Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 388-401.DOI: 10.13745/j.esf.sf.2020.7.6
Previous Articles Next Articles
JI Liming1,2(), LI Jianfeng3, ZHANG Mingzhen1,2, HE Cong1, MA Bo1,4, JIN Peihong1
Received:
2020-05-01
Revised:
2020-05-28
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
JI Liming, LI Jianfeng, ZHANG Mingzhen, HE Cong, MA Bo, JIN Peihong. Effects of the lacustrine hydrothermal activity in the Yanchang period on the abundance and type of organic matter in source rocks in the Ordos Basin[J]. Earth Science Frontiers, 2021, 28(1): 388-401.
地层 | 参数相关指标 | S1/ (mg·g-1) | S2/ (mg·g-1) | (S1+S2)/ (mg·g-1) | PI | Tmax/℃ | S3/ (mg·g-1) | HI/ (mg·g-1) | OI/ (mg·g-1) | TOC含量 /% | w(S)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
长4+5 | 分布范围 | 0~0.08 | 0.19~1.84 | 0.19~1.92 | 0.01~0.04 | 442~453 | 0.15~0.47 | 21~163 | 58~67 | 0.7~1.11 | 0.05~0.07 |
均值(样品数) | 0.04(2) | 1.02(2) | 1.06(2) | 0.03(2) | 448(2) | 0.31(2) | 92(2) | 63(2) | 0.91(2) | 0.06(2) | |
长6 | 分布范围 | 0.01~5.24 | 0.14~81 | 0.15~86.24 | 0.01~0.19 | 433~447 | 0~0.54 | 10~470 | 11~110 | 0.47~17.84 | 0.05~6.39 |
均值(样品数) | 0.24(118) | 3.74(118) | 3.99(118) | 0.09(118) | 441(118) | 0.02(118) | 123(118) | 54(118) | 1.54(118) | 0.52(118) | |
长7-1+2 | 分布范围 | 0.02~2.54 | 0.36~34.77 | 0.39~37.31 | 0.04~0.17 | 434~447 | 0~0.37 | 52~528 | 6~63 | 0.52~6.59 | 0.01~4.97 |
均值(样品数) | 0.38(66) | 4.7(66) | 5.09(66) | 0.08(66) | 441(66) | 0.06(66) | 215(66) | 22(66) | 1.6(66) | 0.6(66) | |
长7-3 | 分布范围 | 0.02~16.22 | 0.08~130.62 | 0.1~146.84 | 0.05~0.29 | 428~451 | 0~0.42 | 16~716 | 6~69 | 0.5~29.91 | 0.02~9.55 |
均值(样品数) | 4.92(44) | 48.25(44) | 53.17(44) | 0.11(44) | 439(44) | 0.09(44) | 452(44) | 14(44) | 10.52(44) | 4.28(44) | |
长8 | 分布范围 | 0~3.16 | 0.03~57.99 | 0.03~61.15 | 0.03~0.67 | 440~462 | 0~0.36 | 1~600 | 4~132 | 0.37~12.68 | 0.02~3.34 |
均值(样品数) | 0.24(50) | 3.44(50) | 3.69(50) | 0.12(50) | 446(50) | 0.03(50) | 97(50) | 62(50) | 1.99(50) | 0.19(50) | |
长9 | 分布范围 | 0~2.57 | 0~56.22 | 0~58.79 | 0~1 | 438~464 | 0~4.77 | 0~557 | 2~143 | 0.08~18.11 | 0.01~1.22 |
均值(样品数) | 0.14(124) | 2.65(124) | 2.80(124) | 0.09(124) | 447(124) | 0.25(124) | 100(124) | 43(124) | 1.27(124) | 0.12(124) | |
长10 | 分布范围 | 0~0.06 | 0~0.07 | 0~0.08 | 0~1 | 0~0.59 | 0~20 | 5~124 | 0.04~0.45 | 0.04~0.4 | |
均值(样品数) | 0.01(14) | 0.01(14) | 0.02(14) | 0.42(14) | 0.19(14) | 4(14) | 46(14) | 0.12(14) | 0.16(14) |
Table 1 TOC contents and pyrolysis parameters of different members of the Yanchang Formation
地层 | 参数相关指标 | S1/ (mg·g-1) | S2/ (mg·g-1) | (S1+S2)/ (mg·g-1) | PI | Tmax/℃ | S3/ (mg·g-1) | HI/ (mg·g-1) | OI/ (mg·g-1) | TOC含量 /% | w(S)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
长4+5 | 分布范围 | 0~0.08 | 0.19~1.84 | 0.19~1.92 | 0.01~0.04 | 442~453 | 0.15~0.47 | 21~163 | 58~67 | 0.7~1.11 | 0.05~0.07 |
均值(样品数) | 0.04(2) | 1.02(2) | 1.06(2) | 0.03(2) | 448(2) | 0.31(2) | 92(2) | 63(2) | 0.91(2) | 0.06(2) | |
长6 | 分布范围 | 0.01~5.24 | 0.14~81 | 0.15~86.24 | 0.01~0.19 | 433~447 | 0~0.54 | 10~470 | 11~110 | 0.47~17.84 | 0.05~6.39 |
均值(样品数) | 0.24(118) | 3.74(118) | 3.99(118) | 0.09(118) | 441(118) | 0.02(118) | 123(118) | 54(118) | 1.54(118) | 0.52(118) | |
长7-1+2 | 分布范围 | 0.02~2.54 | 0.36~34.77 | 0.39~37.31 | 0.04~0.17 | 434~447 | 0~0.37 | 52~528 | 6~63 | 0.52~6.59 | 0.01~4.97 |
均值(样品数) | 0.38(66) | 4.7(66) | 5.09(66) | 0.08(66) | 441(66) | 0.06(66) | 215(66) | 22(66) | 1.6(66) | 0.6(66) | |
长7-3 | 分布范围 | 0.02~16.22 | 0.08~130.62 | 0.1~146.84 | 0.05~0.29 | 428~451 | 0~0.42 | 16~716 | 6~69 | 0.5~29.91 | 0.02~9.55 |
均值(样品数) | 4.92(44) | 48.25(44) | 53.17(44) | 0.11(44) | 439(44) | 0.09(44) | 452(44) | 14(44) | 10.52(44) | 4.28(44) | |
长8 | 分布范围 | 0~3.16 | 0.03~57.99 | 0.03~61.15 | 0.03~0.67 | 440~462 | 0~0.36 | 1~600 | 4~132 | 0.37~12.68 | 0.02~3.34 |
均值(样品数) | 0.24(50) | 3.44(50) | 3.69(50) | 0.12(50) | 446(50) | 0.03(50) | 97(50) | 62(50) | 1.99(50) | 0.19(50) | |
长9 | 分布范围 | 0~2.57 | 0~56.22 | 0~58.79 | 0~1 | 438~464 | 0~4.77 | 0~557 | 2~143 | 0.08~18.11 | 0.01~1.22 |
均值(样品数) | 0.14(124) | 2.65(124) | 2.80(124) | 0.09(124) | 447(124) | 0.25(124) | 100(124) | 43(124) | 1.27(124) | 0.12(124) | |
长10 | 分布范围 | 0~0.06 | 0~0.07 | 0~0.08 | 0~1 | 0~0.59 | 0~20 | 5~124 | 0.04~0.45 | 0.04~0.4 | |
均值(样品数) | 0.01(14) | 0.01(14) | 0.02(14) | 0.42(14) | 0.19(14) | 4(14) | 46(14) | 0.12(14) | 0.16(14) |
层位 | 参数相关指标 | 无定形有 机质相对 含量/% | 植物碎屑相对含量/% | 孢粉体 相对 含量/% | 藻类体 相对 含量/% | 各类型有机质频率/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
凝胶化颗粒 | 半透明木质 | 丝质体 | 角质体 | Ⅰ | Ⅱ1 | Ⅱ2 | Ⅲ | |||||
Ch 6 | 分布范围 | 0~75 | 8.3~42.7 | 6.2~47.5 | 2.1~17 | 0.9~11.8 | 0~6.3 | 0~0 | 0 | 26.3 | 21.1 | 52.6 |
均值(样品数) | 27.3(19) | 27.9(19) | 27.7(19) | 10.7(19) | 3.3(19) | 3.1(19) | 0(19) | |||||
Ch 7-1+2 | 分布范围 | 0~85.2 | 5~50 | 4~47.4 | 1~18.8 | 0~7.1 | 0~5.9 | 0~2 | 2.2 | 48.9 | 28.9 | 20 |
均值(样品数) | 48(45) | 22.3(45) | 17.1(45) | 8.4(45) | 2.5(45) | 1.7(45) | 0(45) | |||||
Ch 7-3 | 分布范围 | 2.6~91.9 | 1~38.7 | 2~33 | 1~19.8 | 0~3.9 | 0~6.1 | 0~81 | 40 | 52.5 | 5 | 2.5 |
均值(样品数) | 52.3(40) | 9(40) | 7.8(40) | 4.1(40) | 1(40) | 0.6(40) | 25.2(40) | |||||
Ch 8 | 分布范围 | 0~86.9 | 6.1~43.2 | 5.1~55.6 | 1~24 | 1~6.6 | 0~6.6 | 0~8 | 3 | 15.2 | 9.1 | 72.7 |
均值(样品数) | 20.7(33) | 28.6(33) | 33.2(33) | 12(33) | 3.1(33) | 2.2(33) | 0.2(33) | |||||
Ch 9 | 分布范围 | 0~92.9 | 1~47.5 | 2~54.9 | 1~45.1 | 0~12.4 | 0~11.3 | 0~12 | 2.6 | 21.1 | 13.2 | 63.2 |
均值(样品数) | 24.7(114) | 28.6(114) | 28.6(114) | 12.9(114) | 2.8(114) | 2.1(114) | 0.3(114) |
Table 2 Composition of organic debris and percent distribution of organic matter types
层位 | 参数相关指标 | 无定形有 机质相对 含量/% | 植物碎屑相对含量/% | 孢粉体 相对 含量/% | 藻类体 相对 含量/% | 各类型有机质频率/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
凝胶化颗粒 | 半透明木质 | 丝质体 | 角质体 | Ⅰ | Ⅱ1 | Ⅱ2 | Ⅲ | |||||
Ch 6 | 分布范围 | 0~75 | 8.3~42.7 | 6.2~47.5 | 2.1~17 | 0.9~11.8 | 0~6.3 | 0~0 | 0 | 26.3 | 21.1 | 52.6 |
均值(样品数) | 27.3(19) | 27.9(19) | 27.7(19) | 10.7(19) | 3.3(19) | 3.1(19) | 0(19) | |||||
Ch 7-1+2 | 分布范围 | 0~85.2 | 5~50 | 4~47.4 | 1~18.8 | 0~7.1 | 0~5.9 | 0~2 | 2.2 | 48.9 | 28.9 | 20 |
均值(样品数) | 48(45) | 22.3(45) | 17.1(45) | 8.4(45) | 2.5(45) | 1.7(45) | 0(45) | |||||
Ch 7-3 | 分布范围 | 2.6~91.9 | 1~38.7 | 2~33 | 1~19.8 | 0~3.9 | 0~6.1 | 0~81 | 40 | 52.5 | 5 | 2.5 |
均值(样品数) | 52.3(40) | 9(40) | 7.8(40) | 4.1(40) | 1(40) | 0.6(40) | 25.2(40) | |||||
Ch 8 | 分布范围 | 0~86.9 | 6.1~43.2 | 5.1~55.6 | 1~24 | 1~6.6 | 0~6.6 | 0~8 | 3 | 15.2 | 9.1 | 72.7 |
均值(样品数) | 20.7(33) | 28.6(33) | 33.2(33) | 12(33) | 3.1(33) | 2.2(33) | 0.2(33) | |||||
Ch 9 | 分布范围 | 0~92.9 | 1~47.5 | 2~54.9 | 1~45.1 | 0~12.4 | 0~11.3 | 0~12 | 2.6 | 21.1 | 13.2 | 63.2 |
均值(样品数) | 24.7(114) | 28.6(114) | 28.6(114) | 12.9(114) | 2.8(114) | 2.1(114) | 0.3(114) |
[1] | 长庆油田石油地质志编写组. 中国石油地质志: 卷12, 长庆油田[M]. 北京: 石油工业出版社, 1992: 8-145. |
[2] |
LIU C Y, HAO H G, ZHAO J F, et al. Temporo-spatial coordinates of evolution of the Ordos Basin and its mineralization responses[J]. Acta Geologica Sinica (English Edition), 2008, 82(6):1229-1243.
DOI URL |
[3] | 张文正, 杨华, 李剑锋, 等. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 强生排烃特征及机理分析[J]. 石油勘探与开发, 2006, 33(3):289-293. |
[4] | 杨华, 陈洪德, 付金华. 鄂尔多斯盆地晚三叠世沉积地质与油藏分布规律[M]. 北京: 科学出版社, 2012: 1-335. |
[5] |
YANG H, LIANG X W, NIU X B, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: a case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1):11-19.
DOI URL |
[6] |
XU Z J, LIU L F, WANG T G, et al. Characteristics and controlling factors of lacustrine tight oil reservoirs of the Triassic Yanchang Formation Chang 7 in the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 82:265-296.
DOI URL |
[7] |
JI L M, MENG F W. Palynology of Yanchang Formation of Middle and Late Triassic in eastern Gansu Province and its paleoclimatic significance[J]. Journal of China University of Geosciences, 2006, 17(3):209-220.
DOI URL |
[8] |
ZOU C N, ZHANG X Y, LUO P, et al. Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Basin Research, 2010, 22(1):108-125.
DOI URL |
[9] |
QIU X W, LIU C Y, MAO G Z, et al. Major, trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot shales in the Ordos Basin, Central China[J]. Applied Geochemistry, 2015, 53:42-52.
DOI URL |
[10] |
ZHANG M Z, JI L M, WU Y D, et al. Palynofacies and geochemical analysis of the Triassic Yanchang Formation, Ordos Basin: implications for hydrocarbon generation potential and the paleoenvironment of continental source rocks[J]. International Journal of Coal Geology, 2015, 152:159-176.
DOI URL |
[11] | 吉利明, 吴涛, 李林涛. 鄂尔多斯盆地西峰地区延长组烃源岩干酪根地球化学特征[J]. 石油勘探与开发, 2007, 34(3):424-428. |
[12] |
JI L M, YAN K, MENG F W, et al. The oleaginous Botryococcus from the Triassic Yanchang Formation in Ordos Basin, Northwestern China: morphology and its paleoenvironmental significance[J]. Journal of Asian Earth Sciences, 2010, 38(1):175-185.
DOI URL |
[13] |
JI L M, MENG F W, SCHIFFBAUER J D, et al. Correlation between highly abundant oil-prone Leiosphaerid acritarchs and hydrocarbon source rocks from the Triassic Yanchang Formation, eastern Gansu Province, northwestern China[J]. Gondwana Research, 2008, 14:554-560.
DOI URL |
[14] | 杨华, 张文正. 论鄂尔多斯盆地长7 段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2):147-154. |
[15] | CHEN Q H, LI W H, GAO Y X, et al. The deep-lake deposit in the Upper Triassic Yanchang Formation in Ordos Basin, China and its significance for oil-gas accumulation[J]. Science in China, D: Earth Sciences, 2007, 50(Suppl 2):47-58. |
[16] |
YANG H, ZHANG W Z, WU Kai, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4):285-293.
DOI URL |
[17] |
TANG X, ZHANG J C, WANG X Z, et al. Shale characteristics in the southeastern Ordos Basin, China: implications for hydrocarbon accumulation conditions and the potential of continental shales[J]. International Journal of Coal Geology, 2014, 128/129(3):32-46.
DOI URL |
[18] |
ZHANG W Z, YANG H, XIE L Q, et al. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: a case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4):424-429.
DOI URL |
[19] | 邱欣卫. 鄂尔多斯盆地延长期富烃凹陷特征及其形成的动力学环境[D]. 西安: 西北大学, 2011. |
[20] | 邱欣卫, 刘池洋. 鄂尔多斯盆地延长期湖盆充填类型与优质烃源岩的发育[J]. 地球学报, 2014, 35(1):101-110. |
[21] | 赵文智, 胡素云, 汪泽成, 等. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J]. 石油勘探与开发, 2003, 30(5):1-5. |
[22] |
NIJENHUIS I A, BOSCH H J, DAMSTE J S S, et al. Organic matter and trace element rich sapropels and black shales: a geochemical comparison[J]. Earth and Planetary Science Letters, 1999, 169(3/4):277-290.
DOI URL |
[23] | CHEN J F, SUN S L, LIU W H, et al. Geochemical characteristics of organic matter-rich strata of Lower Cambrian in Tarim Basin and its origin[J]. Science in China, D: Earth Sciences, 2004, 47(Suppl 2):125-132. |
[24] | 常海亮, 郑荣才, 郭春利, 等. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J]. 地质论评, 2016, 62(3):550-568. |
[25] | 李红, 柳益群, 张丽霞, 等. 准噶尔盆地东部中二叠统平地泉组具“斑状”结构热水喷流沉积岩的成因及地质意义[J]. 古地理学报, 2017, 19(2):211-226. |
[26] |
ZHANG S H, LIU C Y, LIANG H, et al. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China[J]. International Journal of Coal Geology, 2018, 185:44-60.
DOI URL |
[27] |
MEINHOLD G, HOWARD J P, STROGEN D, et al. Hydrocarbon source rock potential and elemental composition of Lower Silurian subsurface shales of the eastern Murzuq Basin, southern Libya[J]. Marine and Petroleum Geology, 2013, 48:224-246.
DOI URL |
[28] | ESPITALIE J, LAPORTE J L, MADEC M, et al. Rapid method for characterizing the source rocks, their petroleum potential and their degree of evolution[J]. Review of the French Petroleum Institute, 1977, 32:23-42. |
[29] | PETTERS K E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. AAPG Bulletin, 1986, 70:318-329. |
[30] | PETTERS K E, CASSA M R. Applied source rock geochemistry[J]. AAPG Memoir, 1994, 60:93-120. |
[31] |
BOSTRÖM K, PETERSON M N A, JOENSUU O, et al. Aluminum-poor ferromanganoan sediments on active oceanic ridges[J]. Journal of Geophysical Research, 1969, 74(12):3261-3270.
DOI URL |
[32] | RONA P A, BOSTRÖM K, LAUBIER L, et al. Hydrothermal processes at seafloor spreading centers[M]. New York: Plenum Press, 1983: 473-489. |
[33] |
MURRAY R W. Chemical-criteria to identify the depositional environment of chert: general principles and applications[J]. Sedimentary Geology, 1994, 90(3/4):213-232.
DOI URL |
[34] |
HE C, JI L M, WU Y D, et al. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, South Ordos Basin, China: evidence from element geochemistry[J]. Sedimentary Geology, 2016, 345:33-41.
DOI URL |
[35] |
BOSTRÖM K, KRAEMER T, GARTNER S. Provenace and accumulation rates of opaline silica, Al, Fe, Ti, Mn, Ni and Co in Pacific pelagic sediment[J]. Chemical Geology, 1973, 11(2):123-148.
DOI URL |
[36] | RONA P A. Hydrothermal mineralization at oceanic ridges[J]. Canadian Mineralogist, 1988, 26(3):431-465. |
[37] | QI H W, HU R Z, SU W C, et al. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: a study from the Lincang Ge deposit, Yunnan, China[J]. Science in China, D: Earth Sciences, 2004, 47(11):973-984. |
[38] | HUANG H, DU Y S, HUANG Z Q, et al. Depositional chemistry of chert during Late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin[J]. Science in China, D: Earth Sciences, 2013, 56(3):479-493. |
[39] |
ZHOU J G, YAO G S, DENG H Y, et al. Exploration potential of Chang 9 member, Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2008, 35(3):289-293.
DOI URL |
[40] | TYSON R V. Sedimentary organic matter: organic facies and palynofacies[M]. London: Chapman and Hall, 1995. |
[41] | 李建国, BATTEN D J. 孢粉相: 原理及方法[J]. 古生物学报, 2005, 44(1):138-156. |
[42] |
SEBAG D, COPARD Y, DI-GIOVANNI C, et al. Palynofacies as useful tool to study origins and transfers of particulate organic matter in recent terrestrial environments: synopsis and prospect[J]. Earth-Science Reviews, 2006, 79(3):241-259.
DOI URL |
[43] |
PACTON M, GORIN G E, VASCONCELOS C. Amorphous organic matter: experimental data on formation and the role of microbes[J]. Review of Palaeobotany and Palynology, 2011, 166(3):253-267.
DOI URL |
[44] |
ABǍRǍ D, PACTON M, MAKOU M, et al. Palynofacies and geochemical analysis of Oligo-Miocene bituminous rocks from the moldavidian domain (eastern carpathians, romania): implications for petroleum exploration[J]. Review of Palaeobotany and Palynology, 2015, 216(1):101-122.
DOI URL |
[45] |
GRAZ Y, DI-GIOVANNI C, COPARD Y, et al. Quantitative palynofacies analysis as a new tool to study transfers of fossil organic matter in recent terrestrial environments[J]. International Journal of Coal Geology, 2010, 84(1):49-62.
DOI URL |
[46] |
MUELLER S, VELD H, NAGY J, et al. Depositional history of the Upper Triassic Kapp Toscana Group on Svalbard, Norway, inferred from palynofacies analysis and organic geochemistry[J]. Sedimentary Geology, 2014, 310(8):16-29.
DOI URL |
[47] | 涂建琪, 孔庆芬, 费轩栋, 等. 透射光-荧光干酪根显微组分鉴定及类型划分方法: SY/T 5125—2014[S]. 北京: 石油工业出版社, 2015. |
[48] | 张淼, 陈清华, 徐金鲤. 东营凹陷沙河街组四段孢粉相特征及其生烃潜力[J]. 中国石油大学学报(自然科学版), 2011, 35(6):28-35. |
[49] |
TEWARI R, AWATAR R, PANDITA S K, et al. The Permian-Triassic palynological transition in the Guryul Ravine section, Kashmir, India: implications for Tethyan-Gondwanan correlations[J]. Earth-Science Reviews, 2015, 149:53-66.
DOI URL |
[50] |
LIU C L, WANG P X. The role of algal blooms in the formation of lacustrine petroleum source rocks: evidence from Jiyang depression, Bohai Gulf Rift Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388(15):15-22.
DOI URL |
[51] | TISSOT B P, WELTE D H. From kerogen to petroleum[M]//TISSOT B P, WELTE D H. Petroleum formation and occurrence. 2nd ed. Berlin: Springer, 1984: 160-198. |
[52] |
KARL D M, WIRSEN C O, JANNASCH H W. Deep-sea primary production at the Galapagos hydrothermal vents[J]. Science, 1980, 207:1345-1347.
DOI URL |
[53] |
HE C, JI L M, SU A, et al. Source-rock evaluation and depositional environment of black shales in the Triassic Yanchang Formation, southern Ordos Basin, north-central China[J]. Journal of Petroleum Science and Engineering, 2019, 173:899-911.
DOI URL |
[1] | KANG Huan, CHEN Yuelong, LI Dapeng, ZHANG Huiping, YANG Yi, XUE Guoliang, LIU Wei. Late Triassic Mg andesite of Juluotage, eastern Tianshan: Identification and tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 358-370. |
[2] | LIU Baoshan, CHENG Zhaoxun, KOU Linlin, DENG Changzhou, YANG Xiaoping, ZHANG Chunpeng, LI Chenglu, HAN Renping. Late Triassic magmatic activity in Duobaoshan area, Heilongjiang Province: Response to the southward subduction of the Mongol-Okhotsk Ocean [J]. Earth Science Frontiers, 2022, 29(2): 132-145. |
[3] | LI Wenlong, YANG Xiaoping, QIAN Cheng, LI Chenglu, LÜ Mingqi, CHENG Zhaoxun, WANG Lijia. Composition of the Fukeshan magmatic arc in the northern Great Xing’an Range: Constraints on the southward subduction of the Mongol-Okhotsk oceanic plate [J]. Earth Science Frontiers, 2022, 29(2): 146-163. |
[4] | XIE Guiqing, MAO Jingwen, ZHANG Changqing, LI Wei, SONG Shiwei, ZHANG Rongqing. Triassic deposits in South China: Geological characteristics, ore-forming mechanism and ore deposit model [J]. Earth Science Frontiers, 2021, 28(3): 252-270. |
[5] | RUAN Zhuang, LUO Zhong, YU Bingsong, LU Yuanzheng, XIE Haochen, YANG Zhihui. Middle-Late Triassic basin prototype and tectonic paleographic response in the Ordos Basin [J]. Earth Science Frontiers, 2021, 28(1): 12-21. |
[6] | LU Liwu, TAN Kai, WANG Xi. Redescription of Eochondrosteus sinensis (Acipenseriformes, Actinopterygii) and its geological age [J]. Earth Science Frontiers, 2020, 27(6): 371-381. |
[7] | CHEN Zehan, ZHANG Jia, ZHAO Zhidan, HAO Sen, ZHANG Liqiang, CAO Yuanbao. Petrogeochemistry and geochronology of biotite monzonitic granites in the Horqin Right Front Banner area, Inner Mongolia and the geological significance [J]. Earth Science Frontiers, 2020, 27(4): 172-183. |
[8] | WANG Denghong, CHEN Yuchuan, JIANG Biao, HUANG Fan, WANG Yan, LI Huaqin, HOU Kejun. Preliminary study on the Triassic continental mineralization system in China [J]. Earth Science Frontiers, 2020, 27(2): 45-59. |
[9] | . The intrusion-related gold deposits in the XiaheHezuo district, West Qinling Orogen: geodynamic setting and exploration potential. [J]. Earth Science Frontiers, 2019, 26(5): 17-32. |
[10] | CHEN Guochao,PEI Xianzhi,LI Ruibao,LI Zuochen,PEI Lei,LIU Chengjun,CHEN Youxin,WANG Meng,GAO Feng,LI Xiaobing. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons [J]. Earth Science Frontiers, 2019, 26(4): 191-208. |
[11] | BAO Hongping,SHAO Dongbo,HAO Songli,ZHANG Guisong,RUAN Zhengzhong,LIU Gang,OUYANG Zhengjian. Basement structure and evolution of early sedimentary cover of the Ordos Basin [J]. Earth Science Frontiers, 2019, 26(1): 33-43. |
[12] | ZHANG Chunyu,GUAN Shuwei,WU Lin,REN Rong. Hydrothermal activity and depositional model of the Yurtus Formation in the Early Cambrian, NW Tarim, China [J]. Earth Science Frontiers, 2019, 26(1): 202-211. |
[13] | XIAO Meng,YUAN Xuanjun,WU Songtao,CAO Zhenglin,TANG Yong,XIE Zongrui,WANG Ruiju. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu sag, Junggar Basin [J]. Earth Science Frontiers, 2019, 26(1): 212-224. |
[14] | ZENG Pusheng,WANG Yanbin,MA Jing,WANG Zhaoquan,WEN Ligang. Diachronous collision-closure of the Jinshajiang paleo-ocean basin in the Yangla area: constraints from ages of the granites. [J]. Earth Science Frontiers, 2018, 25(6): 92-105. |
[15] | LI Xueren, WANG Jian. New evidence for the Late Triassic synrifting in the eastern North Qiangtang depression: redefination of the stratigraphic age of volcanic rocks and conglomerates from the Jiapila Formation. [J]. Earth Science Frontiers, 2018, 25(4): 50-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||