地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 178-194.DOI: 10.13745/j.esf.sf.2024.00.00
• 南海北部天然气水物储层精细评价及实验模拟技术 • 上一篇 下一篇
余路1(), 李贤1, 崔国栋2, 邢东辉1, 陆红锋1,*(
), 王烨嘉3,*(
)
收稿日期:
2024-05-10
修回日期:
2024-10-15
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*陆红锋(1976—),男,教授级高级工程师,主要从事天然气水合物与海洋地质方面的研究。E-mail:lhongfeng@mail.cgs.gov.cn;王烨嘉(1983—),男,工程师,主要从事海洋经济方面的研究。E-mail:13929552723@139.com
作者简介:
余 路(1994—),男,工程师,主要从事天然气水合物开发实验、数值模拟研究。E-mail:yulu@mail.cgs.gov.cn
基金资助:
YU Lu1(), LI Xian1, CUI Guodong2, XING Donghui1, LU Hongfeng1,*(
), WANG Yejia3,*(
)
Received:
2024-05-10
Revised:
2024-10-15
Online:
2025-03-25
Published:
2025-03-25
摘要:
南海北部神狐海域水合物资源丰富,具有工业性开发远景。勘查和试采结果均表明,该区域水合物系统多为Ⅰ型水合物藏,水合物层下伏游离气层,泥质含量高,储层渗流存在启动压力梯度,极大地影响水合物系统生产动态。本文针对南海泥质粉砂储层中水合物开发实际渗流过程,建立考虑启动压力梯度的渗流数学模型,在TOUGH+HYDRATE模拟器基础上自主开发了启动压力梯度耦合求解功能,以神狐海域SHSC-4井站位水合物藏为目标,利用室内实验所得目标储层启动压力值,开展了垂直井及水平井降压开采数值模拟,探究了南海神狐海域泥质粉砂水合物藏启动压力梯度对产能及开采过程中储层压力、温度、各相饱和度分布演化规律的影响。结果表明,启动压力梯度的存在抑制储层中的压降扩散,远井处水合物无法分解。生产中出现“低产水量,高气水比”现象,水平井开采后期几乎无水产出。启动压力的存在可避免水合物分解前缘出现二次水合物,消除二次水合物棱镜体对气相的圈闭。尽管抑制远井水合物分解,但10年模拟结果显示启动压力梯度的存在可以促进Ⅰ型水合物藏的产能,尤其在直井开采下,产能可提高近40%,这是由于液相产出的减少及储层高压力梯度增强了生产井前期对三相混合层和游离气层中气相抽汲能力。
中图分类号:
余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194.
YU Lu, LI Xian, CUI Guodong, XING Donghui, LU Hongfeng, WANG Yejia. The impact of threshold pressure gradient on the production dynamics of gas hydrate reservoirs in the northern South China Sea[J]. Earth Science Frontiers, 2025, 32(2): 178-194.
图1 南海北部构造单元划分及天然气水合物试采区位置(据文献[17,58])
Fig.1 Geological units in the northern South China Sea and the location of the hydrate production test area. Adapted from [17,58].
图2 试采井SHSC-4的地震剖面特征及地质模型(据文献[17])
Fig.2 Seismic section characteristics of the production test well SHSC4 and the geological model for methane hydrate production. Adapted from [17].
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
上覆层厚度/m | 31 | 水合物层厚度/m | 35 |
三相混合层厚度/m | 15 | 游离气层厚度/m | 27 |
下伏层厚度/m | 32 | 上覆层水饱和度 | 1 |
上覆层孔隙度 | 0.3 | 上覆层渗透率/mD | 0.1 |
水合物层水合物饱和度 | 0.34 | 水合物层水饱和度 | 0.66 |
水合物层孔隙度 | 0.35 | 水合物层渗透率/mD | 2.9 |
三相混合层水合物饱和度 | 0.31 | 三相混合层气饱和度 | 0.15 |
三相混合层水饱和度 | 0.54 | 三相混合层孔隙度 | 0.33 |
三相混合层渗透率/mD | 1.5 | 游离气层气饱和度 | 0.078 |
游离气层水饱和度 | 0.912 | 游离气层孔隙度 | 0.32 |
游离气层渗透率/mD | 7.4 | 下伏层水饱和度 | 1 |
下伏层孔隙度 | 0.3 | 下伏层渗透率/mD | 0.1 |
孔隙水盐度 | 3% | 储层压缩系数/Pa-1 | 1×10-8 |
骨架密度/(kg·m-3) | 2 650 | 饱和水储层热传导率/(W·m-1·℃-1) | 3.1 |
干样储层热传导率/(W·m-1·℃-1) | 1.0 | 骨架比热/(J·kg-1·℃-1) | 1 000 |
表1 水合物藏地质模型物理参数表 (据文献[17,59])
Table 1 Physical parameters of the geological model for gas hydrate reservoirs. Adapted from [17,59].
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
上覆层厚度/m | 31 | 水合物层厚度/m | 35 |
三相混合层厚度/m | 15 | 游离气层厚度/m | 27 |
下伏层厚度/m | 32 | 上覆层水饱和度 | 1 |
上覆层孔隙度 | 0.3 | 上覆层渗透率/mD | 0.1 |
水合物层水合物饱和度 | 0.34 | 水合物层水饱和度 | 0.66 |
水合物层孔隙度 | 0.35 | 水合物层渗透率/mD | 2.9 |
三相混合层水合物饱和度 | 0.31 | 三相混合层气饱和度 | 0.15 |
三相混合层水饱和度 | 0.54 | 三相混合层孔隙度 | 0.33 |
三相混合层渗透率/mD | 1.5 | 游离气层气饱和度 | 0.078 |
游离气层水饱和度 | 0.912 | 游离气层孔隙度 | 0.32 |
游离气层渗透率/mD | 7.4 | 下伏层水饱和度 | 1 |
下伏层孔隙度 | 0.3 | 下伏层渗透率/mD | 0.1 |
孔隙水盐度 | 3% | 储层压缩系数/Pa-1 | 1×10-8 |
骨架密度/(kg·m-3) | 2 650 | 饱和水储层热传导率/(W·m-1·℃-1) | 3.1 |
干样储层热传导率/(W·m-1·℃-1) | 1.0 | 骨架比热/(J·kg-1·℃-1) | 1 000 |
图18 水平井启动压力对储层温度演化分布的影响 a—未考虑启动压力;b—考虑启动压力。
Fig.18 Evolution of reservoir temperature distribution in horizontal wells: (a) without TPG, (b) with TPG.
[1] | SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-359. |
[2] | CHONG Z R, YANG S H B, BABU P, et al. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. |
[3] | CHERSKIY N V, TSAREV V, NIKITIN S. Investigation and prediction of conditions of accumulation of gas resources in gas-hydrate pools[J]. Petroleum Geology, 1985, 21: 65-89. |
[4] | DALLIMORE S, UCHIDA T, COLLETT T. Scientific results from JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada[J]. Bulletin of the Geological Survey of Canada, 1999, 544: 295-311. |
[5] | LIU C L, MENG Q G, HE X L, et al. Comparison of the characteristics for natural gas hydrate recovered from marine and terrestrial areas in China[J]. Journal of Geochemical Exploration, 2015, 152: 67-74. |
[6] | SOLOVIEV V A. Global estimation of gas content in submarine gas hydrate accumulations[J]. Geologiya i Geofizika, 2002, 43(7): 648-661. |
[7] | PIÑERO E, MARQUARDT M, HENSEN C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions[J]. Biogeosciences, 2013, 10(2): 959-975. |
[8] | KLAUDA J B, SANDLER S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470. |
[9] | MORIDIS G J, SLOAN E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. |
[10] | XIA Z Z, HOU J, LIU Y G, et al. Production characteristic investigation of the Class Ⅰ, Class Ⅱ and Class Ⅲ hydrate reservoirs developed by the depressurization and thermal stimulation combined method[J]. Journal of Petroleum Science and Engineering, 2017, 157: 56-67. |
[11] | LI S X, LI S, ZHENG R Y, et al. Strategies for gas production from Class 2 hydrate accumulations by depressurization[J]. Fuel, 2021, 286: 119380. |
[12] | MORIDIS G J, REAGAN M T, KIM S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal, 2007, 14(4): 759-781. |
[13] | WANG X J, COLLETT T S, LEE M W, et al. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea[J]. Marine Geology, 2014, 357: 272-292. |
[14] | SU M, YANG R, WANG H B, et al. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gas-hydrate petroleum system[J]. Geologica Acta, 2016, 14(2): 79-100. |
[15] | SU M, SHA Z B, ZHANG C M, et al. Types, characteristics and significances of migrating pathways of gas-bearing fluids in the shenhu area, northern continental slope of the South China Sea[J]. Acta Geologica Sinica(English Edition), 2017, 91(1): 219-231. |
[16] | 张伟, 梁金强, 陆敬安, 等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680. |
[17] | LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. |
[18] | YANG L, YE J L, QIN X W, et al. Effects of the seepage capability of overlying and underlying strata of marine hydrate system on depressurization-induced hydrate production behaviors by horizontal well[J]. Marine and Petroleum Geology, 2021, 128: 105019. |
[19] | 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. |
[20] | TREHU A M, LONG P E, TORRES M E, et al. Three-dimensional distribution of gas hydrate beneath southern hydrate ridge: constraints from ODP leg 204[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 845-862. |
[21] | UCHIDA T, TAKEYA S, CHUVILIN E M, et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): 1-12. |
[22] | LU H L, KAWASAKI T, UKITA T, et al. Particle size effect on the saturation of methane hydrate in sediments-Constrained from experimental results[J]. Marine and Petroleum Geology, 2011, 28(10): 1801-1805. |
[23] | 张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3): 388-397. |
[24] | YU L, ZHANG L, ZHANG R, et al. Assessment of natural gas production from hydrate-bearing sediments with unconsolidated argillaceous siltstones via a controlled sandout method[J]. Energy, 2018, 160: 654-667. |
[25] | TORRES M E, TRÉHU A M, CESPEDES N, et al. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 170-180. |
[26] | GINSBURG G, SOLOVIEV V, MATVEEVA T, et al. Sediment grain-size control on gas hydrate presence, Sites 994, 995, and 997[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 164: 237-245. |
[27] | BEHSERESHT J, BRYANT S L. Sedimentological control on saturation distribution in Arctic gas-hydrate-bearing sands[J]. Earth and Planetary Science Letters, 2012, 341: 114-127. |
[28] | DALLIMORE S R, COLLETT T S. Intrapermafrost gas hydrates from a deep core hole in the Mackenzie Delta, Northwest Territories, Canada[J]. Geology, 1995, 23(6): 527. |
[29] | BAHK J J, KIM D H, CHUN J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from second ulleung basin gas hydrate drilling expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 21-29. |
[30] | LEE J Y, KIM G Y, KANG N K, et al. Physical properties of sediments from the ulleung basin, East Sea: results from second ulleung basin gas hydrate drilling expedition, East Sea (Korea)[J]. Marine and Petroleum Geology, 2013, 47: 43-55. |
[31] | BOSWELL R, COLLETT T S, FRYE M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. |
[32] | YANG S X, ZHANG H Q, WU N Y, et al. High concentration hydrate in disseminated forms obtained in Shenhu area, North Slope of South China Sea[C]// Proceedings of the 6th international conference on gas hydrates(ICGH). Vancouver: ICGH, 2008. DOI: 10.14288/1.0041052. |
[33] | 陈芳, 周洋, 苏新, 等. 南海神狐海域含水合物层粒度变化及与水合物饱和度的关系[J]. 海洋地质与第四纪地质, 2011, 31(5): 95-100. |
[34] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学: 中国地质大学学报, 2013, 38(5): 907-915. |
[35] | WU N Y, ZHANG H Q, YANG S X, et al. Gas hydrate system of shenhu area, northern South China Sea: geochemical results[J]. Journal of Geological Research, 2011, 2011: 370298. |
[36] | LIU C L, YE Y G, MENG Q G, et al. The characteristics of gas hydrates recovered from Shenhu area in the South China Sea[J]. Marine Geology, 2012, 307: 22-27. |
[37] | PRADA A, CIVAN F. Modification of Darcy’s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering, 1999, 22(4): 237-240. |
[38] | DENG Y E, XIE H P, HUANG R Q, et al. Law of nonlinear flow in saturated clays and radial consolidation[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1427-1436. |
[39] | MITCHELL J K. Fundamentals of soil behavior[M]. New York: Wiley, 1976. |
[40] | LEI G, LIAO Q Z, PATIL S, et al. Effect of clay content on permeability behavior of argillaceous porous media under stress dependence: a theoretical and experimental work[J]. Journal of Petroleum Science and Engineering, 2019, 179: 787-795. |
[41] | CAI J C, XIA Y X, LU C, et al. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir[J]. Marine and Petroleum Geology, 2020, 115: 104282. |
[42] | 谷任国, 房营光. 极细颗粒黏土渗流离子效应的试验研究[J]. 岩土力学, 2009, 30(6): 1595-1598, 1603. |
[43] | 王秀艳, 刘长礼. 对粘性土孔隙水渗流规律本质的新认识[J]. 地球学报, 2003, 24(1): 91-95. |
[44] | 陈舟, 钱家忠, 姜常让, 等. 多孔介质地下水非达西渗流研究进展[J]. 合肥工业大学学报(自然科学版), 2008, 31(10): 1539-1543. |
[45] | MILLER R J, LOW P F. Threshold gradient for water flow in clay systems[J]. Soil Science Society of America Journal, 1963, 27(6): 605-609. |
[46] | WU D, BRANTSON E T, JU B S. Numerical simulation of water alternating gas flooding (WAG) using CO2 for high-salt argillaceous dolomite reservoir considering the impact of stress sensitivity and threshold pressure gradient[J]. Acta Geophysica, 2021, 69(4): 1349-1365. |
[47] | LIU W G, WU Z R, LI J J, et al. The seepage characteristics of methane hydrate-bearing clayey sediments under various pressure gradients[J]. Energy, 2020, 191: 116507. |
[48] | 王晓冬, 郝明强, 韩永新. 启动压力梯度的含义与应用[J]. 石油学报, 2013, 34(1): 188-191. |
[49] | БАСНИЕВ K C. Underground fluid dynamics[M]. Beijing: Petroleum Industry Press, 1992. |
[50] | 赵益忠, 程远方, 刘钰川, 等. 启动压力梯度对低渗透油藏微观渗流及开发动态的影响[J]. 油气地质与采收率, 2013, 20(1): 67-69, 73, 115. |
[51] | 何逸凡, 石洪福, 刘英宪. 基于启动压力梯度等效表征的低渗透油藏数值模拟[J]. 断块油气田, 2017, 24(4): 510-513. |
[52] | WANG X K, SHENG J J. Effect of low-velocity non-Darcy flow on well production performance in shale and tight oil reservoirs[J]. Fuel, 2017, 190: 41-46. |
[53] | CIVAN F. Modeling gas flow through hydraulically-fractured shale-gas reservoirs involving molecular-to-inertial transport regimes and threshold-pressure gradient[C]// Proceedings of the SPE annual technical conference and exhibition. New Orleans: SPE, 2013: SPE166324. |
[54] | NING B, XIANG Z P, LIU X S, et al. Production prediction method of horizontal wells in tight gas reservoirs considering threshold pressure gradient and stress sensitivity[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106750. |
[55] | 姜瑞忠, 倪庆东, 张春光, 等. 基于应力敏感的稠油油藏变启动压力梯度渗流模型与数值模拟研究[J]. 油气地质与采收率, 2021, 28(6): 54-62. |
[56] | WEI J G, ZHOU X F, ZHOU J M, et al. Recovery efficiency of tight oil reservoirs with different injection fluids: an experimental investigation of oil-water distribution feature[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107678. |
[57] | LU C, QIN X W, MA C, et al. Investigation of the impact of threshold pressure gradient on gas production from hydrate deposits[J]. Fuel, 2022, 319: 123569. |
[58] |
杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.
DOI |
[59] | QIN X W, LIANG Q Y, YE J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea[J]. Applied Energy, 2020, 278: 115649. |
[1] | 杨金秀, 王琛, 邢兰昌, 魏伟, 张伟, 韩维峰, 赵丽, 刘坤一. 海域天然气水合物相关的流体运移及海底甲烷渗漏研究[J]. 地学前缘, 2025, 32(2): 113-125. |
[2] | 姬梦飞, 王吉亮, 王伟巍, 张杰城, 刘雪芹, 吴时国. 神狐海域细粒沉积物水合物储层的地球物理特征研究[J]. 地学前缘, 2025, 32(2): 126-139. |
[3] | 梁晨, 姜涛, 匡增桂, 胡亦潘, 杨承志, 任金锋, 赖洪飞. 琼东南盆地天然气水合物储层沉积时间及成因机制[J]. 地学前缘, 2025, 32(2): 140-152. |
[4] | 管文, 杨海琳, 卢海龙. 多孔介质中天然气水合物相平衡影响因素研究[J]. 地学前缘, 2025, 32(2): 153-165. |
[5] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
[6] | 王秀娟, 韩磊, 刘俊州, 靳佳澎, 匡增桂, 周吉林. 天然气水合物与游离气共存的地球物理特征与识别[J]. 地学前缘, 2025, 32(2): 20-35. |
[7] | 吴能友, 李彦龙, 蒋宇静, 孙金声, 谢文卫, 胡高伟, 王韧, 于彦江, 王金堂, 陈强, 申凯翔, 孙志文, 陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望[J]. 地学前缘, 2025, 32(2): 216-229. |
[8] | 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 2025, 32(2): 36-60. |
[9] | 靳佳澎, 王秀娟, 邓炜, 李清平, 李丽霞, 余晗, 周吉林, 吴能友. 南海北部多类型天然气水合物成藏特征与赋存差异[J]. 地学前缘, 2025, 32(2): 61-76. |
[10] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[11] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[12] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[13] | 王家昊, 胡修棉, 蒋璟鑫, 马超, 马鹏飞. 重建南海27 Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘, 2024, 31(1): 500-510. |
[14] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
[15] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||