地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 296-312.DOI: 10.13745/j.esf.sf.2025.10.15

• 深部水文地质 • 上一篇    下一篇

深部水文地质学裂隙渗流研究挑战与进展

董艳辉1,2(), 王礼恒1,2, 张倩1,2, 周志超3, 文冬光4, 李守定1,2, 万力5   

  1. 1.中国科学院地质与地球物理研究所 中国科学院深层油气理论与智能勘探开发重点实验室, 北京 100029
    2.中国科学院大学 行星与地球科学学院, 北京 100049
    3.核工业北京地质研究院 国家原子能机构高放废物地质处置创新中心, 北京 100029
    4.中国地质调查局水文地质环境地质调查中心, 天津 300304
    5.中国地质大学(北京) 地下水循环与环境演化教育部重点实验室, 北京 100083
  • 收稿日期:2025-08-20 修回日期:2025-10-11 出版日期:2026-11-25 发布日期:2025-11-10
  • 作者简介:董艳辉(1980—),男,副研究员,硕士生导师,主要从事复杂介质地下水流动及反应溶质运移研究工作。E-mail: dongyh@mail.iggcas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42272297);国家自然科学基金项目(42202285)

Challenges and progress in fracture flow research of deep hydrogeology

DONG Yanhui1,2(), WANG Liheng1,2, ZHANG Qian1,2, ZHOU Zhichao3, WEN Dongguang4, LI Shouding1,2, WAN Li5   

  1. 1. Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Beijing Research Institute of Uranium Geology, CAEA Innovation Center for Geological Disposal of High-level Radioactive Waste, Beijing 100029, China
    4. Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Tianjin 300304, China
    5. Ministry of Education Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-08-20 Revised:2025-10-11 Online:2026-11-25 Published:2025-11-10

摘要:

深部水文地质学是地球科学领域近年来快速发展的前沿方向,主要聚焦于地下数百米至数千米深度范围内的基岩裂隙含水系统。随着我国深部资源能源开发、环境保护与空间利用需求的不断增加,对深部地下水系统的认知程度与调控能力已成为支撑国家战略的关键科技问题。本文系统综述了深部水文地质学的研究进展,重点阐述了深部裂隙介质渗流的关键科学问题、研究方法与工程实践。首先,提出了深部水文地质学核心科学问题:深部地下水的来源与年龄、深浅层水循环相互作用机制、高度非均质含水系统表征、深部流体与工程相互作用以及深部生物圈影响。其次,系统梳理了深部裂隙介质渗流研究的关键方法与技术,包括实验室尺度的高精度观测与测试技术、现场实验与长期监测手段、多尺度数值模拟与多场耦合建模技术,以及多学科集成与人工智能研究范式。第三,聚焦典型工程背景,深入探讨了四类深部水文地质问题的研究进展:(1)深部低渗岩体裂隙渗流,以高放废物地质处置为例,分析了北山预选区深部地下水系统特征与水文循环模式;(2)深部低渗岩体裂隙溶质运移,以页岩气水力压裂为例,探讨了深部流体向上迁移的水文地质控制机制;(3)深部流体反应溶质运移,以深层碳酸盐岩储集空间为例,揭示了深部热液流体对储层改造的主控作用;(4)深部裂隙热流耦合,以增强型地热系统开发为例,分析了多场耦合作用下储层裂隙演化与热开采持续性的主控机制。最后,展望了深部水文地质学六大未来研究方向,包括深部观测技术系统建设、高精度裂隙渗流建模、多场耦合模拟能力提升、地球物理成像与水文融合、高分辨率水化学分析以及人工智能与大数据集成。本文对深部水文地质学理论、方法与应用的全面总结,旨在为高放废物地质处置、页岩气开发、二氧化碳地质封存、增强型地热系统以及深层至超深层油气资源开发等深部地质工程提供理论指导与技术支撑,为深部地下水资源的可持续管理与环境安全评价提供科学基础。

关键词: 深部地质工程, 深部水文地质学, 裂隙渗流, 多场耦合, 数值模拟

Abstract:

Deep hydrogeology has emerged as a frontier field of research in the earth sciences, focusing on bedrock fracture aquifer systems at depths ranging from hundreds to thousands of meters. As China’s demands for deep resource development, environmental protection, and subsurface space utilization continue to grow, understanding and managing deep groundwater systems have become key scientific and technological challenges that support national strategic goals. This paper systematically reviews the research progress in deep hydrogeology, with an emphasis on key scientific issues, research methodologies, and engineering practices related to fluid flow in deep fractured media. First, it identifies five core scientific issues: the origin and age of deep groundwater, the mechanisms of interaction between deep and shallow hydrological cycles, the characterization of highly heterogeneous aquifer systems, the interactions between deep fluids and engineering projects, and the influence of the deep biosphere. Second, it systematically reviews key methods and technologies for investigating fluid flow and transport in deep fractured media, including high-precision laboratory observation and testing techniques, field experimentation and long-term monitoring approaches, multi-scale numerical simulation and multi-field coupling modeling technologies, as well as multidisciplinary integration and artificial intelligence research paradigms. Third, within typical engineering contexts, the paper discusses research advances related to four types of deep hydrogeological challenges: (1) fluid flow in deep low-permeability fractured rocks, using the geological disposal of high-level radioactive waste as an example, to analyze the characteristics of deep groundwater systems and hydrological circulation patterns in the pre-selected Beishan area; (2) solute transport in deep low-permeability fractured rocks, using shale gas hydraulic fracturing as an example, to explore the hydrogeological controls on the upward migration of deep fluids; (3) reactive transport of deep fluids, using deep carbonate reservoir space as an example, to reveal the dominant role of deep hydrothermal fluids in reservoir modification; and (4) Coupled thermo-hydrological processes in deep fractures, using the development of Enhanced Geothermal Systems as a case study, to analyze the governing mechanisms for reservoir fracture evolution and the sustainability of heat extraction under multi-physics coupling. Finally, the paper outlines six future research directions, including the systematic development of deep observation technologies, high-precision modeling of fracture flow, enhancement of multi-field coupling simulation capabilities, the integration of geophysical imaging with hydrogeology, high-resolution hydrochemical analysis, and the integration of artificial intelligence with big data analytics. This comprehensive summary of the theories, methods, and applications of deep hydrogeology aims to provide theoretical guidance and technical support for deep geological engineering projects such as the geological disposal of high-level radioactive waste, shale gas development, geological carbon sequestration, enhanced geothermal systems, and the exploitation of deep and ultra-deep oil and gas resources. This review also aims to provide a scientific basis for the sustainable management and environmental safety assessment of deep groundwater resources.

Key words: deep geological engineering, deep hydrogeology, fracture flow, multi-field coupling, numerical modeling

中图分类号: