Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 165-198.DOI: 10.13745/j.esf.sf.2020.6.24
Previous Articles Next Articles
XI Dangpeng1,2(), TANG Zihua3, WANG Xuejiao1, QIN Zuohuan1, CAO Wenxin1,4, JIANG Tian1, WU Baoxu1, LI Yuanhao1, ZHANG Yingyue1, JIANG Wenbin1, KAMRAN Muhammad1, FANG Xiaomin5, WAN Xiaoqiao1
Received:
2020-07-22
Revised:
2020-08-28
Online:
2020-11-02
Published:
2020-11-02
CLC Number:
XI Dangpeng, TANG Zihua, WANG Xuejiao, QIN Zuohuan, CAO Wenxin, JIANG Tian, WU Baoxu, LI Yuanhao, ZHANG Yingyue, JIANG Wenbin, KAMRAN Muhammad, FANG Xiaomin, WAN Xiaoqiao. The Cretaceous-Paleogene marine stratigraphic framework that records significant geological events in the western Tarim Basin[J]. Earth Science Frontiers, 2020, 27(6): 165-198.
Fig.15 Stratigraphic correlation between the western Tarim Basin and its peripheral basins (Data completion is in progress). Blue and yellow colors indicate marine and terrestrial strata, respectively.
Fig.16 From Left to Right: Sea level change in the western Tarim Basin, global sea level (blue graph after [136-137], red after[138]) and temperature (graph modified after[10] for from mid-Cretaceous to Oligocene) changes, and corresponding important geological events
Fig.17 The PETM event layer in the Bashibulake (A, modified from[81] and with the indicated PETM position slightly lowered) and Kuzigongsu (B, modified from[166]) sections of the Western Tarim Basin
Fig.19 Comprehensive study of PETM events in the Qimugen Formation, western Tarim Basin. Calcareous nannofossils data modified from[81]; foraminifera data modified from[82]; and ostracod data modified from[123].
[1] | 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21. |
[2] | 江湉, 贾建忠, 邓丽君, 等. 古近纪重大气候事件及其生物响应[J]. 地质科技情报, 2012, 31(3): 31-38. |
[3] | 胡修棉. 东特提斯洋晚中生代—古近纪重大事件研究进展[J]. 自然杂志, 2015, 37(2): 93-102. |
[4] | 丁林, SATYBAEV M, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学:地球科学, 2017, 47(3): 293-309. |
[5] | 郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学: 地球科学, 2017, 47(4): 421-437. |
[6] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292: 686-693.
DOI URL |
[7] |
ZACHOS J C, WARA M W, BOHATY S, et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocenethermal maximum[J]. Science, 2003, 302: 1551-1554.
DOI URL |
[8] | SKELTON P W, SPICER R A, KELLEY S P, et al. The Cretaceous world[M]. Cambridge: Cambridge University Press, 2003: 1-360. |
[9] | WANG C S, ZHAO X X, LIU Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 13(105): 4987-4992. |
[10] |
HUBER B T, MACLEOD K G, WATKINS D K, et al. The rise and fall of the Cretaceous Hot Greenhouse climate[J]. Global and Planetary Change, 2018, 167: 1-23.
DOI URL |
[11] | MILLER K G, BROWNING J V, SCHMELZ W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346. |
[12] | 郝诒纯, 曾学鲁, 李汉敏. 塔里木盆地西部晚白垩世—第三纪地层及有孔虫[J]. 地质研究, 1982, 1(2): 1-142. |
[13] | 唐天福, 杨恒仁, 蓝琇, 等. 新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M]. 北京: 科学出版社, 1989: 1-153. |
[14] | 胡修棉, 李娟, 安慰, 等. 藏南白垩纪—古近纪岩石地层厘定与构造地层划分[J]. 地学前缘, 2017, 24(1): 174-194. |
[15] | 席党鹏, 万晓樵, 李国彪, 等. 中国白垩纪综合地层和时间框架[J]. 中国科学:地球科学, 2019, 49(1): 257-288. |
[16] | 王元青, 李茜, 白滨, 等. 中国古近纪综合地层和时间框架[J]. 中国科学:地球科学, 2019, 49(1): 289-314. |
[17] | 李国彪, 王天洋, 李新发, 等. 西藏特提斯喜马拉雅海相白垩纪—古近纪生物地层与重大地质事件研究进展[J]. 地学前缘, 2020, 27(6): 144-164. |
[18] | CHEN P J,ERIKN. Postpaleozoic stratigraphy paleogeography and tectonic evolution of the Tarim Basin, Xinjiang, NW China[J]. Palaeoworld, 2002, 14: 1-48. |
[19] |
WAN X Q, JIANG T, ZHANG Y Y, et al. Palaeogene marine stratigraphy in China[J]. Lethaia, 2014, 47(3): 297-308.
DOI URL |
[20] | 许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22. |
[21] | 郝诒纯, 郭宪璞, 叶留生, 等. 塔里木盆地西南地区海相白垩系-第三系界线[M]. 北京: 地质出版社, 2001: 1-108. |
[22] | 唐天福. 新疆塔里木盆地西部晚白垩世至早第三纪海相沉积特征及沉积环境[M]. 北京: 科学出版社, 1992: 1-138 |
[23] | 周志毅, 陈丕基. 塔里木生物地层和地质演化[M]. 北京: 科学出版社, 1990: 1-374. |
[24] | 周志毅. 塔里木盆地各纪地层[M]. 北京: 科学出版社, 2001: 1-359. |
[25] | 孙东怀, 王鑫, 李宝锋, 等. 新生代特提斯海演化过程及其内陆干旱化效应研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 135-151. |
[26] | 孙继敏, 刘卫国, 柳中晖, 等. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊, 2017, 32(9): 951-958. |
[27] |
YIN A, BUTLER R, COWGILL E, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114: 1257-1295.
DOI URL |
[28] | POPOV S, ROGL F, ROZANOV A, et al. Lithological-paleogeographic maps of Parathys, 10 Maps Late Eocene to Pliocene[J]. Courier Forschungsinstitut Senckenberg, 2004, 250: 1-46. |
[29] |
BOSBOOM R E E, DUPONT-NIVET G, HOUBEN A J P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398.
DOI URL |
[30] |
BOSBOOM R E, DUPONT-NIVET G, GROTHE A, et al. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403: 101-118.
DOI URL |
[31] |
BOSBOOM R E, DUPONT-NIVET G, GROTHE A, et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene[J]. Basin Research, 2014, 26: 621-640.
DOI URL |
[32] |
BOSBOOM R E, DUPONT-NIVET G, HUANG W T, et al. Oligocene clockwise rotations along the eastern Pamir: tectonic and paleogeographic implications[J]. Tectonics, 2014, 33: 53-66.
DOI URL |
[33] | XI D P, CAO W X, CHEN Y, et al. Late Cretaceous biostratigraphy and sea-level change in the southwest Tarim Basin[J]. Palaeogrography, Palaeoclimate, Palaeoecology, 2016, 414: 516-527 |
[34] |
SUN J M, WINDLEY B F, ZHANG Z, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231.
DOI URL |
[35] |
WANG X, SUN D H, CHEN F H, et al. Cenozoic paleo-environmental evolution of the Pamir-Tien Shan convergence zone[J]. Journal of Asian Earth Sciences, 2014, 80: 84-100.
DOI URL |
[36] |
TANG Z H, DONG X X, WANG X, et al. Oligocene-Miocene magnetostratigraphy and magnetic anisotropy of the Baxbulak section from the Pamir-Tian Shan convergence zone[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(10): 3575-3592.
DOI URL |
[37] |
ZHANG Q H, DING L, KITAJIMA K, et al. Constraining the magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum using larger benthic foraminifera[J]. Global and Planetary Change, 2020, 184: 103049
DOI URL |
[38] | 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. |
[39] | LI J G, LIN M Q, WU Y, et al. New biostratigraphic framework for the Triassic-Paleogene in the Neo-Tethys realm of southern Xizang (Tibet), China[J]. Journal of Asian Earth Sciences, 2020: 104369. |
[40] |
NORIN E. Tertiary of the Tarim Basin[J]. Bulletin of the Geological Society of China, 1935, 14(3): 337-347.
DOI URL |
[41] | СИНИЦЫН В М. Северо-западная часть Таримского бассейна. Изд.Наук, AH CCCP, 1957. |
[42] | 新疆维吾尔自治区区域地层表编写组. 西北地区区域地层表新疆维吾尔自治区分册[M]. 北京: 地质出版社, 1981: 1-496. |
[43] | 郝诒纯, 曾学鲁. 新疆喀什地区第三纪有孔虫组合及沉积环境的初步分析[C]//中国微体古生物学会第一次学术会论文选集. 1979: 6-14. |
[44] | 郝诒纯, 曾学鲁. 从有孔虫的特征探讨中新生代西塔里木古海湾的演变[J]. 微体古生物学报, 1984, 1(1): 1-18. |
[45] | 郝诒纯, 关绍曾, 叶留生, 等. 塔里木盆地西部地区新近纪地层及古地理特征[J]. 地质学报, 2002, 76(3): 289-298. |
[46] | 茅绍智, NOEEIS G. 新疆塔里木盆地西部晚白垩世—早第三纪的沟鞭藻及疑源类[J]. 地球科学: 中国地质大学学报, 1984, 35(2): 7-22. |
[47] | MAO S Z, NORRIS G. Late Cretaceous-early Tertiary dinoflagellates and acritarchs from the Kashi area, Tarim Basin, Xinjiang Province, China[J]. Life Science Contributions(Royal Ontario Museum), 1988, 150: 1-93 |
[48] | 唐天福, 杨恒仁, 胡兰英, 等. 塔里木盆地西部晚白垩世—早第三纪海相地层及沉积环境初探[M]. 北京: 科学出版社, 1982: 117-126. |
[49] | 钟石兰. 新疆塔里木盆地西部晚白垩世至早第三纪钙质超微化石(颗石藻类)[M]. 北京: 科学出版社, 1992: 1-121 |
[50] | 张一勇, 詹家祯. 新疆塔里木盆地西部晚白垩世至早第三纪孢粉[M]. 北京: 科学出版社, 1991: 1-319 |
[51] | 潘华璋, 魏景明, 杨子荣. 新疆塔里木盆地西部晚白垩世至早第三纪腹足类、海胆和腕足类[M]. 北京: 科学出版社, 1991: 1-150. |
[52] | 何承全. 新疆塔里木盆地西部晚白垩世至早第三纪沟鞭藻及其他藻类群[M]. 北京: 科学出版社, 1991: 1-235. |
[53] | 蓝琇, 魏景明. 新疆塔里木盆地西部晚白垩世至早第三纪双壳类动物群[M]. 北京: 科学出版社, 1995: 1-212. |
[54] | 杨恒仁, 蒋显庭, 林树鑿. 新疆塔里木盆地西部晚白垩世至早第三纪介形类动物群[M]. 北京: 科学出版社, 1995: 1-173 |
[55] | 雍天寿. 早第三纪岩相古地理概貌[J]. 石油实验地质, 1984, 6(1): 9-17. |
[56] | 雍天寿, 单金榜, 魏景明, 等. 古特提斯海北支塔里木古海湾岩相古地理[M]. 北京: 科学出版社, 1989: 1-156. |
[57] | 宋天锐. 塔里木盆地及邻区第三纪沉积岩系发育的探讨[J]. 地质论评, 1982, 28(4): 317-325. |
[58] | 新疆石油管理局地质调查处, 新疆地质局区域测量大队. 西北地区古生物图册新疆维吾尔自治区分册(三)[M]. 北京: 地质出版社, 1984: 1-211 |
[59] | 叶得泉, 钟筱春. 中国北方含油气区白垩系[M]. 北京: 石油工业出版社, 1990: 1-354 |
[60] | 郭宪璞. 塔里木盆地西部海相白垩系—第三系界线划分的研究[J]. 地球科学: 中国地质大学学报, 1990, 15(3): 325-335. |
[61] | 郭宪璞. 新疆克孜勒苏群的沉积环境探讨:兼论塔里木盆地在西部白垩系最低海相层位[J]. 地质学报, 1991, 65(2): 188-198. |
[62] | 郭宪璞. 塔里木盆地西部白垩纪—古新世有孔虫群落的划分及其环境意义[J]. 地球学报, 1995, 20(1): 77-86. |
[63] | 郭宪璞, 彭阳, 丁孝忠. 化石群落与层序地层的耦合关系研究: 以塔里木盆地西部中新生代有孔虫群落与层序地层关系研究为例[J]. 地质通报, 2002, 21(7): 377-383. |
[64] | 郭宪璞, 叶留生, 李汉敏, 等. 塔里木盆地白垩纪地层对比及格架[J]. 中国西部油气地质, 2006, 2(2): 140-146. |
[65] | 贾承造, 张师本, 伍绍祖, 等. 塔里木盆地及周边地层[M]. 北京: 科学出版社, 2004: 1-547 |
[66] | 薛莲花, 陈国俊, 王琪, 等. 塔里木盆地K2-E旋回层序与海平面变化[J]. 沉积学报, 1998, 16(3): 66-71. |
[67] | 邵龙义, 何志平, 顾家裕, 等. 塔里木盆地古近纪岩相古地理[J]. 古地理学报, 2006, 8(3): 353-364 |
[68] |
SCOTT R W, WAN X Q, SHA J G, et al. Rudists of Tibet and the Tarim basin, China: significance to requieniidae phylogeny[J]. Journal of Paleontology, 2010, 84(3): 444-465.
DOI URL |
[69] | 张华, 刘成林, 曹养同, 等. 塔里木古海湾新生代海退时限及方式的初步探讨[J]. 地球学报, 2013, 34(5): 577-584 |
[70] | 李建锋, 赵越, 裴军令, 等. 塔里木盆地新生代海相沉积问题[J]. 地质力学学报, 2017, 23(1): 141-149. |
[71] | 林旭, 程钰瑞, 冯一帆, 等. 塔西南盆地海退时间及其形成机制研究[J]. 海洋地质与第四纪地质, 2019, 39(3): 84-93. |
[72] | 岳勇, 田景春, 赵应权. 塔里木盆地西南部皮山北新1井角砾岩的地层归属、成因及油气勘探意义[J]. 地球科学, 2019, 44(11): 3894-3909. |
[73] |
ZHENG H B, TADA R, JIA J T, et al., Cenozoic sediments in the southern Tarim Basin: implications for the uplift of northern Tibet and evolution of the Taklimakan Desert[J]. Geological Society, London, Special Publications, 2010, 342(1): 67-78.
DOI URL |
[74] |
SUN J M, JIANG M S. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau[J]. Tectonophysics, 2013, 588: 27-38.
DOI URL |
[75] |
SUN J M, GONG Z J, TIAN Z H, et al. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 48-59.
DOI URL |
[76] | ZHENG H B, WEI X C, TADA R, et al. Late Oligocene-early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7662-7667. |
[77] |
ZHANG S J, HU X M, ZHONG H, et al. Climatic and tectonic controls on Cretaceous-Palaeogene sea-level changes recorded in the Tarim epicontinental sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 501: 92-110.
DOI URL |
[78] | ZHANG S J, HU X M, GARZANTI E, et al. Paleocene initial indentation and early growth of the Pamir as recorded in the western Tarim Basin[J]. Tectonophysics, 2019, 772. https://doi.org/10.1016/j.tecto.2019.228207. |
[79] |
KAYA M Y, GUILLAUME D, PIERRICK R, et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma[J]. Basin Research, 2019, 31(3): 461-486.
DOI URL |
[80] |
CHEN X W, CHEN H L, LIN X B, et al. Arcuate Pamir in the Paleogene?Insights from a review of stratigraphy and sedimentology of the basin fills in the foreland of NE Chinese Pamir, western Tarim Basin[J]. Earth-Science Reviews, 2018, 180: 1-16.
DOI URL |
[81] |
CAO W C, XI D P, JIANG T, et al. Calcareous nannofossil changes linked to climate deterioration during the paleocene-Eocene thermal Maximum in the Tarim basin, NW China[J]. Geoscience Frontiers, 2018, 9(5): 1465-1478.
DOI URL |
[82] |
JIANG T, WAN X Q, AITCHISON J C, et al. Foraminiferal response to the PETM recorded in the SW Tarim Basin, central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506: 217-225.
DOI URL |
[83] |
LV D W, SONG Y, SHI L Q, et al. The complex transgression and regression history of the northern margin of the Palaeogene Tarim Sea (NW China), and implications for potential hydrocarbon occurrences[J]. Marine and Petroleum Geology, 2020, 112: 104041.
DOI URL |
[84] | 席党鹏, 曹文心, 杨雪, 等. 塔里木盆地西部白垩纪—古近纪生物地层及古新世/始新世界线[C]// 中国古生物学会.中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集. 北京: 中国古生物学会, 2018: 153-154. |
[85] | 李伟, 胡修棉, MELINTE-DOBRINESCU M C, 等. 塔里木海齐姆根剖面早古近纪极热事件及其环境效应[J]. 科学通报, 2020. https://doi.org/10.1360/TB-2020-0292. |
[86] |
CARRAPA B, DECELLES P, WANG X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth and Planetary Science Letters, 2015, 424: 168-178.
DOI URL |
[87] | WANG X, WEI H T, TAHERI M, et al. Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences[J]. Scientific Report, 2016, 6(1): 20560. |
[88] |
WANG X, CARRAPA B, CHAPMAN J B, et al. Parathethys last gasp in central Asia and late Oligocene accelerated uplift of the Pamirs[J]. Geophysical Research Letters, 2019, 46(21): 11773-11781.
DOI URL |
[89] |
CHAPMAN J, CARRAPA B, DECELLES P G, et al. The Tajik Basin: a composite record of sedimentary basin evolution in response to tectonics in the Pamir[J]. Basin Research, 2020, 32(3): 525-545.
DOI URL |
[90] | SUN J M, ZHANG Z L, CAO M M, et al. Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 1-15. |
[91] | 贾承造, 魏国齐. 塔里木盆地构造特征与含油气性[J]. 科学通报, 2002, 47(增刊1): 1-8. |
[92] |
ZHANG Q H, WENDLER I, XU X X, et al. Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum[J]. Gondwana Research, 2017, 46: 114-123.
DOI URL |
[93] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Science, 2000, 28: 211-280.
DOI URL |
[94] |
BURTMAN V S. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene[J]. Tectonophysics, 2000, 319(2): 69-92
DOI URL |
[95] |
BAZHENOV M L, BURTMAN V S. Eocene paleomagnetism of the Caucasus (southwest Georgia): oroclinal bending in the Arabian syntaxis[J]. Tectonophysics, 2002, 344(3): 247-259.
DOI URL |
[96] | SOBEL E R, CHEN J, HEERMANCE R V. Late Oligocene-Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations[J]. Earthand Planetary Science Letters, 2006, 247(1/2): 70-81. |
[97] | ROGL F. Mediterranean and paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview)[J]. Geologica Carpathica, 2013, 50(4): 339-349 |
[98] |
SCHULZ H M, BECHTEL A, SACHSENHOFER R F. The birth of the Paratethys during the Early Oligocene: from Tethys to an ancient Black Sea analogue?[J]. Global and Planetary Change, 2005, 49(3/4): 163-176.
DOI URL |
[99] | BA’LDI T. The terminal Eocene and Early Oligocene events in Hungary and the separation of an anoxic, cold Paratethys[J]. Eclogae Geologicae Helvetiae, 1984, 77: 1-27. |
[100] | SCOTESE C R. Map folio 15, Paleocene, Danian & Thanetian, 60.6 Ma[M]//PALEOMAP PaleoAtlas for ArcGIS (Cenozoic, PALEOMAP project, Evanston, IL). Texas, University of Texas Press, 2013: 1-17. |
[101] | 郝诒纯, 曾学鲁, 郭宪璞. 新疆塔里木盆地西部海相白垩系及其沉积环境探讨[J]. 地质学报, 1987, 61(3): 205-217. |
[102] | 江德昕, 王永栋, 何卓生, 等. 新疆塔里木盆地早白垩世克孜勒苏群孢粉组合[J]. 微体古生物学报, 2006, 23(4): 371-391. |
[103] | 新疆维吾尔自治区地质矿产局. 岩石地层新疆维吾尔自治区岩石地层[M]. 中国地质大学出版社, 1999: 1-430. |
[104] | 郑家坚, 何希贤, 刘淑文. 中国地层典:第三系[M]. 北京: 地质出版社, 1999: 1-163 |
[105] | 樊晓鹏. 塔里木盆地西部克里阳剖面古近纪有孔虫生物地层及特提斯海退事件[D]. 北京: 中国地质大学(北京), 2018. |
[106] | LAN X. Paleogene bivalve communities in the western Tarim Basin and their paleoenvironmental implications[J]. Paleoworld, 1997, 7: 137-157. |
[107] | 郭宪璞, 丁孝忠, 赵子然, 等. 塔里木盆地西南地区晚白垩世中晚期海相性南北分异研究[J]. 地质论评, 2018, 64(05): 1078-1086. |
[108] |
WADE, PEARSON, PAUL N, et al. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale[J]. Earth-Science Reviews, 2010, 104(1): 111-142.
DOI URL |
[109] |
WADE B S, PEARSON P N. Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania[J]. Marine Micropaleontology, 2008, 68(3): 244-255.
DOI URL |
[110] |
MOLINA E. Evidence and causes of the main extinction events in the Paleogene based on extinction and survival patterns of foraminifera[J]. Earth-Science Reviews, 2015, 140: 166-181.
DOI URL |
[111] | 蒋显庭. 新疆地层及介形类化石[M]. 北京: 地质出版社, 1995: 1-577 |
[112] | 张倩. 塔里木盆地西部巴什布拉克剖面晚始新世—早渐新世介形类化石及其对海退事件的约束[D]. 北京: 中国地质大学(北京), 2017. |
[113] | 张文平. 塔里木盆地西部阿克彻依剖面晚白垩世介形虫生物地层[D]. 北京: 中国地质大学(北京), 2017. |
[114] | 王力. 塔里木盆地西部巴什布拉克剖面介形虫化石及对PETM事件的响应[D]. 北京: 中国地质大学(北京),2020. |
[115] | YASUHARA M, HONG Y Y, TIAN S Y S. et al. Eocene shallow-marine ostracods from Madagascar: southern end of the Tethys?[J]. Palaeontology, 2018, 17: 705-757. |
[116] |
WANG T Y, LI G B, AITCHISON J C, et al. Eocene ostracods from southern Tibet: implications for the disappearance of Neo-Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 539: 109488.
DOI URL |
[117] | 钟石兰. 新疆塔里木盆地西部白垩系库克拜组的颗石藻[J]. 微体古生物学报, 1981(2): 201- 206, 223-224. |
[118] | 钟石兰. 新疆塔里木盆地西部巴什布拉克组颗石藻类化石组合及其地层意义[J]. 古生物学报, 1989(1): 109- 116, 145-146. |
[119] | 郝诒纯, 苏新. 塔里木盆地西部晚白垩世钙质超微化石[J]. 现代地质, 1982(3): 305-314. |
[120] | 杨雪. 塔里木盆地西部阿克彻依剖面晚白垩世钙质超微生物地层[D]. 北京: 中国地质大学(北京), 2018. |
[121] | 孙燕琪. 塔里木盆地西部阿尔塔什剖面乌拉根组钙质超微古生物地层及对特提斯海退时间的约束[D]. 北京: 中国地质大学(北京), 2019. |
[122] | 郝诒纯, 苏新, 郭宪璞, 等. 塔北库车前陆盆地晚白垩世钙质超微化石的首次发现[J]. 现代地质, 2000, 14(3): 246-392. |
[123] |
OKADA H, BUKRY D. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975)[J]. Marine Micropaleontology, 1980, 5: 321-325.
DOI URL |
[124] | MARTINI E. Standard Tertiary and Quaternary calcareous nannoplankton zonation[J]. Fannacci A, eds: Proceedings of the second planktonic confrences, Roma: Edizioni Tecnoscienza, 1971: 739-785. |
[125] | 何承全. 塔里木盆地西部晚白垩世-始新世微体浮游植物的几个新属[J]. 古生物学报, 23(6): 768-774. |
[126] | 李源辉. 塔里木盆地西南地区晚白垩世双壳类生物地层和古生态、古环境[D]. 北京: 中国地质大学(北京), 2016. |
[127] | 熊昕. 塔里木盆地西部古近纪双壳类生物地层及古生态环境:来自斯姆哈纳和巴什布拉克剖面的证据[D]. 北京: 中国地质大学(北京), 2019. |
[128] | OGG J, HINNOV L. The Cretaceous Period[M]//GRADSTEIN F, OGG J G, SCHMITZ M. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 793-855. |
[129] | VANDENBERGHE N, HILGEN F, SPEIJER R, et al. The Paleogene Period[M]//GRADSTEIN F, OGG J G, SCHMITZ M. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 856-921. |
[130] | 朱毅秀, 刘洛夫. 南塔吉克盆地油气地质特征[J]. 新疆石油地质, 2007, 28(2): 257-261. |
[131] | 张丽媛, 刘瑛, 卜晓阳, 等. 费尔干纳盆地巴特肯地区混合沉积的特征及成因[J]. 科技导报, 2016, 34(18): 209-220. |
[132] | 苏新, 郭宪璞, 丁孝忠. 塔里木北部库车前陆盆地晚白垩世和古新世的钙质超微化石组合[J]. 现代地质, 2003, 17(4): 370-377. |
[133] | 祝幼华, 赵媛媛, 钟石兰. 塔里木盆地库车坳陷小库孜拜剖面古近纪钙质超微化石[J]. 古生物学报, 2012, 51(3): 328-333. |
[134] | 中国地层委员会. 中国地层表[M]. 北京: 地质出版社, 2015. |
[135] | 文世宣. 喀喇昆仑山—昆仑山地区古生物[M]. 北京: 科学出版社, 1997: 1-365. |
[136] |
HAQ B U. Cretaceous eustasy revisited[J]. Glob Planet Change, 2014, 113: 44-58
DOI URL |
[137] |
HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235: 1156-1167
DOI URL |
[138] |
KOMINZ M A, BROWNING J V, MILLER K G, et al. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis[J]. Basin Research, 2008, 20(2): 211-226
DOI URL |
[139] | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
[140] | 贾建忠, 万晓樵, 张翼翼, 等. 白垩纪中期海相富有机碳沉积的地球生物学背景[J]. 地学前缘, 2009, 16(5): 143-152. |
[141] | 郭宪璞, 姚培毅. 新疆塔里木盆地西部发现中白垩世缺氧事件[J]. 地质论评, 1995, 41(6): 552, 577. |
[142] | 魏引杰. 塔里木盆地西部白垩纪OAE2大洋缺氧事件[D]. 兰州: 兰州大学, 2010. |
[143] | 宋春晖, 张曼, 魏引杰, 等. 塔里木盆地西北缘白垩纪大洋缺氧事件(OAE2)[J]. 地球环境学报, 2011, 2(4): 541-548. |
[144] |
ALVAREZ L W, ALVAREZ W, ASARO F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction[J]. Science, 1980, 208: 1095-1108
DOI URL |
[145] |
SCHULTE P, ALEGRET L, ARENILLAS I, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary[J]. Science, 2010, 327: 1214-1218.
DOI URL |
[146] | 沈树忠, 张华. 什么引起五次生物大灭绝?[J]. 科学通报, 2017, 62(11): 1119-1135. |
[147] | 郭宪璞, 郝诒纯, 叶留生, 等. 新疆塔西南区海相白垩系-第三系界线的地球化学异常[J]. 现代地质, 2000, 14(3): 348-354. |
[148] |
MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310: 1293-1298.
DOI URL |
[149] | 孟昌. 塔里木盆地西缘乌恰地区白垩纪-古近纪界线研究[D]. 兰州: 兰州大学, 2010. |
[150] | 叶得泉, 钟筱春, 唐文松, 等. 稳定同位素地层学和事件地层学在白垩系-第三系界线划分中的应用[J]. 微体古生物学报, 1994, 11(2): 141-152. |
[151] | 许靖华. 古海荒漠: 科学史上大发现[M]. 北京: 生活·读书·新知三联出版社, 2009: 1-215. |
[152] |
KRIJGSMAN W, STOICA M, VASILIEV I, et al. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis[J]. Earth and Planetary Science Letters, 2010, 290(1/2): 183-191.
DOI URL |
[153] | 高超, 曹养同, 刘成林, 等. 塔里木盆地西南凹陷古新统巨厚海相石膏岩沉积特征及环境意义[J]. 矿床地质, 2016, 35(6): 1217-1229. |
[154] | 张华, 刘成林, 焦鹏程, 等. 塔西南坳陷古新统蒸发岩沉积条件及成因模式初探[J]. 地质学报, 2015, 89(11): 2028-2035. |
[155] | 陈祚伶, 丁仲礼. 古新世—始新世极热事件研究进展[J]. 第四纪研究, 2011, 31(6): 937-950. |
[156] | 王成善, 王天天, 陈曦, 等. 深时古气候对未来气候变化的启示[J]. 地学前缘, 2017, 24(1): 1-17. |
[157] |
KENNETT J P, STOTT L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene[J]. Nature, 1991, 353(6341): 225-229.
DOI URL |
[158] |
CARMICHAEL M J, INGLIS G N, BADGER M P S. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum[J]. Global and Planetary Change, 2017, 157: 114-138.
DOI URL |
[159] |
BOWEN G J, CLYDE W C, KOCH P L, et al. Mammalian dispersal at the Paleocene/Eocene boundary[J]. Science, 2002, 295(5562): 2062-2065.
DOI URL |
[160] |
SPEIJER R P, MORSI A M M. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum[J]. Geology, 2002, 30: 23-26.
DOI URL |
[161] |
GIBBS S J, BOWN P R, SESSA J A, et al. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum[J]. Science, 2006, 314(5806): 1770-1773.
DOI URL |
[162] |
MCINERNEY F A, WING S L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 489-516
DOI URL |
[163] |
FRIELING J, REICHART G, MIDDELBURG J, et al. Tropical Atlantic climate and ecosystem regime shifts during the Paleocene-Eocene Thermal Maximum[J]. Climate of the Past, 2018, 14: 39-55.
DOI URL |
[164] |
ZACHOS J C, SCHOUTEN S, BOHATY S. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: inferences from TEX86 and isotope data[J]. Geology, 2006, 34(9): 737-740
DOI URL |
[165] | 曹文心. 塔里木盆地西部古近纪钙质超微浮游生物及其对古新世—始新世极热事件(PETM)的响应[D]. 北京: 中国地质大学(北京), 2018. |
[166] | 王冠男. 塔里木盆地西部库孜贡苏剖面齐姆根组有孔虫生物地层及其对PETM事件的响应[D]. 北京: 中国地质大学(北京), 2019. |
[167] |
AUBRY M P, OUDA K, DUPUIS C, et al. The Global Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt)[J]. Episodes, 2007, 30(4): 271-286.
DOI URL |
[168] | 胡修棉, 李娟, 韩中, 等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学:地球科学, 2020, 50(8): 1023-1043. |
[169] |
RIFF B, YUE Z, GRAHAM S, et al. From sea level to high elevation in 15 million years: uplift history of the northern Tibetan plateau margin in the Altun shan[J]. American Journal of Science, 2008, 308: 657-678.
DOI URL |
[170] |
DUPONT N, KRIJGSMAN W, LANGEREIS C, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(8): 635-638.
DOI URL |
[171] |
ZHANG Z S, WANG H, GUO Z T, et al. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?[J], Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3): 317-331.
DOI URL |
[1] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[2] | SUN Zhiwen, JIA Yonggang, QUAN Yongzheng, GUO Xiujun, LIU Tao, MENG Qingsheng, SUN Zhongqiang, LI Kai, FAN Zhihan, CHEN Tian, TANG Haoru. Development and application of long-term in situ monitoring system for complex deep-sea engineering geology [J]. Earth Science Frontiers, 2022, 29(5): 216-228. |
[3] | CHEN Tian, JIA Yonggang, LIU Tao, LIU Xiaolei, SHAN Hongxian, SUN Zhongqiang. Long-term in situ observation of pore pressure in marine sediments: A review of technology development and future outlooks [J]. Earth Science Frontiers, 2022, 29(5): 229-245. |
[4] | ZHANG Xiao, ZHANG Xu. Two types of millennial-scale climate oscillations during the last Quaternary and their triggering mechanism [J]. Earth Science Frontiers, 2022, 29(5): 322-333. |
[5] | WANG Genjiu, SONG Xinmin, LIU Bo, SHI Kaibo, LIU Hangyu. High permeability zone of Cretaceous porous carbonate reservoir of A Field, Iraq: Genesis and distribution characteristics [J]. Earth Science Frontiers, 2022, 29(5): 483-496. |
[6] | ZOU Jianjun, ZONG Xian, ZHU Aimei, DOU Ruxi, LIN Jinhui, FENG Xuguang, DONG Zhi, Sergey A. GORBARENKO, ZHENG Liwei, SHI Xuefa. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: Paleoceanographic implications [J]. Earth Science Frontiers, 2022, 29(4): 123-135. |
[7] | JIA Yonggang, RUAN Wenfeng, HU Naili, QIAO Yue, LI Zhenghui, HU Cong. Hydrate dissociation on the northern slope of the South China Sea: Potential effects from climate warming in the current warm period [J]. Earth Science Frontiers, 2022, 29(4): 191-201. |
[8] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[9] | YANG Ziyang, REN Denglong, HE Zhipeng, LI Xuegang, SONG Jinming, YUAN Huamao, DUAN Liqin, LI Ning, ZHANG Qian. Exploring biomineralization in the tropical western Pacific sediments based on phospholipid fatty acid analysis [J]. Earth Science Frontiers, 2022, 29(4): 93-102. |
[10] | LI Wangpeng, LI Huili, WANG Yi, LIU Shaofeng, ZHANG Zhongpei, YANG Weili, CAI Xiyao, QIAN Tao, LI Xiaojian. Neoproterozoic glaciations in Yecheng area, southwestern margin of the Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 356-380. |
[11] | SUN Ying, ZHOU Jinlong, YANG Fangyuan, JI Yuanyuan, ZENG Yanyan. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin [J]. Earth Science Frontiers, 2022, 29(3): 99-114. |
[12] | FU Shun, ZHAO Yingquan, WANG Jinjun, YU Yu, ZHU Yingtang, FU Xingzhe. Continent-continent collision at the southwestern margin of the Cretaceous Qiangtang terrane: Constraints from granite in the western Bangong-Nujiang Suture Zone [J]. Earth Science Frontiers, 2022, 29(2): 416-430. |
[13] | YU Xiaocan, LIU Chenglin, WANG Chunlian, XU Haiming, ZHAO Yanjun, HUANG Hua, LI Ruiqin. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review [J]. Earth Science Frontiers, 2022, 29(1): 107-123. |
[14] | TANG Yu, WANG Genhou, FENG Yipeng, CI Dan, LI Dian, FAN Zhengzhe, GAO Xi, WEI Yufei, HU Jixin, ZHANG Peilie. Tectonostratigraphic properties and evolution of the Yeba volcanic arc in South Gangdese, Tibet [J]. Earth Science Frontiers, 2022, 29(1): 285-302. |
[15] | ZHANG Yongsheng, ZHENG Mianping. Metallogenic models of potassium ore deposits in China and demonstration of deep exploration technology [J]. Earth Science Frontiers, 2021, 28(6): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||