J]. Earth and Planetary Science Letters, 2012, 315/316:41-50.
DOI URL |
[54] |
FISHER T G. Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico[J]. Quaternary Research, 2003,59(2):271-276.
DOI URL |
[55] |
BARBER D C, DYKE A, HILLAIRE-MARCEL C, et al. Forcing of the cold event of 8200 years ago by catastrophic drainage of Laurentide lakes[J]. Nature, 1999,400(6742):344-348.
DOI URL |
[56] |
CLARKE G K C, LEVERINGTON D W, TELLER J T, et al. Paleohydraulics of the last outburst flood from Glacial Lake Agassiz and the 8200 BP cold event[J]. Quaternary Science Reviews, 2004,23(3/4):389-407.
DOI URL |
[57] |
LEWIS C F M, MILLER A A L, LEVAC E, et al. Lake Agassiz outburst age and routing by Labrador Current and the 8.2 cal ka cold event[J]. Quaternary International, 2012,260:83-97.
DOI URL |
[58] |
NICHOLL J A L, HODELL D A, NAAFS B D A, et al. A Laurentide outburst flooding event during the last interglacial period[J]. Nature Geoscience, 2012,5(12):901-904.
DOI URL |
[59] | CARLING P A, HERGET J, LANZ J K, et al. Channel-scale erosional bedforms in bedrock and in loose granular material: character, processes and implications[M]// BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press, 2009: 13-32. |
[60] | 吴庆龙, 张培震, 张会平, 等. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学:D辑, 2009,39(8):1148-1159. |
[61] | 吴庆龙. 金沙江大具盆地中的巨大洪水沉积[J]. 南京师大学报(自然科学版), 2019,42(4):118-123. |
[62] | 吴庆龙. 金沙江、雅鲁藏布江发现史前巨大洪水事件[J]. 南京师大学报(自然科学版), 2019,42(3):163-164. |
[63] |
WU Q L, ZHAO Z J, LIU L, et al. Outburst flood at 1920 BCE supports historicity of China’s great flood and the Xia dynasty[J]. Science, 2016,353(6299):579-582.
DOI URL |
[64] |
LIU W M, CARLING P A, HU K H, et al. Outburst floods in China: a review[J]. Earth-Science Reviews, 2019,197. DOI: 10.1016/j.earscirev.2019.102895.
DOI |
[65] |
CARLING P A, FAN X M. Particle comminution defines megaflood and superflood energetics[J]. Earth-Science Reviews, 2020,204. DOI: 10.1016/j.earscirev.2020.103087.
DOI |
[66] | BAKER V R. Megafloods and glaciation[M]//MARTINI I P M. Late glacial and postglacial environmental changes: Quaternary, Carboniferous-Permian, and Proterozoic. Oxford: Oxford University Press, 1997: 98-108. |
[67] | BAKER V R. High-energy megafloods: planetary settings and sedimentary dynamics[M]//MARTINI I P, BAKER V R, GARZÓN G. Flood and megaflood processes and deposits: recent and ancient examples recent and ancient examples. Oxford: Blackwell Science, 2002: 3-15. |
[68] | MARREN P M, SCHUH M. Criteria for identifying jökulhlaup deposits in the sedimentary record[M]//BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press, 2009: 225-242. |
[69] |
LAMB M P, FONSTAD M A. Rapid formation of a modern bedrock canyon by a single flood event[J]. Nature Geoscience, 2010,3(7):477-481.
DOI URL |
[70] | O’CONNOR J E. The world’s largest floods, past and present: their causes and magnitudes[R]. Washington DC: US Geological Survey, 2004. |
[71] |
BJÖRNSSON H. Subglacial lakes and Jökulhlaups in Iceland[J]. Global and Planetary Change, 2003,35(3/4):255-271.
DOI URL |
[72] |
ROBERTS M J. J kulhlaups: a reassessment of floodwater flow through glaciers[J]. Reviews of Geophysics, 2005,43(1). DOI: 10.1029/2003RG000147.
DOI |
[73] |
TWEED F S, RUSSELL A J. Controls on the formation and sudden drainage of glacier-impounded lakes: implications for Jökulhlaup characteristics[J]. Progress in Physical Geography: Earth and Environment, 1999,23(1):79-110.
DOI URL |
[74] | STURM M, BEGET J, BENSON C. Observations of Jökulhlaups from ice-dammed Strandline Lake, Alaska: implications for paleohydrology[J]. Catastrophic Flooding, 1987: 79-94. |
[75] | ALLISON I S. Late Pleistocene sediments and floods in the Willamette Valley[J]. The Ore Bin, 1978,40:177-191. |
[76] | RUSSELL A J, KNUDSEN Ó. Controls on the sedimentology of the November 1996 Jökulhlaup deposits, Skeiðarársandur, Iceland[M]//SMITH N D, ROGERS J. Fluvial sedimentology VI. New York: Wiley, 1999: 315-329. |
[77] |
RUSHMER E L. Physical-scale modelling of Jökulhlaups (glacial outburst floods) with contrasting hydrograph shapes[J]. Earth Surface Processes and Landforms, 2007,32(6):954-963.
DOI URL |
[78] | CARLING P A, MARTINI I P, HERGET J, et al. Megaflood sedimentary valley fill: Altai Mounatins, Siberia[M]//BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press, 2009. |
[79] |
LORD M L, KEHEW A E. Sedimentology and paleohydrology of glacial-lake outburst deposits in southeastern Saskatchewan and northwestern north Dakota[J]. Geological Society of America Bulletin, 1987,99(5):663-673.
DOI URL |
[80] | O’CONNOR J E, BEEBEE R A. Floods from natural rock-material dams[M]//BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press, 2009: 129. |
[81] |
MAIZELS J. Jökulhlaup deposits in proglacial areas[J]. Quaternary Science Reviews, 1997,16(7):793-819.
DOI URL |
[82] |
SMITH G A. Coarse-grained nonmarine volcaniclastic sediment: terminology and depositional process[J]. Geological Society of America Bulletin, 1986,97(1):1-10.
DOI URL |
[83] | COSTA J E. Rheologic, geomorphic and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows[M]// BAKER V R, KOCHEL K C, PATTON P C. Flood geomorphology. New York: Wiley, 1988: 113-122. |
[84] | COSTA J E. Physical geomorphology of debris flows[M]//COSTA J E, FLEISHER P J. Developments and applications of geomorphology. Dordrecht: Springer, 1984: 268-317. |
[85] |
POSTMA G, NEMEC W, KLEINSPEHN K L. Large floating clasts in turbidites: a mechanism for their emplacement[J]. Sedimentary Geology, 1988,58(1):47-61.
DOI URL |
[86] |
HAUGHTON P, DAVIS C, MCCAFFREY W, et al. Hybrid sediment gravity flow deposits: classification, origin and significance[J]. Marine and Petroleum Geology, 2009,26(10):1900-1918.
DOI URL |
[87] |
DASGUPTA P. Sediment gravity flow: the conceptual problems[J]. Earth-Science Reviews, 2003,62(3/4):265-281.
DOI URL |
[88] | LOWE D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Petrology, 1982,52(1):279-297. |
[89] |
BRETZ J H, SMITH H T U, SMITH H T U . Channeled scabland of Washington: new data and interpretation[J]. Geological Society of America Bulletin, 1956,67(8):957-1049.
DOI URL |
[90] | MIYAMOTO H, KOMATSU G, BAKER V R, et al. Cataclysmic scabland flooding: insights from a simple depth-averaged numerical model[J]. Environmental Modelling & Software, 2007,22(10):1400-1408. |
[91] | RUSSELL A J, MARREN P M. Proglacial fluvial sedimentary sequences in Greenland and Iceland: a case study from active proglacial environments subject to Jökulhlaups. Skeiðararsandur, Iceland[M]//JONES A P, TUCKER M E, HART J K. The description and analysis of Quaternary stratigraphic field sections[M]. London: Quaternary Research Association, 1999: 171-208. |
[92] |
CARLING P A. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia[J]. Sedimentology, 1996,43(4):647-664.
DOI URL |
[93] | CARLING P, BRISTOW C S, LITVINOV A, et al. Ground penetrating radar stratigraphy of megaflood gravel dune[C]//AGU Fall Meeting Abstracts. Washington DC: American Geophysical Union, 2010. |
[94] | HERGET J, CARLING P A. Review on large scale gravel dunes caused by Pleistocene ice-dammed lake outburst floods[J]. Marine Sandwave and River Dune Dynamics, 2004,1/2:96-101. |
[95] |
ZHANG L, XIAO T, HE J, et al. Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018[J]. Landslides, 2019,16(10):1965-1979.
DOI URL |
[96] |
KOCAMAN S, OZMEN-CAGATAY H. The effect of lateral channel contraction on dam break flows: laboratory experiment[J]. Journal of Hydrology, 2012,432/433:145-153.
DOI URL |
[97] | MAIZELS J. Boulderring structures produced during Jökulhlaup flows: origin and hydraulic significance[J]. Geografiska Annaler: Series A, Physical Geography, 1992,74(1):21-33. |
[98] | KEHEW A E, LORD M L, KOZLOWSKI A L, et al. Proglacial megaflooding along the margins of the Laurentide Ice Sheet[M]// BURR D M, CARLING P A, BAKER V R. Megaflooding on Earth and Mars. Cambridge: Cambridge University Press: Cambridge, 2009: 104-127. |
[99] | SPENCER P K, JAFFEE M A. Pre-Late Wisconsinan glacial outburst floods in southeastern Washington: the indirect record[J]. Washington Geology, 2002,30(1/2):9. |
[100] |
O’CONNOR J E, BAKER V R. Magnitudes and implications of peak discharges from glacial Lake Missoula[J]. Geological Society of America Bulletin, 1992,104(3):267-279.
DOI URL |
[101] |
MARREN P M. Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective[J]. Earth-Science Reviews, 2005,70(3/4):203-251.
DOI URL |
[102] |
MARREN P M. Fluvial-lacustrine interaction on Skeiðarársandur, Iceland: implications for sandur evolution[J]. Sedimentary Geology, 2002,149(1/2/3):43-58.
DOI URL |
[103] |
RUSSELL A J, KNUDSEN Ó. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (Jökulhlaup), Skeiðarárjökull, Iceland[J]. Sedimentary Geology, 1999,127(1/2):1-10.
DOI URL |
[104] |
SLOMKA J M, HARTMAN G M D. Sedimentary architecture of a glaciolacustrine braidplain delta: proxy evidence of a pre-middle Wisconsinan glaciation (Grimshaw gravels, Interior Plains, Canada)[J]. Boreas, 2019,48(1):215-235.
DOI URL |
[105] |
MIALL A D. A review of the braided-river depositional environment[J]. Earth-Science Reviews, 1977,13(1):1-62.
DOI URL |
[106] | MIALL A D. Lithophacies types and vertical profile models in braided rivers: a summary[M]//MIALL A D. Fluvial sedimentology. Calgary: Canada Society of Petroleum Geologist, 1977: 597-604. |
[107] |
MAIZELS J. Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics[J]. Sedimentary Geology, 1993,85(1/2/3/4):299-325.
DOI URL |
[108] | BAKER V R. Paleohydrology and sedimentology of lake Missoula flooding in eastern Washington[J]. Geological Society of America Special Papers, 1973,144(2/3):1-73. |
[109] |
WAITT R B. About forty last-glacial Lake Missoula Jökulhlaups through southern Washington[J]. The Journal of Geology, 1980,88(6):653-679.
DOI URL |
[110] | O’CONNOR J E, SARNA-WOJCICKI A, WOZNIAK K C, et al. Origin, extent, and thickness of Quaternary geologic units in the Willamette Valley, Oregon[R]. Washington DC: US Geological Survey, 2001: 1-40. |
[111] | CARLING P A. Catastrophic deposition of gravel from outbreak floods[M]//TSUTSUMI D, LARONNE J B. Gravel-bed rivers. Oxford: Wiley-Blackwell: 2017: 299-327. |
[112] | O’CONNOR J E. Hydrology, hydraulics, and geomorphology of the Bonneville flood[M]. Boulder: Geological Society of America, 1993. |
[113] | MALDE H E. The catastrophic late Pleistocene Bonneville flood in the Snake River Plain, Idaho[R]. Washington DC: US Geological Survey, 1968: 55. |
[114] | RUSSELL A J, KNUDSEN Ó. The effects of glacier-outburst flood flow dynamics on ice-contact deposits: November 1996 Jökulhlaup, Skeiðarársandur, Iceland[M]//MARTINI I P, BAKER V R, GARZÓN G. Flood and megaflood processes and deposits: recent and ancient examples. Oxford: Blackwell Science, 2002: 67-83. |
[115] |
CARLING P A. Hydrodynamic models of boulder berm deposition[J]. Geomorphology, 1989,2(4):319-340.
DOI URL |
[116] |
BURKE M J, WOODWARD J, RUSSELL A J. Sedimentary architecture of large-scale, Jökulhlaup-generated, ice-block obstacle marks: examples from Skeiðarársandur, SE Iceland[J]. Sedimentary Geology, 2010,227(1/2/3/4):1-10.
DOI URL |
[117] |
CLAYTON J A, KNOX J C. Catastrophic flooding from Glacial Lake Wisconsin[J]. Geomorphology, 2008,93(3/4):384-397.
DOI URL |
[118] |
ALEXANDER J S, MCELROY B, HUZURBAZAR S, et al. Deposition potential and flow-response dynamics of emergent sandbars in a braided river[J]. Water Resources Research, 2020,56(1). DOI: 10.1029/2018WR024107.
DOI |
[119] |
CARLING P A, BORHORQUEZ P, FAN X M. Hydraulic control on the development of megaflood runup deposits[J]. Geomorphology, 2020,361. DOI: 10.1016/j.geomorph.2020.107203.
DOI |
[120] | KOCHEL R C, RITTER D. Implications of flume experiments for the interpretation of slackwater paleoflood sediments[M]// BAKER V R, KOCHEL R C, PATTON P C. Flood geomorphology. New York: Wiley, 1988. |
[121] | BAKER V R. Flood sedimentation in bedrock fluvial systems[M]//BAKER V R, KOCHEL R C, PATTON P C. Flood geomorphology. New York: Wiley, 1988: 123-128. |
[122] |
BENITO G, THORNDYCRAFT V R. Catastrophic glacial-lake outburst flooding of the Patagonian Ice Sheet[J]. Earth-Science Reviews, 2020,200. DOI: 10.1016/j.earscirev.2019.102996.
DOI |
[123] |
ALHO P, BAKER V R, SMITH L N. Paleohydraulic reconstruction of the largest glacial Lake Missoula draining(s)[J]. Quaternary Science Reviews, 2010,29(23/24):3067-3078.
DOI URL |
[124] |
CARLING P A. A preliminary palaeohydraulic model applied to late Quaternary gravel dunes: Altai Mountains, Siberia[J]. Geological Society of London, Special Publications, 1996,115(1):165-179.
DOI URL |
[125] |
CARLING P A, BRISTOW C S, LITVINOV A S. Ground-penetrating radar stratigraphy and dynamics of megaflood gravel dunes[J]. Journal of the Geological Society, 2016,173(3):550-559.
DOI URL |
[126] |
BATBAATAR J, GILLESPIE A R. Outburst floods of the Maly Yenisei. Part II: new age constraints from Darhad basin[J]. International Geology Review, 2016,58(14):1753-1779.
DOI URL |
[127] |
BATBAATAR J, GILLESPIE A R. Outburst floods of the Maly Yenisei. Part I[J]. International Geology Review, 2016,58(14):1723-1752.
DOI URL |
[128] |
CARLING P A. Subaqueous gravel dunes[J]. Journal of Sedimentary Research, 1999,69(3):534-545.
DOI URL |
[129] |
ASHLEY G M. Classification of large-scale subaqueous bedforms: a new look at an old problem[J]. Journal of Sedimentary Research, 1990,60(1):160-172.
DOI URL |
[130] |
BRADLEY R W, VENDITTI J G. Reevaluating dune scaling relations[J]. Earth-Science Reviews, 2017,165:356-376.
DOI URL |
[131] |
VENDITTI J G, CHURCH M, BENNETT S J. On the transition between 2D and 3D dunes[J]. Sedimentology, 2005,52(6):1343-1359.
DOI URL |
[132] |
SMITH D G, FISHER T G. Glacial Lake Agassiz: the northwestern outlet and paleoflood[J]. Geology, 1993,21(1):9-12.
DOI URL |
[133] |
BAKER V R, BUNKER R C. Cataclysmic late Pleistocene flooding from glacial Lake Missoula: a review[J]. Quaternary Science Reviews, 1985,4(1):1-41.
DOI URL |
[134] |
FISHER T G, SMITH D G. Glacial Lake Agassiz: its northwest maximum extent and outlet in Saskatchewan (Emerson Phase)[J]. Quaternary Science Reviews, 1994,13(9/10):845-858.
DOI URL |
[135] | MOODY U L. Late Quaternary stratigraphy of the Channeled Scabland and adjacent areas[D]. Moscow: University of Idaho, 1988. |
[136] |
DULLER R A, MOUNTNEY N P, RUSSELL A J, et al. Architectural analysis of a volcaniclastic jökulhlaup deposit, southern Iceland: sedimentary evidence for supercritical flow[J]. Sedimentology, 2008,55(4):939-964.
DOI URL |
[137] |
DULLER R A, MOUNTNEY N P, RUSSELL A J. Particle fabric and sedimentation of structureless sand, southern Iceland[J]. Journal of Sedimentary Research, 2010,80(6):562-577.
DOI URL |
[138] |
MARREN P M, RUSSELL A J, RUSHMER E L. Sedimentology of a sandur formed by multiple Jökulhlaups, Kverkfjöll, Iceland[J]. Sedimentary Geology, 2009,213(3/4):77-88.
DOI URL |
[139] | MUTTI E, DAVOLI G, TINTERRI R, et al. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins[J]. Memorie Di Scienze Geologichio, 1996,48:223-291. |
[140] |
RUSHMER E L. Sedimentological and geomorphological impacts of the jökulhlaup (glacial outburst flood) in January 2002 at Kverkfjöll, northern Iceland[J]. Geografiska Annaler: Series A, Physical Geography, 2006,88(1):43-53.
DOI URL |
[141] |
CARLING P, GLAISTER M S. Rapid deposition of sand and gravel mixtures downstream of a negative step: the role of matrix-infilling and particle-overpassing in the process of bar-front accretion[J]. Journal of the Geological Society, 1987,144(4):543-551.
DOI URL |
[142] | RUST B R. Pebble orientation in fluvial sediments[J]. Journal of Sedimentary Research, 1972,42(2):384-388. |
[143] |
RUST B R. Structure and process in a braided river[J]. Sedimentology, 1972,18(3/4):221-245.
DOI URL |
[144] |
CARRIVICK J, PRINGLE J, RUSSELL A, et al. GPR-derived sedimentary architecture and stratigraphy of outburst flood sedimentation within a bedrock valley system, Hraundalur, Iceland[J]. Journal of Environmental and Engineering Geophysics, 2007,12(1):127-143.
DOI URL |
[145] | BENVENUTI M, MARTINI I P. Analysis of terrestrial hyperconcentrated flows and their deposit[M]//MARTINI I P, BAKER V R, GARZÓN G. Flood and megaflood processes and deposits: recent and ancient examples. Oxford: Blackwell Science, 2002: 167-193. |
[146] |
CUTLER P M, COLGAN P M, MICKELSON D M. Sedimentologic evidence for outburst floods from the Laurentide Ice Sheet margin in Wisconsin, USA: implications for tunnel-channel formation[J]. Quaternary International, 2002,90(1):23-40.
DOI URL |
[147] | KNELLER B. Beyond the turbidite paradigm: physicalmodels for deposition of turbidites and their implications for reservoir prediction[M]//HARTLEY A J, PROSSER D J. Characterization of deep-marine clastic systems. London: Geological Society, 1995,94:31-49. |
[148] |
KNELLER B C, BRANNEY M J. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology, 1995,42(4):607-616.
DOI URL |
[149] |
KATAOKA K S. Geomorphic and sedimentary evidence of a gigantic outburst flood from Towada caldera after the 15 ka Towada-Hachinohe ignimbrite eruption, northeast Japan[J]. Geomorphology, 2011,125(1):11-26.
DOI URL |
[150] | MAIZELS J. Sediments and landforms of modern proglacial terrestrial environments[M]//MENZIES J. Modern and past glacial environments. Oxford: Butterworth-Heinemann, 2002: 279-316. |
[151] | MAIZELS J. The origin and evolution of Holocene Sandur Deposits in areas of Jökulhlaup drainage, Iceland[M]//MAIZELS J K, CASELDINE C. Environmental change in Iceland: past and present. Dordrecht: Springer, 1991: 267-302. |
[152] |
WINSEMANN J, ASPRION U, MEYER T, et al. Facies characteristics of Middle Pleistocene (Saalian) ice-margin subaqueous fan and delta deposits, glacial Lake Leine, NW Germany[J]. Sedimentary Geology, 2007,193(1/2/3/4):105-129.
DOI URL |
[153] |
SHANMUGAM G. The Bouma Sequence and the turbidite mind set[J]. Earth-Science Reviews, 1997,42(4):201-229.
DOI URL |
[154] |
PATRUNO S, HELLAND-HANSEN W. Clinoforms and clinoform systems: review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins[J]. Earth-Science Reviews, 2018,185:202-233.
DOI URL |
[155] | KNUDSEN Ó, RUSSELL A J. Jökulhlaup deposits at the Ásbyrgi Canyon, northern Iceland: sedimentology and implications for flow type[C]//SNORASSON A, FINNSDÓTTIR H P, MOSS M. The extreme of the extremes: extraordinary floods (Proceedings of a symposium at Reykjavik, Iceland). Reykjavik: IAHS Publication, 2002. |
[156] | WINSEMANN J, ASPRION U, MEYER T. Lake-level control on ice-margin subaqueous fans, Glacial Lake Rinteln, northwest Germany[M]//HAMBREY M J, CHRISTOFFERSEN P, GLASSER N F, et al. Glacial sedimentary processes and products. Oxford: Blackwell Science, 2007: 121-148. |
[157] | FRASER G S, BLEUER N K, CLIFTON H E. Sedimentological consequences of two floods of extreme magnitude in the late Wisconsinan Wabash Valley[J]. Geological Society of America Special Papers, 1988,229:111-125. |
[158] | CARLING P A, KIRKBRIDE A D, PARNACHOV S, et al. Late-glacial catastrophic flooding in the Altai mountains of south-central Siberia: a synoptic overview and introduction to flood deposit sedimentology[M]//MARTINI I P, BAKER V R, GARZÓN G. Flood and megaflood processes and deposits: recent and ancient examples. Oxford: Blackwell Science, 2002. |
[159] | RUSSELL H A J, SHARPE D R, BAJC A F. Sedimentary signatures of the Waterloo Moraine, Ontario, Canada[M]// HAMBREY M J, CHRISTOFFERSEN P, GLASSER N F, et al. Glacial sedimentary processes and products. Oxford: Blackwell Science, 2007: 85-108. |
[160] |
CARRIVICK J L, RUSHMER E L. Understanding high-magnitude outburst floods[J]. Geology Today, 2006,22(2):60-65.
DOI URL |
[161] |
LUNT I A, BRIDGE J S, TYE R S. A quantitative, three-dimensional depositional model of gravelly braided rivers[J]. Sedimentology, 2004,51(3):377-414.
DOI URL |
[162] | COLLINSON J D. Bedforms of the Tana river, Norway: a correction[J]. Geografiska Annaler, 1970,52(1):31-55. |
[163] |
RUSSELL A J. Controls on the sedimentology of an ice-contact Jökulhlaup-dominated delta, Kangerlussuaq, west Greenland[J]. Sedimentary Geology, 2007,193(1/2/3/4):131-148.
DOI URL |
[164] |
WINSEMANN J, LANG J, POLOM U, et al. Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture[J]. Boreas, 2018,47(4):973-1002.
DOI URL |
[165] |
SHAW J, GORRELL G. Subglacially formed dunes with bimodal and graded gravel in the Trenton Drumlin Field, Ontario[J]. Geographie Physique et Quaternaire, 1991,45(1):21-34.
DOI URL |
[166] |
KLEINHANS M G. Sorting in grain flows at the left side of dunes[J]. Earth-Science Reviews, 2004,65(1/2):75-102.
DOI URL |
[167] |
FISHER T G, SMITH D G. Exploration for Pleistocene aggregate resources using process-depositional models in the Fort Mcmurray region, NE Alberta, Canada[J]. Quaternary International, 1993,20:71-80.
DOI URL |
[168] |
CORNWELL K. Quaternary break-out flood sediments in the Peshawar basin of northern Pakistan[J]. Geomorphology, 1998,25(3/4):225-248.
DOI URL |
[169] | ATWATER B F. Pleistocene glacial-lake deposits of the Sanpoil River valley, northeastern Washington[J]. US Geological Survey Bulletin, 1986,1661:1-39. |
[170] | PLINK-BJÖRKLUND P, RONNERT L. Depositional processes and internal architecture of Late Weichselian ice-margin submarine fan and delta settings, Swedish west coast[J]. Sedimentology, 1999,46(2):215-234. |
[171] | RUSSELL A J. Sedimentary processes: catastrophic floods[M]//SELLEY R C, COCKS L R M, PLIMER I R. Encyclopedia of geology. Oxford: Elsevier, 2005: 628-641. |
[172] |
COSTA J E. Stratigraphic, morphologic, and pedologic evidence of large floods in humid environments[J]. Geology, 1974,2(6):301-303.
DOI URL |
[173] | FISK L H. Inverse grading as stratigraphic evidence of large floods: comment[J]. Geology, 1974,2(12):613-614. |
[174] | FRASER G S, BLEUER N K, CLIFTON H E. Sedimentological consequences of two floods of extreme magnitude in the late Wisconsinan Wabash Valley[M]//CLIFTON H E. Sedimentologic consequences of convulsive geologic events. Boulder: Geological Society of America, 1988,229:111-125. |
[175] | SALLENGER A H. Inverse grading and hydraulic equivalence in grain-flow deposits[J]. Journal of Sedimentary Research, 1979,49(2):553-562. |
[176] | HISCOTT R N, MIDDL G V. Fabric of coarse deep-water sandstones, Tourelle Formation, Quebec, Canada[J]. Journal of Sedimentary Research, 1980,50(3):703-722. |
[177] |
TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows: depositional processes and deposit types[J]. Sedimentology, 2012,59(7):1937-2003.
DOI URL |
[178] |
SUMNER E, AMY L A, TALLING P J. Deposit structure and processes of sand deposition from decelerating sediment suspensions[J]. Journal of Sedimentary Research, 2008,78(8):529-547.
DOI URL |
[179] |
KUENEN P H. Experimental turbidite lamination in a circular flume[J]. Journal of Geology, 1966,74(5):523-545.
DOI URL |
[180] | VROLIJK P, SOUTHARD J. Experiments on rapid deposition of sand from high-velocity flows[J]. Geoscience Canada, 1997,24(1):45-54. |
[181] | SOHN Y K. On traction-carpet sedimentation[J]. Journal of Sedimentary Research, 1997,67(3):502-509. |
[182] | RUST B R, ROMANELLI R. Late Quaternary subaqueous outwash deposits near Ottawa, Canada[M]//JOPLING A V, MCDONALD B C. Glaciofluvial and glaciolacustrine sedimentation. New York: SEPM Society for Sedimentary Geology, 1975: 177-192. |
[183] |
OSTERKAMP W R, COSTA J E. Changes accompanying an extraordinary flood on a sand-bed stream, in Catastrophic flooding[M]//MAYER L, NASH D. Catastrophic Flooding. London: Routledge, 1987: 201-224. DOI: 10.4324/9781003020325-10.
DOI |
[184] |
POSTMA G. Classification for sediment gravity-flow deposits on flow conditions during sedimentation[J]. Geology, 1986,14(4):291-294.
DOI URL |
[185] |
CHEEL R J. Horizontal lamination and the sequence of bed phases and stratification under upper-flow-regime conditions[J]. Sedimentology, 1990,37(3):517-529.
DOI URL |
[186] |
TODD S P. Stream-driven, high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin[J]. Sedimentology, 1989,36(4):513-530.
DOI URL |
[187] | ARNOTT R W C, HAND B M. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain[J]. Journal of Sedimentary Research, 1989,59(6):1062-1069. |
[188] | BANERJEE I. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments[J]. Journal of Sedimentary Research, 1977,47(2):771-783. |
[189] |
BAAS J H, BEST J L, PEAKALL J. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows[J]. Sedimentology, 2011,58(7):1953-1987.
DOI URL |
[190] |
ALLEN J R L. The sequence of sedimentary structures in turbidites, with special reference to dunes[J]. Scottish Journal of Geology, 1970,6(2):146-161.
DOI URL |
[191] |
SHAW J, MUNRO-STASIUK M, SAWYER B, et al. The channeled scabland: back to Bretz?[J]. Geology, 1999,27(7):605-608.
DOI URL |
[192] | MARREN P M. Glacier margin fluctuations, Skaftafellsjökull, Iceland: implications for sandur evolution[J]. Boreas, 2002,31(1):75-81. |
[193] | BAKER V R, BJORNSTAD B N, BUSACCA A, et al. Quaternary geology of the Columbia Plateau[M]//MORRISON R B. Quaternary nonglacial geology: conterminous. Boulder: Geological Society of America, 1991: 215-250. |
[194] |
DRUITT T H. Settling behaviour of concentrated dispersions and some volcanological applications[J]. Journal of Volcanology and Geothermal Research, 1995,65(1/2):27-39.
DOI URL |
[195] | BJORNSTAD B N. Sedimentology and depositional environment of the Touchet Beds, Walla Walla River Basin, Washington[R]. Richland: Rockwell International Corporation, 1986. |
[196] | LEVISH D R. Late Pleistocene sedimentation in glacial Lake Missoula and revised glacial history of the Flathead lobe of the Cordilleran ice sheet, Mission Valley[D]. Boulder: University of Colorado at Boulder, 1997. |
[197] |
GILBERT R. Observations on ice-dammed Summit Lake, British Columbia, Canada[J]. Journal of Glaciology, 1971,10(60):351-356.
DOI URL |
[198] |
MARCUS M G. Periodic drainage of glacier-dammed Tulsequah Lake, British Columbia[J]. Geographical Review, 1960,50:89-106.
DOI URL |
[199] |
MCDONALD E V, BUSACCA A J. Record of pre-late Wisconsin giant floods in the Channeled Scabland interpreted from loess deposits[J]. Geology, 1988,16(8):728-731.
DOI URL |
[200] |
EVANS D J A. Quaternary geology and geomorphology of the Dinosaur Provincial Park area and surrounding plains, Alberta, Canada: the identification of former glacial lobes, drainage diversions and meltwater flood tracks[J]. Quaternary Science Reviews, 2000,19(10):931-958.
DOI URL |
[201] | FAY H. Formation of ice-block obstacle marks during the November 1996 glacier-outburst flood (Jökulhlaup), Skeiðarársandur, southern Iceland[M]//MARTINI I P, BAKER V R, GARZÓN G. Flood and megaflood processes and deposits: recent and ancient examples. Oxford: Blackwell Science, 2002: 85-97. |
[202] | NEMEC W, LØNNE I, LØNNE I . The Kregnes moraine in Gauldalen, west-central Norway: anatomy of a Younger Dryas proglacial delta in a palaeofjord basin[J]. Boreas, 1999,28(4):454-476. |
[203] |
BENNETT M R, HUDDART D, MCCORMICK T. The glaciolacustrine landform-sediment assemblage at Heinabergsjökull, Iceland[J]. Geografiska Annaler: Series A, Physical Geography, 2000,82(1):1-16.
DOI URL |
[204] | BOUMA A H. Sedimentology of some flysch deposits: a graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168. |
[205] |
AMY L A, TALLING P J, EDMONDS V O, et al. An experimental investigation of sand-mud suspension settling behaviour: implications for bimodal mud contents of submarine flow deposits[J]. Sedimentology, 2010,53(6):1411-1434.
DOI URL |
[206] |
MARTIN C A L, TURNER B R. Origins of massive-type sandstones in braided river systems[J]. Earth-Science Reviews, 1998. 44(1):15-38.
DOI URL |
[207] | NEMEC W, MUSZYNSKI A. Volcaniclastic alluvial aprons in the Tertiary of Sofia district (Bulgaria)[J]. Annales Societatis Geologorum Poloniae, 1982. 52(1/2/3/4):239-303. |
[208] | GANI M. From turbid to lucid: a straightforward approach to sediment gravity flows and their deposits[J]. The Sedimentary Record, 2004,2(3):4-8. |
[209] | NEMEC W. Aspects of sediment movement on steep delta slopes[M]//COLELLA A, PRIOR D B. Coarse-grained deltas. Oxford: Blackwell Science, 1990: 29-73. |
[210] | PARKER G, FUKUSHIMA Y, PANTIN H M. Self-accelerating turbidity currents[J]. Journal of Fluid Mechanics, 1986(171):145-181. |
[211] |
LIU W, LAI Z, HU K, et al. Age and extent of a giant glacial-dammed lake at Yarlung Tsangpo gorge in the Tibetan Plateau[J]. Geomorphology, 2015,246:370-376.
DOI URL |
[212] |
HU H P, FENG J L, CHEN F. Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: implications for terrace genesis and outburst flooding[J]. Quaternary Science Reviews, 2018,192:135-148.
DOI URL |
[213] |
LANG K A, HUNTINGTON K W, MONTGOMERY D R. Erosion of the Tsangpo Gorge by megafloods, eastern Himalaya[J]. Geology, 2013,41(9):1003-1006.
DOI URL |
[1] | XU Jishan, PENG Jianbing, SUI Wanghua, AN Haibo, LI Zuodong, XU Wenjie, DONG Peijie. Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section [J]. Earth Science Frontiers, 2024, 31(3): 470-481. |
[2] | TANG Minggao, LIU Xinxin, LI Guang, ZHAO Huanle, XU Qiang, ZHU Xing, LI Weile. Mechanism of ice avalanche in the Sedongpu sag, Yarlung Zangbo River basin-an experimental study [J]. Earth Science Frontiers, 2023, 30(4): 405-417. |
[3] | SUN Dong, YANG Tao, CAO Nan, QIN Liang, HU Xiao, WEI Meng, MENG Minghui, ZHANG Wei. Characteristics and mitigation of coseismic geohazards associated with the Luding MS 6.8 earthquake [J]. Earth Science Frontiers, 2023, 30(3): 476-493. |
[4] | SUN Yongshuai, HU Ruilin. Effect of bedrock slope angle on deformation and failure of overlying rock-soil mixture: Insight into the evolution of landslides [J]. Earth Science Frontiers, 2023, 30(3): 494-504. |
[5] | CHEN Jian, CHEN Ruichen, CUI Zhijiu. Research progress on the morphology and sedimentology of long runout landslides [J]. Earth Science Frontiers, 2021, 28(4): 349-360. |
[6] | ZHANG Yongshuang, LIU Xiaoyi, WU Rui’an, GUO Changbao, REN Sanshao. Cognization, characteristics, age and evolution of the ancient landslides along the deep-cut valleys on the eastern Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 94-105. |
[7] | CHEN Jian, CUI Zhijiu, CHEN Ruichen, ZHENG Xinxin. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River [J]. Earth Science Frontiers, 2021, 28(2): 85-93. |
[8] | LI Dewen, LI Linlin, MA Baoqi, ZHANG Jian. Characteristics of lake sediment response to earthquakes and the reconstruction of paleoseismic sequences [J]. Earth Science Frontiers, 2021, 28(2): 232-245. |
[9] | HUANG Xiaolong, WU Zhonghai, LIU Feng, TIAN Tingting, HUANG Xiaojin, ZHANG Duo. Tectonic interpretation of the main paleoseismic landslides and their distribution characteristics in the Chenghai fault zone, Northwest Yunnan [J]. Earth Science Frontiers, 2021, 28(2): 125-139. |
[10] | WANG Yufeng, CHENG Qiangong, LIN Qiwen, LI Kun, SHI Anwen. Observations on the sedimentary structure of prehistoric rock avalanches on the Tibetan Plateau, China [J]. Earth Science Frontiers, 2021, 28(2): 106-124. |
[11] | LAI Zhongping, YANG Anna, CONG Lu, LIU Weiming, WANG Hao. A review on the dating techniques for mountain hazards-induced sediments [J]. Earth Science Frontiers, 2021, 28(2): 1-18. |
[12] | ZHANG Xiaolin, SU Peidong, SU Shaofan, MA Yunchang, YANG Feng. Quantitative study of shallow natural gas source in tunnels in the Longquanshan structural zone [J]. Earth Science Frontiers, 2020, 27(3): 262-268. |
[13] | LUO Hongdong,LI Ruidong,ZHANG Bo,CAO Bo. An early warning model system for predicting meteorological risk associated with geological disasters in the Longnan area, Gansu Province based on the information value method [J]. Earth Science Frontiers, 2019, 26(6): 289-297. |
[14] | . [J]. Earth Science Frontiers, 2017, 24(4): 102-111. |
[15] | . Quantitative evaluation of geological disaster liability based on RS & GIS analysis: A case study of Wufeng County, [J]. Earth Science Frontiers, 2012, 19(6): 221-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||