

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 296-312.DOI: 10.13745/j.esf.sf.2025.10.15
董艳辉1,2(
), 王礼恒1,2, 张倩1,2, 周志超3, 文冬光4, 李守定1,2, 万力5
收稿日期:2025-08-20
修回日期:2025-10-11
出版日期:2026-11-25
发布日期:2025-11-10
作者简介:董艳辉(1980—),男,副研究员,硕士生导师,主要从事复杂介质地下水流动及反应溶质运移研究工作。E-mail: dongyh@mail.iggcas.ac.cn
基金资助:
DONG Yanhui1,2(
), WANG Liheng1,2, ZHANG Qian1,2, ZHOU Zhichao3, WEN Dongguang4, LI Shouding1,2, WAN Li5
Received:2025-08-20
Revised:2025-10-11
Online:2026-11-25
Published:2025-11-10
摘要:
深部水文地质学是地球科学领域近年来快速发展的前沿方向,主要聚焦于地下数百米至数千米深度范围内的基岩裂隙含水系统。随着我国深部资源能源开发、环境保护与空间利用需求的不断增加,对深部地下水系统的认知程度与调控能力已成为支撑国家战略的关键科技问题。本文系统综述了深部水文地质学的研究进展,重点阐述了深部裂隙介质渗流的关键科学问题、研究方法与工程实践。首先,提出了深部水文地质学核心科学问题:深部地下水的来源与年龄、深浅层水循环相互作用机制、高度非均质含水系统表征、深部流体与工程相互作用以及深部生物圈影响。其次,系统梳理了深部裂隙介质渗流研究的关键方法与技术,包括实验室尺度的高精度观测与测试技术、现场实验与长期监测手段、多尺度数值模拟与多场耦合建模技术,以及多学科集成与人工智能研究范式。第三,聚焦典型工程背景,深入探讨了四类深部水文地质问题的研究进展:(1)深部低渗岩体裂隙渗流,以高放废物地质处置为例,分析了北山预选区深部地下水系统特征与水文循环模式;(2)深部低渗岩体裂隙溶质运移,以页岩气水力压裂为例,探讨了深部流体向上迁移的水文地质控制机制;(3)深部流体反应溶质运移,以深层碳酸盐岩储集空间为例,揭示了深部热液流体对储层改造的主控作用;(4)深部裂隙热流耦合,以增强型地热系统开发为例,分析了多场耦合作用下储层裂隙演化与热开采持续性的主控机制。最后,展望了深部水文地质学六大未来研究方向,包括深部观测技术系统建设、高精度裂隙渗流建模、多场耦合模拟能力提升、地球物理成像与水文融合、高分辨率水化学分析以及人工智能与大数据集成。本文对深部水文地质学理论、方法与应用的全面总结,旨在为高放废物地质处置、页岩气开发、二氧化碳地质封存、增强型地热系统以及深层至超深层油气资源开发等深部地质工程提供理论指导与技术支撑,为深部地下水资源的可持续管理与环境安全评价提供科学基础。
中图分类号:
董艳辉, 王礼恒, 张倩, 周志超, 文冬光, 李守定, 万力. 深部水文地质学裂隙渗流研究挑战与进展[J]. 地学前缘, 2026, 33(1): 296-312.
DONG Yanhui, WANG Liheng, ZHANG Qian, ZHOU Zhichao, WEN Dongguang, LI Shouding, WAN Li. Challenges and progress in fracture flow research of deep hydrogeology[J]. Earth Science Frontiers, 2026, 33(1): 296-312.
图2 近年来发展的典型深部重大地质工程 ①—高放废物地质处置;②—干热岩开发;③—深层-超深层油气勘探开发;④—水力压裂作业开发页岩气;⑤—二氧化碳地质封存。
Fig.2 Representative major deep geological engineering developments in recent years
图4 我国北山高放废物深地质处置进展概况(a引自文献[63];b据文献[65]修改) a—我国首座高放废物地质处置地下实验室设计概念图;b—新场至河西走廊地下水流动模式图。
Fig.4 Overview of progress in deep geological disposal of high-level radioactive waste in beishan. a adapted from [63]; b modified after [65].
图5 四川盆地焦页1井典型剖面地下水流动模式及压裂过程压裂液迁移时空变化过程(据文献[72,76,80]修改) a—初始压裂阶段;b-d —压裂过程;e—产气阶段。
Fig.5 Groundwater flow pattern in a typical cross-section of Jiaoye-1 Well, Sichuan Basin, and the spatiotemporal evolution of fracturing fluid migration during hydraulic fracturing. Modified after [72,76,80].
图5 塔里木盆地深层- 超深层油气储层及层改造模拟分析 (a引自文献[85];b据文献[86]修改) a-塔里木盆地寒武系-奥陶系深层-超深层多类型碳酸盐岩储层发育模式;b-基于RTM的热液白云岩化储层改造模式图。
Fig.6 Development model of deep to ultra- deep carbonate reservoirs and hydrothermal dolomitization simulation in the Tarim Basin. a adapted from [85]; b modified after [86].
| [1] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
DOI |
| [2] | 张茹, 谢和平, 张泽天, 等. 深地科学与地质时变原位探测的发展与展望[J]. 中国科学:物理学力学天文学, 2025, 55(11): 111015. |
| [3] | 谢和平, 张茹, 张泽天, 等. 深地科学与深地工程技术探索与思考[J]. 煤炭学报, 2023, 48(11): 3959-3978. |
| [4] | BEAR J. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier Publishing Co. 1972: 764. |
| [5] | 王大纯, 张宗祜. 水文地质学的研究现状和今后发展方向[J]. 科学通报, 1965, (6): 511-520. |
| [6] | 王大纯. 我国水文地质学的展望[J]. 地球科学, 1985, (1): 1-7. |
| [7] | 王大纯, 张人权, 史毅虹, 等. 水文地质学基础[M]. 北京: 地质出版社, 1995. |
| [8] |
GLEESON T, BEFUS K M, JASECHKO S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2): 161-167.
DOI |
| [9] | FERGUSON G, MCINTOSH J C, WARR O, et al. Crustal groundwater volumes greater than previously thought[J]. Geophysical Research Letters, 2021, 48(16): e2021GL093549. |
| [10] |
LOLLAR B S, WARR O, HIGGINS P M. The Hidden Hydrogeosphere: the contribution of deep groundwater to the planetary water cycle[J]. Annual Review of Earth and Planetary Sciences, 2024, 52(1): 443-466.
DOI URL |
| [11] |
TSANG C-F, NIEMI A. Deep hydrogeology: a discussion of issues and research needs[J]. Hydrogeology Journal, 2013, 21(8): 1687-1690.
DOI URL |
| [12] |
WARR O, BALLENTINE C J, ONSTOTT T C, et al. 86Kr excess and other noble gases identify a billion-year-old radiogenically-enriched groundwater system[J]. Nature Communications, 2022, 13(1): 3768.
DOI PMID |
| [13] |
WARR O, SMITH N J T, SHERWOOD LOLLAR B. Hydrogeochronology: resetting the timestamp for subsurface groundwaters[J]. Geochimica et Cosmochimica Acta, 2023, 348: 221-238.
DOI URL |
| [14] |
WARR O, SHERWOOD LOLLAR B, FELLOWES J, et al. Tracing ancient hydrogeological fracture network age and compartmentalisation using noble gases[J]. Geochimica et Cosmochimica Acta, 2018, 222: 340-362.
DOI URL |
| [15] |
王成善, 高远, 王璞珺, 等. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430.
DOI |
| [16] | MCINTOSH J C, FERGUSON G. Deep meteoric water circulation in Earth’s crust[J]. Geophysical Research Letters, 2021, 48(5): e2020GL090461. |
| [17] |
SPRENGER M, STUMPP C, WEILER M, et al. The demographics of water: a review of water ages in the critical zone[J]. Reviews of Geophysics, 2019, 57(3): 800-834.
DOI URL |
| [18] | FERGUSON G, MCINTOSH J C, JASECHKO S, et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge[J]. Communications Earth & Environment, 2023, 4(1): 48. |
| [19] |
MARTÍNEZ D E, JIANG W, MATSUMOTO T, et al. 81Kr reveals one-million-year-old groundwater at the Atlantic coast of Argentina as a record of Mid-Pleistocene climate[J]. Journal of Hydrology, 2022, 610: 127846.
DOI URL |
| [20] |
COLLON P, KUTSCHERA W, LOOSLI H H, et al. 81Kr in the Great Artesian Basin, Australia: a new method for dating very old groundwater[J]. Earth and Planetary Science Letters, 2000, 182(1): 103-113.
DOI URL |
| [21] |
BAR-ON Y M, PHILLIPS R, MILO R. The biomass distribution on Earth[J]. Proceedings of the National Academy of Sciences, 2018, 115(25): 6506-6511.
DOI URL |
| [22] |
COLWELL F S, D’HONDT S. Nature and Extent of the Deep Biosphere[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 547-574.
DOI URL |
| [23] |
MAGNABOSCO C, LIN L H, DONG H, et al. The biomass and biodiversity of the continental subsurface[J]. Nature Geoscience, 2018, 11(10): 707-717.
DOI |
| [24] |
TRIMARCO E, BALKWILL D, DAVIDSON M, et al. In Situ enrichment of a diverse community of bacteria from a 4-5 km deep fault zone in South Africa[J]. Geomicrobiology Journal, 2006, 23(6): 463-473.
DOI URL |
| [25] | 陈畅, 胡成, 陈刚, 等. 低渗透性裂隙介质中地下水定深分层取样的技术方法研究[J]. 安全与环境工程, 2017, 24(6): 76-80. |
| [26] | 周志超. 高放废物处置库北山预选区深部地下水成因机制研究[D]. 北京: 核工业北京地质研究院, 2014. |
| [27] |
JASECHKO S. Global isotope hydrogeology: a review[J]. reviews of geophysics, 2019, 57(3): 835-965.
DOI URL |
| [28] | 王礼恒, 董艳辉, 周鹏鹏, 等. 阿拉善塔木素地段地下水补给来源与演化特征分析[J]. 工程地质学报, 2019, 27(3): 691-698. |
| [29] | 王礼恒, 董艳辉, 宋凡, 等. 甘肃石油河流域地下水补给来源与演化特征分析[J]. 干旱区地理, 2017, 40(1): 54-61. |
| [30] | ZHANG Q, DENG H, DONG Y, et al. Investigation of coupled processes in fractures and the bordering matrix via a micro-continuum reactive transport model[J]. Water Resources Research, 2022, 58(2): e2021WR030578. |
| [31] | ZHANG Q, DONG Y, MOLINS S, et al. The impacts of micro-porosity and mineralogical texture on fractured rock alteration[J]. Water Resources Research, 2024, 60(6): e2023WR036266. |
| [32] |
ISHIBASHI T, FANG Y, ELSWORTH D, et al. Hydromechanical properties of 3D printed fractures with controlled surface roughness: Insights into shear-permeability coupling processes[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104271.
DOI URL |
| [33] |
TORKAN M, UOTINEN L, BAGHBANAN A, et al. Experimental and numerical characterization of hydro-mechanical properties of rock fractures: the effect of the sample size on roughness and hydraulic aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2025, 186: 106009.
DOI URL |
| [34] |
ZHANG X, MA F, DAI Z, et al. Radionuclide transport in multi-scale fractured rocks: a review[J]. Journal of Hazardous materials, 2022, 424: 127550.
DOI URL |
| [35] |
BERKOWITZ B. Characterizing flow and transport in fractured geological media: a review[J]. Advances in Water Resources, 2002, 25(8): 861-884.
DOI URL |
| [36] | 张倩, 董艳辉, 童少青, 等. 核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用[J]. 科学通报, 2016(21): 2387-2394. |
| [37] |
SANCHEZ-ROA C, SALDI G D, MITCHELL T M, et al. The role of fluid chemistry on permeability evolution in granite: applications to natural and anthropogenic systems[J]. Earth and Planetary Science Letters, 2021, 553: 116641.
DOI URL |
| [38] |
YANG Y, XU W, LI X, et al. Human-machine interactive refined identification of complex rock discontinuities using photogrammetric techniques: case studies from a candidate HLW repository site in China[J]. Environmental Earth Sciences, 2025, 84(10): 277.
DOI |
| [39] |
SONG Z, ZHOU Q Y. Micro-scale granite permeability estimation based on digital image analysis[J]. Journal of Petroleum Science and Engineering, 2019, 180: 176-185.
DOI URL |
| [40] |
DONG Y, FU Y, WANG L. Enhanced characterization of fractured zones in bedrock using hydraulic tomography through joint inversion of hydraulic head and flux data[J]. Hydrology, 2024, 11(8): 122.
DOI URL |
| [41] |
RINGEL L M, ILLMAN W A, BAYER P. Recent developments, challenges, and future research directions in tomographic characterization of fractured aquifers[J]. Journal of Hydrology, 2024, 631: 130709.
DOI URL |
| [42] |
DONG Y, FU Y, YEH T C J, et al. Equivalence of discrete fracture network and porous media models by hydraulic tomography[J]. Water Resources Research, 2019, 55(4): 3234-3247.
DOI URL |
| [43] |
SAEIBEHROUZI A, ABOLFATHI S, DENISSENKO P, et al. Pore-scale modeling of solute transport in partially-saturated porous media[J]. Earth-Science Reviews, 2024, 256: 104870.
DOI URL |
| [44] | 魏亚强, 董艳辉, 周鹏鹏, 等. 基于离散裂隙网络模型的核素粒子迁移数值模拟研究[J]. 水文地质工程地质, 2017, 44(1): 123-130. |
| [45] |
HADGU T, KARRA S, KALININA E, et al. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock[J]. Journal of Hydrology, 2017, 553: 59-70.
DOI URL |
| [46] |
SHARMA K M, TSANG C F, GEIER J, et al. Characteristics of flow and transport in low-permeability fractured rock based on a channel network model[J]. Advances in Water Resources, 2025, 202: 105016.
DOI URL |
| [47] |
RUTQVIST J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers & Geosciences, 2011, 37(6): 739-750.
DOI URL |
| [48] |
MA L, GAO D, QIAN J, et al. Multiscale fractures integrated equivalent porous media method for simulating flow and solute transport in fracture-matrix system[J]. Journal of Hydrology, 2023, 617: 128845.
DOI URL |
| [49] |
BERNIER F, LEMY F, DE CANNIÈRE P, et al. Implications of safety requirements for the treatment of THMC processes in geological disposal systems for radioactive waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 428-434.
DOI URL |
| [50] |
JIN J, SUN W, LU S-F, et al. Influence of biofilm growth on permeability evolution in gravel layers of leachate collection system: a pore-scale analysis using Darcy-Brinkman-Stokes approach[J]. Journal of Hydrology, 2025, 646: 132320.
DOI URL |
| [51] |
XIA F, LIU J, NIE H, et al. Random Walks: A Review of Algorithms and Applications[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(2): 95-107.
DOI URL |
| [52] |
NOLE M, BARTRAND J, NAIM F, et al. Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0[J]. Geoscientific Model Development, 2025, 18(5): 1413-1425.
DOI URL |
| [53] | ROQUE-MALO S, DRUHAN J L, KUMAR P. REWTCrunch: a modeling framework for vegetation induced reactive zone processes in the critical zone[J]. Journal of Geophysical Research: Biogeosciences, 2022, 127(2): e2021JG006562. |
| [54] |
ZHANG D, WU H, JIANG F, et al. Development of coupled fluid-flow/geomechanics model considering storage and transport mechanism in shale gas reservoirs with complex fracture morphology[J]. Scientific Reports, 2024, 14(1): 19238.
DOI PMID |
| [55] |
SENDRÓS A, CABRERA M D C, CASAS-PONSATÍ A. Application of geophysical methods for hydrogeology[J]. Water, 2025, 17(1): 98.
DOI URL |
| [56] |
LIU S, LU D, PAINTER S L, et al. Uncertainty quantification of machine learning models to improve streamflow prediction under changing climate and environmental conditions[J]. Frontiers in Water, 2023, 5: 1150126.
DOI URL |
| [57] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
DOI URL |
| [58] |
周志超, 王驹, 陈亮, 等. 高放废物地质处置的安全管理与策略[J]. 科技导报, 2020, 38(16): 105-114.
DOI |
| [59] |
BIRKHOLZER J, HOUSEWORTH J, TSANG C F. Geologic disposal of high-level radioactive waste: status, key issues, and trends[J]. Annual Review of Environment and Resources, 2012, 37: 79-106.
DOI URL |
| [60] | 董艳辉, 符韵梅, 王礼恒, 等. 甘肃北山—河西走廊—祁连山区域地下水循环模式[J]. 地质科技通报, 2022, 41(1): 79-89. |
| [61] |
REIJONEN H M, ELMINEN T, HEIKKILÄ P, et al. Enhanced identification of fracture smectites and other alteration minerals via short-wave infrared reflectance at two finnish crystalline sites, olkiluoto and hyrkkölä[J]. Rock Mechanics and Rock Engineering, 2024, 57(6): 4299-4332.
DOI |
| [62] |
RUTQVIST J, TSANG C F. Modeling nuclear waste disposal in crystalline rocks at the Forsmark and Olkiluoto repository sites - evaluation of potential thermal-mechanical damage to repository excavations[J]. Tunnelling and Underground Space Technology, 2024, 152: 105924.
DOI URL |
| [63] | 王驹, 陈亮, 苏锐, 等. 中国高放废物地质处置北山地下实验室重大进展[J]. 世界核地质科学, 2023, 40(增刊1): 473-490. |
| [64] | 王驹, 陈亮, 周志超, 等. 我国高放废物地质处置新突破[J]. 原子能科学技术, 2024, 58(增刊2): 217-230. |
| [65] |
FU Y, DONG Y, WANG L, et al. Characteristics of hydraulic conductivity in mountain block systems and its effects on mountain block recharge: insights from field investigation and numerical modeling[J]. Journal of Hydrology, 2022, 612: 128184.
DOI URL |
| [66] |
WANG L, LI G, DONG Y, et al. Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper-middle reaches of the Shule River basin, northwestern China[J]. Environmental Earth Sciences, 2015, 73(4): 1901-1915.
DOI URL |
| [67] | 李国敏, 董艳辉, 王礼恒, 等. 甘肃北山区域-盆地-岩体多尺度地下水数值模拟研究[M]. 北京: 科学出版社, 2016. |
| [68] |
WANG L, DONG Y, XU Z. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China[J]. Journal of Asian Earth Sciences, 2017, 146(3): 20-29.
DOI URL |
| [69] |
CAO X, HU L, WANG J, et al. Regional groundwater flow assessment in a prospective high-level radioactive waste repository of China[J]. Water, 2017, 9(7): 551.
DOI URL |
| [70] | 董艳辉, 宋凡, 周鹏鹏, 等. 巴彦诺日公地段花岗岩微裂隙发育特征研究[J]. 工程地质学报, 2018(3): 572-582. |
| [71] |
SONG F, DONG Y H, XU Z F, et al. Granite microcracks: structure and connectivity at different depths[J]. Journal of Asian Earth Sciences, 2016, 124: 156-168.
DOI URL |
| [72] | 王礼恒, 董艳辉, 杨春, 等. 页岩气水力压裂开发的环境效应研究进展[J]. 工程地质学报, 2024, 32(4): 1447-1458. |
| [73] | 张东晓, 杨婷云, 吴天昊, 等. 页岩气开发机理和关键问题[J]. 科学通报, 2016(1): 62-71. |
| [74] |
VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334-8348.
DOI URL |
| [75] |
VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009.
DOI URL |
| [76] | 王礼恒, 董艳辉, 张倩, 等. 压裂液向上迁移对浅层地下水环境的影响分析[J]. 安全与环境工程, 2021, 28(3): 198-205. |
| [77] |
FLEWELLING S A, SHARMA M. Constraints on upward migration of hydraulic fracturing fluid and brine[J]. Groundwater, 2014, 52(1): 9-19.
DOI PMID |
| [78] |
RUTQVIST J, RINALDI A P, CAPPA F, et al. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 107: 31-44.
DOI URL |
| [79] | 冯雪磊, 马凤山, 赵海军, 等. 断层影响下的页岩气储层水力压裂模拟研究[J]. 工程地质学报, 2021, 29(3): 751-763. |
| [80] |
WANG L, DONG Y, ZHANG Q, et al. Numerical simulation of pressure evolution and migration of hydraulic fracturing fluids in the shale gas reservoirs of Sichuan Basin, China[J]. Journal of Hydrology, 2020, 588: 125082.
DOI URL |
| [81] | 利振彬, 黄天明, 庞忠和, 等. 页岩气开发的地下水环境背景值、监测指标及污染示踪方法研究: 以焦石坝区块为例[J]. 工程地质学报, 2019, 27(1): 170-177. |
| [82] |
HUANG T, PANG Z, LI Z, et al. A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China[J]. Journal of Hydrology, 2020, 581: 124403.
DOI URL |
| [83] |
SELVADURAI A P S, ZHANG D, KANG Y. Permeability evolution in natural fractures and their potential influence on loss of productivity in ultra-deep gas reservoirs of the Tarim Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 162-177.
DOI URL |
| [84] | 李忠. 盆地深层流体-岩石作用与油气形成研究前沿[J]. 矿物岩石地球化学通报, 2016(5): 807-816. |
| [85] |
马永生, 蔡勋育, 黎茂稳, 等. 深层-超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展[J]. 石油勘探与开发, 2024, 51(4): 692-707.
DOI |
| [86] |
DONG Y, DUAN R, LI Z, et al. Quantitative evaluation of hydrothermal fluids and their impact on diagenesis of deep carbonate reservoirs: insights from geochemical modeling[J]. Marine and Petroleum Geology, 2021, 124: 104797.
DOI URL |
| [87] |
OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144.
DOI URL |
| [88] |
蒋政, 舒彪, 谭静强. 二氧化碳基增强型地热系统储层换热研究现状及展望[J]. 地学前缘, 2024, 31(6): 235-251.
DOI |
| [89] |
孙焕泉, 高楠安, 吴陈冰洁, 等. 中深层地热资源勘探开发技术与典型应用[J]. 地学前缘, 2025, 32(2): 230-241.
DOI |
| [90] | 文冬光, 张二勇, 王贵玲, 等. 干热岩勘查开发进展及展望[J]. 水文地质工程地质, 2023, 50(4): 1-13. |
| [91] |
RIAHI A, PETTITT W, DAMJANAC B, Et al. Numerical modeling of discrete fractures in a field-scale FORGE EGS reservoir[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5245-5258.
DOI |
| [92] |
MAHMOODPOUR S, SINGH M, TURAN A, et al. Hydro-thermal modeling for geothermal energy extraction from Soultz-sous-Forêts, France[J]. Geosciences, 2021, 11(11): 464.
DOI URL |
| [93] |
ABE A, HORNE R N. Investigating fracture network creation and stimulation mechanism of EGS reservoirs[J]. Geothermics, 2023, 107: 102606.
DOI URL |
| [94] | 许天福, 胡子旭, 李胜涛, 等. 增强型地热系统:国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. |
| [95] | 谢文苹, 路睿, 张盛生, 等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术, 2020, 48(3): 77-84. |
| [96] | 许天福, 文冬光, 袁益龙. 干热岩地热能开发技术挑战与发展战略[J]. 地球科学, 2024, 49(6): 2131-2147. |
| [1] | 文章, 李一鸣, 郭绪磊, 万坦, 罗清树, 周宏. 葛洲坝库区裂隙河岸地表水-地下水交互特征[J]. 地学前缘, 2026, 33(1): 1-13. |
| [2] | 许林, 马海春, 王京平, 张庆, 黄逸航, 钱家忠, 王万林. 高地应力高温条件裂隙介质地下水非线性渗流研究进展[J]. 地学前缘, 2026, 33(1): 313-327. |
| [3] | 周斐然, 尹子悦, 孙晓敏, 宋健, 杨蕴, 吴剑锋. 融合数值模拟和机器学习的民勤盆地地下水潜力评价与主控因素识别[J]. 地学前缘, 2026, 33(1): 511-522. |
| [4] | 何晓, 牛花朋, 赵贤, 周浩彦, 林伟峻, 张关龙, 孟涛, 穆星. 基于数值模拟表征岩石组构对裂缝性储层发育影响程度的机理研究:以济阳坳陷花岗质岩石为例[J]. 地学前缘, 2025, 32(5): 361-376. |
| [5] | 胡景宏, 廖松泽, 蔡益栋, 芦俊. 深部页岩储层压裂裂缝扩展均匀性研究[J]. 地学前缘, 2025, 32(4): 471-482. |
| [6] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
| [7] | 余路, 李贤, 崔国栋, 邢东辉, 陆红锋, 王烨嘉. 启动压力对南海北部水合物藏开发动态的影响[J]. 地学前缘, 2025, 32(2): 178-194. |
| [8] | 石鸿蕾, 王婉丽, 王贵玲, 邢林啸, 陆川, 赵佳怡, 刘禄, 宋嘉佳. 典型高温地热系统水热循环及锂同位素分馏过程模拟研究[J]. 地学前缘, 2024, 31(6): 104-119. |
| [9] | 上官拴通, 田兰兰, 潘苗苗, 杨风良, 岳高凡, 苏野, 齐晓飞. 干热岩开发断层滑动及诱发地震风险研究:以唐山马头营干热岩场地为例[J]. 地学前缘, 2024, 31(6): 252-260. |
| [10] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
| [11] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
| [12] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
| [13] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
| [14] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
| [15] | 邢会林, 王建超, 逄硕, 王瑞泽, 刘冬豫, 马子涵, 张愉玲, 谭玉阳. 俯冲带深海-岩石圈流体交换及其效应[J]. 地学前缘, 2022, 29(5): 246-254. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||