

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 328-341.DOI: 10.13745/j.esf.sf.2025.10.16
郭华明1,2(
), 高志鹏1,2, 胡雅璐1, 邢世平1, 李遥1, 蒋小伟1, 彭建兵3
收稿日期:2025-06-10
修回日期:2025-09-09
出版日期:2026-11-25
发布日期:2025-11-10
作者简介:郭华明(1975—),男,教授,博士生导师,从事水文地质学方面的教学与科研工作。E-mail: hmguo@cugb.edu.cn
基金资助:
GUO Huaming1,2(
), GAO Zhipeng1,2, HU Yalu1, XING Shiping1, LI Yao1, JIANG Xiaowei1, PENG Jianbing3
Received:2025-06-10
Revised:2025-09-09
Online:2026-11-25
Published:2025-11-10
摘要:
作为“亚洲水塔”的青藏高原,其地下水对于维持长江、黄河、雅鲁藏布江、怒江、澜沧江等亚洲大江大河的流量稳定、保障区域生态系统健康、确保数亿人口用水安全具有不可替代的作用。然而,相对于地表水和冰川-冻土,青藏高原地下水研究十分薄弱。少数研究利用GRACE卫星数据反演,量化了地下水储量变化的发展趋势;部分研究揭示了冻融条件下局部区域地下水动态特征及生态环境效应。本文在对相关文献进行系统梳理的基础上,总结了青藏高原地下水类型及分布和地下水利用现状,粗略估算了地下水储量和地下水资源量,揭示了冰川-冻土特殊环境下地下水-地表水相互作用规律。最后,提出了青藏高原地下水研究存在的主要科学问题,包括浅表固态-液态水转化通量和机制、青藏高原地下水循环深度、青藏高原地下水储量及其变化机制。这些科学问题的解决将提升对特殊气象水文、剧烈起伏地形地貌、复杂地质构造和水文地质条件下地下水赋存规律、循环特征及水热耦合过程等理论认识,进一步丰富水文地质学的理论体系。
中图分类号:
郭华明, 高志鹏, 胡雅璐, 邢世平, 李遥, 蒋小伟, 彭建兵. 青藏高原地下水研究现状及主要科学问题[J]. 地学前缘, 2026, 33(1): 328-341.
GUO Huaming, GAO Zhipeng, HU Yalu, XING Shiping, LI Yao, JIANG Xiaowei, PENG Jianbing. Groundwater research in the Tibetan Plateau: Current understanding and key knowledge gaps[J]. Earth Science Frontiers, 2026, 33(1): 328-341.
图3 我国西藏(a)和青海(b)2008—2024年生活用水供水总量、地下水供水量以及地下水供水量(据文献[52]补充修改)
Fig.3 Total domestic water supply and groundwater supply in Tibet (a) and Qinghai (b) of China from 2008 to 2024. Modified after [52].
图5 青藏高原地下水在陆地水储量、水资源总量、河流径流量中的重要作用
Fig.5 The important role of groundwater on the Tibetan Plateau in terrestrial water storage, total water resources, and river runoff
| [1] | WANG L, YAO T, CHAI C, et al. TP-River: Monitoring and Quantifying Total River Runoff from the Third Pole[J]. Bulletin of the American Meteorological Society, 2021, 102(5): E948-E965. |
| [2] | 张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34(11): 1264-1273. |
| [3] | 张国庆. 青藏高原流域边界数据集(2016)[DB]. 国家青藏高原科学数据中心. 2019. |
| [4] | YAO T, BOLCH T, CHEN D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632. |
| [5] |
MENG Y, DUAN K, SHI P, et al. Sensitive temperature changes on the Tibetan Plateau in response to global warming[J]. Atmospheric Research, 2023, 294: 106948.
DOI URL |
| [6] | 包文, 段安民, 游庆龙, 等. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
| [7] | 周天军, 张文霞, 陈晓龙, 等. 青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源[J]. 气象科学, 2020, 40(5): 697-710. |
| [8] |
HU G, ZHAO L, WU X, et al. Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau[J]. Theoretical and Applied Climatology, 2019, 138(3): 1457-1470.
DOI |
| [9] | 康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16(2): 143-152. |
| [10] | 李志威, 余国安, 徐梦珍, 等. 青藏高原河流演变研究进展[J]. 水科学进展, 2016, 27(4): 617-628. |
| [11] | 何盘星, 胡鹏飞, 孟晓于, 等. 气候变化与人类活动对陆地水储量的影响[J]. 地球环境学报, 2019, 10(1): 38-48. |
| [12] | 张宇生. 青藏高原陆地水储量变化时空分布规律与驱动机制研究[D]. 郑州: 郑州大学, 2022. |
| [13] | 汪钧韬, 曹家铭, 邹蓉. 联合GNSS与GRACE重力卫星的青藏高原陆地水储量研究[J]. 工程地球物理学报, 2023, 20(1): 32-42. |
| [14] |
周思儒, 信忠保. 近20年青藏高原水资源时空变化[J]. 长江科学院院报, 2022, 39(6): 31-39.
DOI |
| [15] | ZOU Y, KUANG X, FENG Y, et al. Solid water melt dominates the increase of total groundwater storage in the Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49(18): e2022GL100092. |
| [16] | 张璐. 超9万亿立方米,“亚洲水塔”水量初步摸清[N]. 新京报, 2020. https://m.bjnews.com.cn/detail/160854113215100.html. |
| [17] | 国家地质总局水文地质工程地质研究所. 中华人民共和国水文地质图集[CM]. 正定: 国家地质总局水文地质工程地质研究所, 1979. |
| [18] | 王作堂. 西藏地下水资源及开发利用对策[J]. 水文地质工程地质, 2003(4): 93-96. |
| [19] | 何鹏辉, 窦隆洋. 西藏革吉县城地下水补给及径流与排泄条件分析[J]. 地下水, 2023, 45(4): 85-87. |
| [20] | 南鹏飞, 何鹏辉. 西藏革吉县备用水源地浅层地下水水文地质条件分析[J]. 地下水, 2023, 45(4): 53-55. |
| [21] | 王欣, 连文皓, 魏俊锋, 等. 青藏高原水资源现状与问题[J]. 水科学进展, 2023, 34(5): 812-826. |
| [22] | 汤艳灵. 德令哈市地下水动态演化与驱动因素研究[D]. 西安: 长安大学, 2024. |
| [23] |
SUN J, YE C, LIU M, et al. Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau[J]. Environmental Research, 2022, 203: 111894.
DOI URL |
| [24] |
WANG X, PANG G, YANG M. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2018, 38(3): 1116-1131.
DOI URL |
| [25] |
LU H, LI F, GONG T, et al. Reasons behind seasonal and monthly precipitation variability in the Qinghai-Tibet Plateau and its surrounding areas during 1979-2017[J]. Journal of Hydrology, 2023, 619: 129329.
DOI URL |
| [26] |
REN W, GAO Y, QIAN H, et al. Spatiotemporal Variation characteristics of groundwater storage and its driving factors and ecological effects in Tibetan Plateau[J]. Remote Sensing, 2023, 15(9): 2418.
DOI URL |
| [27] | 李晓民, 燕云鹏, 刘刚, 等. ZY-102C星数据在西藏札达地区水文地质调查中的应用[J]. 国土资源遥感, 2016, 28(4): 141-148. |
| [28] | 康小兵. 西藏阿里地区第四系地下水资源形成控制因素研究[D]. 成都: 成都理工大学, 2006. |
| [29] | 雷传扬, 吴建亮, 尹显科, 等. 班公湖-怒江缝合带西段阿翁错地区中酸性侵入岩的成因及其对区域构造演化的指示[J]. 大地构造与成矿学, 2019, 43(1): 168-185. |
| [30] | 刘光亚, 基岩地下水[M]. 北京: 地质出版社, 1979. |
| [31] | 张志攀, 祝有海, 苏新. 羌塘盆地泉水地球化学特征及其意义[J]. 地质学报, 2011, 85(7): 1233-1238. |
| [32] |
林聪业, 孙占学, 高柏, 等. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 2021, 28(5): 49-58.
DOI |
| [33] | 姜茗瀚, 王瑞, 田祥雨. 藏南中新世钾质-超钾质火山岩中的锂赋存状态研究:对青藏高原盐湖锂成因的指示[J]. 岩石学报, 2025, 41(3): 922-937. |
| [34] |
李忠雄, 杜佰伟, 汪正江, 等. 藏北羌塘盆地中侏罗统石油地质特征[J]. 石油学报, 2008(6): 797-803.
DOI |
| [35] | 付坤豪. 某高原岩溶隧道水文地质特征及涌水量预测研究[D]. 成都,西南交通大学, 2022. |
| [36] | 马剑飞, 李向全, 张春潮, 等. 青藏高原东部典型构造岩溶地下水补给来源、模式及开发利用潜力[J]. 中国地质, 2025, 52(1): 347-361. |
| [37] |
GOLDSCHEIDER N, CHEN Z, AULER A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677.
DOI |
| [38] | 章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 2002(4): 566-570. |
| [39] |
CHENG G, JIN H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2012, 21(1): 5-23.
DOI URL |
| [40] | WALVOORD M A, VOSS C I, WELLMAN T P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States[J]. Water resources research, 2012, 48(7): W07524. |
| [41] | WOO M K. Permafrost Hydrology[M]. Berlin: Springer, 2012. |
| [42] | 王绍令, 边纯玉, 王健. 青藏高原多年冻土区水文地质特征[J]. 青海地质, 1994(1): 40-47. |
| [43] |
CHANG J, YE R, WANG G. Review: Progress in permafrost hydrogeology in China[J]. Hydrogeology Journal, 2018, 26(5): 1387-1399.
DOI |
| [44] |
JIN H, HUANG Y, BENSE V F, et al. Permafrost degradation and its hydrogeological impacts[J]. Water, 2022, 14(3): 372.
DOI URL |
| [45] | HU Y, SUN Z, MA R. Springs emerging along the elevation gradient indicate intensive groundwater-surface water exchange in an alpine headwater catchment, northwestern China[J]. Journal of Earth Scicence, 2023, 34: 181-193. |
| [46] | 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11. |
| [47] | MA R, SUN Z, CHANG Q, et al. Control of the interactions between stream and groundwater by permafrost and seasonal frost in an alpine catchment, northeastern Tibet Plateau, China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(5): e2020JD033689. |
| [48] |
WANG Z, SUN S, WANG G, et al. Determination of low-flow components in alpine permafrost rivers[J]. Journal of Hydrology, 2023, 617: 128886.
DOI URL |
| [49] | 赵林, 丁永建, 刘广岳, 等. 青藏高原多年冻土层中地下冰储量估算及评价[J]. 冰川冻土, 2010, 32(1): 1-9. |
| [50] |
LIU H, HE G, PENG Y, et al. Dynamic monitoring of surface water in the Tibetan Plateau from 1980s to 2019 based on satellite remote sensing images[J]. Journal of Mountain Science, 2021, 18(11): 2833-2841.
DOI |
| [51] |
LI Q, KANG X, LIN G, et al. Groundwater quality characteristics and health risk assessment in the valley plain area of the western Qinghai-Tibet plateau[J]. Journal of Contaminant Hydrology, 2023, 257: 104221.
DOI URL |
| [52] | 国家统计局. 中国统计年鉴[R]. 北京: 中国统计出版社, 2008-2024. |
| [53] |
LI D, CUI B, WANG Y, et al. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau[J]. Groundwater, 2021, 59(2): 245-255.
DOI URL |
| [54] |
LI M, SHI G, LI Y, et al. Isotopic constraints on sources and transformations of nitrate in the Mount Everest Proglacial water[J]. Environmental Science & Technology, 2023, 57(49): 20844-20853.
DOI URL |
| [55] |
XING S, GUO H, SUN X, et al. Temperature-induced arsenic accumulation in groundwater from Pliocene aquifers of a semiarid continental basin[J]. Geochimica et Cosmochimica Acta, 2023, 343: 98-114.
DOI URL |
| [56] |
YANG Y, ZHANG R, DEJI Y, et al. Hotspot mapping and risk prediction of fluoride in natural waters across the Tibetan Plateau[J]. Journal of Hazardous Materials, 2024, 465: 133510.
DOI URL |
| [57] |
GAO H, WANG J, YANG Y, et al. Permafrost hydrology of the Qinghai-Tibet Plateau: a review of processes and modeling[J]. Frontiers in Earth Science, 2021, 8: 576838.
DOI URL |
| [58] |
GUO Q, PLANER-FRIEDRICH B, LIU M, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513: 32-43.
DOI URL |
| [59] | HAN J, HAN F, HUSSAIN S A, et al. Origin of boron and brine evolution in saline springs in the Nangqen Basin, Southern Tibetan Plateau[J]. Geofluids, 2018, 2018(1): 1985784. |
| [60] |
WANG Z, GUO H, ADIMALLA N, et al. Co-occurrence of arsenic and fluoride in groundwater of Guide basin in China: Genesis, mobility and enrichment mechanism[J]. Environmental Research, 2024, 244: 117920.
DOI URL |
| [61] |
XING S, GUO H, ZHANG L, et al. Silicate weathering contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene aquifers of the Guide basin, China[J]. Journal of Hydrology, 2022, 606: 127444.
DOI URL |
| [62] | WHO. Guidelines for drinking-water quality: fourth edition incorporating first addendum[R]. Geneva: World Health Organization. 2017. |
| [63] | 金银龙, 梁超轲, 何公理, 等. 中国地方性砷中毒分布调查(总报告)[J]. 卫生研究, 2003(6): 519-540. |
| [64] | 鲁青, 陈萍, 张强, 等. 2009-2020年青海省饮水型氟中毒监测结果分析[J]. 中国地方病防治, 2022, 37(3): 242-243. |
| [65] |
WANG Y, GU H, LI D, et al. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet[J]. Environmental Earth Sciences, 2021, 80(11): 415.
DOI |
| [66] | 赵斌, 吕玥, 温柔, 等. 西藏地热能开发利用现状及发展前景[J]. 热力发电, 2023, 52(1): 1-6. |
| [67] |
WANG S, LU C, NAN D, et al. Geothermal resources in Tibet of China: current status and prospective development[J]. Environmental Earth Sciences, 2017, 76(6): 239.
DOI URL |
| [68] |
TANG X, ZHANG J, PANG Z, et al. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China[J]. Environmental Earth Sciences, 2016, 76(1): 31.
DOI URL |
| [69] |
ZHOU H, KUANG X, HAO Y, et al. Magmatic fluid input controlling the geochemical and isotopic characteristics of geothermal waters along the Yadong-Gulu rift, southern Tibetan Plateau[J]. Journal of Hydrology, 2023, 619: 129196.
DOI URL |
| [70] |
MA Y. Deep geothermal resources in China: Potential, distribution, exploitation, and utilization[J]. Energy Geoscience, 2023, 4(4): 100209.
DOI URL |
| [71] |
GLEESON T, BEFUS K, JASECHKO S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2): 161-167.
DOI |
| [72] |
GLEESON T, MOOSDORF N, HARTMANN J, et al. A glimpse beneath earth’s surface: gLobal hydrogeology maps (GLHYMPS) of permeability and porosity[J]. Geophysical Research Letters, 2014, 41(11): 3891-3898.
DOI URL |
| [73] |
NORTON D, KNAPP R. Transport phenomena in hydrothermal systems; the nature of porosity[J]. American Journal of Science, 1977, 277(8): 913-936.
DOI URL |
| [74] |
BIBI S, WANG L, LI X, et al. Response of groundwater storage and recharge in the Qaidam Basin (Tibetan Plateau) to climate variations from 2002 to 2016[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(17/18): 9918-9934.
DOI URL |
| [75] | KUANG X, LIU J, SCANLON B R, et al. The changing nature of groundwater in the global water cycle[J]. Science, 2024, 383(6686): eadf0630. |
| [76] | 姚莹莹, 郑春苗. 青藏高原地下水研究进展与挑战[J]. 水文地质工程地质, 2025, 52: 1-10. |
| [77] |
LI M, WENG B, YAN D, et al. Spatiotemporal characteristics of surface water resources in the Tibetan plateau: Based on the produce water coefficient method considering snowmelt[J]. Science of The Total Environment, 2022, 851: 158048.
DOI URL |
| [78] | WANG L, JIA B, YUAN X, et al. The slowdown of increasing groundwater storage in response to climate warming in the Tibetan Plateau[J]. Climate and Atmospheric Science, 2024, 7(1): 286. |
| [79] |
LI X, LONG D, SCANLON B R, et al. Climate change threatens terrestrial water storage over the Tibetan Plateau[J]. Nature Climate Change, 2022, 12(9): 801-807.
DOI |
| [80] |
XIE J, LIU X, JASECHKO S, et al. Majority of global river flow sustained by groundwater[J]. Nature Geoscience, 2024, 17(8): 770-777.
DOI |
| [81] |
CUO L, ZHANG Y, ZHU F, et al. Characteristics and changes of streamflow on the Tibetan Plateau: a review[J]. Journal of Hydrology: Regional Studies, 2014, 2: 49-68.
DOI URL |
| [82] | YAO Y, ZHENG C, ANDREWS C B, et al. Role of groundwater in sustaining northern Himalayan Rivers[J]. Geophysical Research Letters, 2021, 48(10): e2020GL092354. |
| [83] |
BOOKHAGEN B. Himalayan groundwater[J]. Nature Geoscience, 2012, 5(2): 97-98.
DOI |
| [84] |
POHL E, KNOCHE M, GLOAGUEN R, et al. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains[J]. Earth Surf. Dynam., 2015, 3(3): 333-362.
DOI URL |
| [85] |
XIAO Y, ZHANG Y, YANG H, et al. Interaction regimes of surface water and groundwater in a hyper-arid endorheic watershed on Tibetan Plateau: Insights from multi-proxy data[J]. Journal of Hydrology, 2024, 644: 132020.
DOI URL |
| [86] |
MA R, SUN Z, HU Y, et al. Hydrological connectivity from glaciers to rivers in the Qinghai-Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater[J]. Hydrology and Earth System Sciences, 2017, 21(9): 4803-4823.
DOI URL |
| [87] |
HU Y, MA R, WANG Y, et al. Using hydrogeochemical data to trace groundwater flow paths in a cold alpine catchment[J]. Hydrological Processes, 2019, 33(14): 1942-1960.
DOI URL |
| [88] |
MA J, LI X, LIU F, et al. Application of hydrochemical and isotopic data to determine the origin and circulation conditions of karst groundwater in an alpine and gorge region in the Qinghai-Xizang Plateau: a case study of Genie Mountain[J]. Environmental Earth Sciences, 2022, 81(10): 291.
DOI |
| [89] |
CHEN J, KUANG X, LANCIA M, et al. Analysis of the groundwater flow system in a high-altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100871.
DOI URL |
| [90] |
PROVOST A M, VOSS C I, NEUZIL C E. Glaciation and regional groundwater flow in the Fennoscandian shield[J]. Geofluids, 2012, 12(1): 79-96.
DOI URL |
| [91] |
YOU Y, YU Q, PAN X, et al. Geophysical imaging of permafrost and talik configuration beneath a Thermokarst Lake[J]. Permafrost and Periglacial Processes, 2017, 28(2): 470-476.
DOI URL |
| [92] |
CHANG J, WANG G, MAO T. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model[J]. Journal of Hydrology, 2015, 529: 1211-1220.
DOI URL |
| [93] | WALVOORD M A, KURYLYK B L. Hydrologic impacts of thawing permafrost: a review[J]. Vadose Zone Journal, 2016, 15(6): 1-20. |
| [94] | BENSE V F, KOOI H, FERGUSON G, et al. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3). DOI: 10.1029/2011JF002143. |
| [95] |
SHI D, TAN H, CHEN X, et al. Uncovering the mechanisms of seasonal river-groundwater circulation using isotopes and water chemistry in the middle reaches of the Yarlungzangbo River, Tibet[J]. Journal of Hydrology, 2021, 603: 127010.
DOI URL |
| [96] |
TAN H, CHEN X, SHI D, et al. Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge[J]. Science of The Total Environment, 2021, 759: 143510.
DOI URL |
| [97] | GE S, WU Q, LU N, et al. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 2008, 35(18). |
| [98] |
XIANG L, WANG H, STEFFEN H, et al. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data[J]. Earth and Planetary Science Letters, 2016, 449: 228-239.
DOI URL |
| [99] |
ZHANG G, YAO T, SHUM C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550-5560.
DOI URL |
| [100] |
EVANS S G, GE S, LIANG S. Analysis of groundwater flow in mountainous, headwater catchments with permafrost[J]. Water Resources Research, 2015, 51: 1-13.
DOI URL |
| [101] | 高维明, 张立人. 青藏高原的现代构造运动、地震线及地震幕[J]. 中国地震, 1985(4): 36-43. |
| [102] | 张培震, 王伟涛, 甘卫军, 等. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报, 2022, 96(10): 3297-3313. |
| [103] | 莫生鹏, 童鑫, 李庆宽, 等. 青藏高原地热水资源元素分布特征及其来源初探[J]. 盐湖研究, 2025, 33(5): 1-11. |
| [104] |
YUAN J, GUO Q, WANG Y. Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China[J]. Journal of Geochemical Exploration, 2014, 140: 11-22.
DOI URL |
| [105] | 王晨光, 郑绵平, 张雪飞, 等. 西藏南部古堆高温地热田水化学特征及其成因研究[J]. 地质学报, 2024, 98(2): 558-578. |
| [1] | 孔彦龙, 董远卓, 叶灿滔, 程远志, 乃尉华, 庞忠和, 马伟斌, 张健, 龚宇烈, 李义曼, 姜光政, 王迎春, 古丽波斯坦·吐逊江, 田小明, 李棱雪, 师德扬, 张程凯, 田逸楠, 李斌, 陈锋, 张磊, 王珂, 任亚倩, 张伟尊, 罗冠中, 段佳斌, 陈娅奎, 张小雷, 汪集暘. 新疆地热资源分布、成因及开发利用方向:第三次新疆综合科学考察地热科考成果综述[J]. 地学前缘, 2026, 33(1): 283-295. |
| [2] | 舒伟, 蒋建国, 吴吉春. 基于硬约束物理信息神经网络的含水层渗透系数场反演[J]. 地学前缘, 2026, 33(1): 500-510. |
| [3] | 史浙明, 王广才, 晏锐, 齐之钰. 地震水文地质学:基于灾害视角的“水岩相互作用”[J]. 地学前缘, 2026, 33(1): 80-94. |
| [4] | 任战利, 杨鹏, 祁凯, 崔军平, 于强, 程鑫, 黄雷, 陈刚, 姚举文. 羌塘盆地构造——热演化史研究现状及进展[J]. 地学前缘, 2025, 32(5): 12-27. |
| [5] | 毛绪美, 李翠明. 地热系统中地下水循环深度的重新评估[J]. 地学前缘, 2025, 32(5): 220-229. |
| [6] | 张雨飞, 张杨, 吉俊杰, 成秋明. 基于机器学习方法的南海洋壳大地热流预测[J]. 地学前缘, 2025, 32(4): 235-249. |
| [7] | 李金明, 张杨, 成秋明. 基于机器学习与垂向分层建模联合驱动的华北克拉通地温梯度空间分布预测[J]. 地学前缘, 2025, 32(4): 291-302. |
| [8] | 杨轶群, 李燊琰, 戴君一, 高迪, 周诗雨, 王礼春. 滦河口河岸砂质潜水含水层渗透系数尺度效应分析研究[J]. 地学前缘, 2025, 32(3): 425-435. |
| [9] | 陈喜, 高满, 董建志, 王哲. 京津冀地区水资源供需演变面临挑战问题及研究途径[J]. 地学前缘, 2025, 32(3): 436-444. |
| [10] | 桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. |
| [11] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
| [12] | 申鹏飞, 侯嘉欣, 吕涛, 毕昊媛, 何娟, 李小森, 李刚. 开采井周边储层渗透率演变对天然气水合物产能影响机理研究[J]. 地学前缘, 2025, 32(2): 166-177. |
| [13] | 孙焕泉, 高楠安, 吴陈冰洁, 国殿斌, 方吉超, 赵磊, 刘健, 周总瑛. 中深层地热资源勘探开发技术与典型应用[J]. 地学前缘, 2025, 32(2): 230-241. |
| [14] | 刘德民, 张昌生, 陆婉玲, 韦梅华, 祁焱雅, 刘菲, 赵悦, 姜淮. 汾渭地堑中、深层地热资源富集背景与形成机制[J]. 地学前缘, 2025, 32(1): 367-379. |
| [15] | 王贵玲, 蔺文静. 我国陆区热状态及控热要素[J]. 地学前缘, 2024, 31(6): 1-18. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||