地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 313-327.DOI: 10.13745/j.esf.sf.2025.10.29

• 深部水文地质 • 上一篇    下一篇

高地应力高温条件裂隙介质地下水非线性渗流研究进展

许林1,2(), 马海春2, 王京平2, 张庆3, 黄逸航2, 钱家忠2,*(), 王万林2,4   

  1. 1.中国电建集团西北勘测设计研究院有限公司, 陕西 西安 710065
    2.合肥工业大学 资源与环境工程学院, 安徽 合肥 230009
    3.河南理工大学 资源环境学院, 河南 焦作 454003
    4.冶金工业部华东勘察基础工程总公司, 安徽 合肥 230009
  • 收稿日期:2025-08-10 修回日期:2025-10-16 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *钱家忠(1968—),男,博士,教授,博士生导师,主要从事地下水污染与防治教学和科研工作。E-mail: qianjiazhong@hfut.edu.cn
  • 作者简介:许 林(1993—),男,硕士,主要从事污染土壤/地下水修复、矿山生态修复等相关研究工作。E-mail: 251216902@qq.com
  • 基金资助:
    国家自然科学基金项目(U2267218);国家自然科学基金项目(42473210);中国电建集团西北勘测设计研究院有限公司重点项目(XBY-PTKJ-2022-19)

Advances in groundwater nonlinear seepage in fractured media under conditions of high in-situ stress and temperature

XU Lin1,2(), MA Haichun2, WANG Jingping2, ZHANG Qing3, HUANG Yihang2, QIAN Jiazhong2,*(), WANG Wanlin2,4   

  1. 1. Northwest Engineering Corporation Limited, POWERCHINA, Xi’an 710065, China
    2. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
    3. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China
    4. Investigation & Foundation Engineering Company East China Ministry of Metallurgical Industry, Hefei 230009, China
  • Received:2025-08-10 Revised:2025-10-16 Online:2026-01-25 Published:2025-11-10

摘要:

随着深部资源勘探、地热能源开发和核废料地质处置等工程活动的深入推进,地下水在高地应力高温环境下的渗流行为成为研究热点,进而关于如何构建适用于高地应力高温条件的多物理场耦合理论模型,以准确反映在真实地应力和温度条件下水-岩相互作用、裂隙形态演化与流体特性变化的动态过程成为重点关注的问题。本文系统综述了高地应力高温条件下地下水渗流的基本理论、实验研究与数值模拟进展,重点阐述了传统立方定律在裂隙渗流模拟中的适用性与局限,并介绍了非达西流与广义达西流的理论拓展,分析了地应力与温度对渗透率的耦合调控机制;总结了多项地应力与热力耦合实验成果及其渗流参数演化规律,探讨了数值模拟中地应力主导下裂隙几何形态演变与渗透通道演化过程;评价了高温环境下矿物热膨胀、热破裂与裂隙粗糙度变化对渗流路径的影响,评估了热-水-力耦合模型及数据驱动方法的预测潜力;评述了当前理论模型在高地应力高温多场耦合机制、裂隙尺度效应及长期演化方面仍存在不足,展望了未来的研究方向。

关键词: 高地应力, 高温地下水渗流, 热-水-力耦合, 裂隙介质, 渗透率演化, 实验研究, 数值模拟

Abstract:

With the growing demands in geothermal energy development, geological disposal of nuclear waste, and deep resource exploration, the seepage behavior of groundwater under conditions of high in-situ stress and temperature has become a research hotspot. Accurately modeling this behavior, however, remains a major challenge. This requires the development of multi-physical field coupling models that are applicable to high in-situ stress and temperature environments and capable of accurately describing the dynamic processes of water-rock interaction, fracture evolution, and fluid property variation. This paper comprehensively reviewed recent advances in fundamental theories, experimental studies, and numerical simulations related to groundwater seepage under conditions of high in-situ stress and temperature. First, it discussed the applicability and limitations of the classical cubic law for modeling fracture flow, along with extensions to non-Darcy and generalized Darcy flow theories, with a particular emphasis on the coupling effects of in-situ stress and temperature on permeability. It summarized various experimental findings on stress-thermal coupling and its influence on seepage parameters. Numerical simulations that analyzed the evolution of fracture geometry and flow paths under in-situ stress conditions were examined. Additionally, the study assessed the effects of mineral thermal expansion, thermal cracking, and changes in fracture roughness on flow pathways in high-temperature environments. It also evaluated the predictive capability of coupled thermal-hydraulic-mechanical (THM) models and data-driven approaches. Finally, a critical review of current theoretical models was provided, revealing their limitations in capturing the multi-field coupling mechanisms, fracture-scale effects, and long-term evolution under high in-situ stress and temperature. Future research directions were also proposed.

Key words: high in-situ stress, high temperature groundwater seepage, thermal-hydraulic-mechanical coupling, fractured media, permeability evolution, experimental study, numerical simulation

中图分类号: