Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 249-260.DOI: 10.13745/j.esf.sf.2020.5.23
Previous Articles Next Articles
SHI Zhensheng(), WU Jin, DONG Dazhong, SUN Shasha, GUO Changmin, LI Guizhong
Received:
2019-12-05
Revised:
2020-05-19
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
SHI Zhensheng, WU Jin, DONG Dazhong, SUN Shasha, GUO Changmin, LI Guizhong. Pore types and pore size distribution of the typical Wufeng-Lungmachi shale wells in the Sichuan Basin, China[J]. Earth Science Frontiers, 2021, 28(1): 249-260.
Fig.6 Number percentage (a) and plane porosity (b) for different pore types, and number percentage (c) and porosity (d) for different pore sizes for the Wufeng-Lungmachi Wuxi-2 well
[1] |
ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoir[J]. Marine and Petroleum Geology, 2009, 26:916-927.
DOI URL |
[2] |
SLATT R M, O’BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12):2017-2030.
DOI URL |
[3] |
MONTGOMERY S L, JARVIE D M, BOWKER K A, et al. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin, 2005, 89(2):155-175.
DOI URL |
[4] |
CHALMERS G R L, BUSTIN R M. A multidisciplinary approach in determining the maceral (kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation: impact on pore development and pore size distribution[J]. International Journal of Coal Geology, 2017, 171:93-110.
DOI URL |
[5] |
MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2):177-200.
DOI URL |
[6] | 刘文平, 张成林, 高贵冬, 等. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 2017, 38(2):175-184. |
[7] |
MATHIA E J, BOWEN L, THOMAS K M, et al. Evolution of porosity and pore type in organic-rich, calcareous, lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75:117-139.
DOI URL |
[8] |
KATZ B J, ARANGO I. Organic porosity: a geochemist’s view of the current state of understanding[J]. Organic Geochemistry, 2018, 123:1-16.
DOI URL |
[9] | 徐洁, 陶辉飞, 陈科, 等. 过成熟页岩在半封闭热模拟实验中孔隙结构的演化特征[J]. 地球科学, 2019, 44(11):3736-3748. |
[10] |
CHEN Z, JIANG C. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data: example of Duvernay Formation in western Canada sedimentary basin[J]. AAPG Bulletin, 2016, 100(3):405-422.
DOI URL |
[11] |
LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87, 119-132.
DOI URL |
[12] |
POMMER M, MILLIKEN K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9):1713-1744.
DOI URL |
[13] |
CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103:26-31.
DOI URL |
[14] | 张廷山, 杨洋, 龚其森, 等. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报, 2014, 88(9):1728-1740. |
[15] |
MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississipian New Albany shale across a maturation gradient: insight from organic petrology, gas absorption and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10):1621-1643.
DOI URL |
[16] | 王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(4):764-768. |
[17] | 邱振, 邹才能. 非常规油气沉积学: 内涵与展望[J]. 沉积学报, 2020, 38(1):1-29. |
[18] |
KO L T, LOUCKS R G, ZHANG T, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11):1693-1722.
DOI URL |
[19] |
VELDE B. Compaction trends of clay-rich deep sea sediments[J]. Marine Geology, 1996, 133(3/4):193-201.
DOI URL |
[20] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(60):1071-1098.
DOI URL |
[21] |
KLAVER J, DESBOIS G, URAL J L, et al. BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany[J]. International Journal of Coal Geology, 2012, 103:12-25.
DOI URL |
[22] |
ZARGARI S, CANTER K L, PRASAD M. Porosity evolution in oil-prone source rocks[J]. Fuel, 2015, 153:110-117.
DOI URL |
[23] | MILLIKEN K L, REED R M. Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud, Nankai accretionary prism, IODP Expedition 316[J]. Journal of Structural Geology, 2010, 31:1887-1898. |
[24] |
APLIN A C, MACQUAKER J H S. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12):2031-2059.
DOI URL |
[25] |
LARSEN J W, LI S. Changes in the macromolecular structure of a Type 1 kerogen during maturation[J]. Energy & Fuels, 1997, 11:897-901.
DOI URL |
[26] |
WANG Q, WANG T, LIU W, et al. Relationships among composition, porosity and permeability of Longmaxi shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 102:33-47.
DOI URL |
[27] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4):561-574. |
[28] | 武瑾, 梁峰, 吝文, 等. 渝东北地区巫溪2井五峰组—龙马溪组页岩气储层及含气性特征[J]. 石油学报, 2017, 38(5):512-524. |
[29] | 杨锐, 何生, 胡东风, 等. 焦石坝地区五峰组—龙马溪组页岩孔隙结构特征及其主控因素[J]. 地质科技情报, 2015, 34(5):105-113. |
[30] | 苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法: 以JY-1井为例[J]. 石油学报, 2018, 39(11):1253-1261. |
[31] | 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔孔隙结构差异性[J]. 石油与天然气地质, 2018, 39(3):472-484. |
[32] |
ZHOU S W, YAN G, XUE H Q, et al. 2D and 3D nanopore characterization of gas shale in Longmaxi Formation based on FIB-SEM[J]. Marine and Petroleum Geology, 2016, 73:174-180.
DOI URL |
[33] | 刘宝珺, 许效松, 潘杏南, 等. 中国南方古大陆沉积地壳演化与成矿[M]. 北京: 科学出版社, 1993: 1-134. |
[34] | 张元动, 陈旭. 奥陶纪笔石动物的多样性演变与环境背景[J]. 中国科学D辑: 地球科学, 2008, 38(1):10-21. |
[35] | 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018, 45(2):339-348. |
[36] |
IUPAC. Physical chemistry division commission on colloid and surface chemistry, Subcommittee on characterization of porous solids: recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8):1739-1758.
DOI URL |
[37] | 郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6):9-16. |
[38] | 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地样品五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1):69-78. |
[39] | RINE J M, SMART E, DORSEY W, et al. Comparison of porosity distribution within selected North American shale units by SEM examination of argon-ion-milled samples[G]//CAMP W, DIAZ E, WAWAK B. Electron microscopy of shale hydrocarbon reservoirs. AAPG Memoir, 2013, 102:137-152. |
[40] | 刘尧文, 王进, 张梦吟, 等. 四川盆地涪陵地区五峰—龙马溪组页岩气层孔隙特征及对开发的启示[J]. 石油实验地质, 2018, 40(1):44-47. |
[41] |
MILLIKEN K L, CURTIS M E. Imaging pores in sedimentary rocks: foundation of porosity prediction[J]. Marine and Petroleum Geology, 2016, 73:590-608.
DOI URL |
[42] | 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4):226-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||