地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 345-360.DOI: 10.13745/j.esf.sf.2025.8.33
王庆飞1,2,*(), 杨淑娟1, 马欢1, 刘学飞1, 张起钻3, 李中明4, 赵军5, 崔银亮6, 余文超7, 陈方戈1, 邓军1,*
收稿日期:
2025-07-28
修回日期:
2025-08-01
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
邓军
作者简介:
王庆飞(1978—),男,教授,博士生导师,主要从事区域成矿学研究。E-mail: wqf@cugb.edu.cn
基金资助:
WANG Qingfei1,2,*(), YANG Shujuan1, MA Huan1, LIU Xuefei1, ZHANG Qizuan3, LI Zhongming4, ZHAO Jun5, CUI Yinliang6, YU Wenchao7, CHEN Fangge1, DENG Jun1,*
Received:
2025-07-28
Revised:
2025-08-01
Online:
2025-09-25
Published:
2025-10-14
Contact:
DENG Jun
摘要:
铝土矿是由铝氧化物与铝氢氧化物与黏土矿物组成的矿床,是战略性大宗矿产铝与关键金属镓的主要提供者。底板为碳酸盐岩的喀斯特型铝土矿成因独特,不能被基于连续沉积的地层学和基于原地风化作用的红土型矿床学已有理论所涵盖,成为矿床学关注的焦点问题。依据中国铝土矿时空分布、构造环境与物质来源、矿物转换与形成条件主要取得以下认识:中国铝土矿层序格架主要分布于石炭纪与二叠纪,不同时期陆内盆地、被动陆缘与孤立台地构造沉积环境与喀斯特岩溶地势联合控制了矿体分布;伸展-俯冲-碰撞不同威尔逊旋回阶段控制了多元异地物源类型;晚古生代冰期、古特提斯闭合与大火成岩省群等多因耦合促进了中国多期次与大范围成矿;岩溶洼地中成矿环境垂向分带与同沉积作用控制了矿物转化与铝富集。研究提出了喀斯特铝土矿岩溶红土成因模型,即源自构造活动区岛弧火山灰沉降或者剥蚀区硅酸盐岩风化初始产物被搬运到岩溶盆地,经表生风化作用形成红土堆积,渗流带氧化酸性过渡至潜流带还原碱性环境,使硅-铝-铁有效分离,铝氧化物与铝氢氧化物离子结晶分层富集成矿;构造-气候-岩溶多因耦合驱动了喀斯特铝土矿矿化作用。
中图分类号:
王庆飞, 杨淑娟, 马欢, 刘学飞, 张起钻, 李中明, 赵军, 崔银亮, 余文超, 陈方戈, 邓军. 喀斯特型铝土矿岩溶红土成因模式[J]. 地学前缘, 2025, 32(5): 345-360.
WANG Qingfei, YANG Shujuan, MA Huan, LIU Xuefei, ZHANG Qizuan, LI Zhongming, ZHAO Jun, CUI Yinliang, YU Wenchao, CHEN Fangge, DENG Jun. Bauxitization of allochthonous laterite in karstic depressions[J]. Earth Science Frontiers, 2025, 32(5): 345-360.
图4 中国喀斯特型铝土矿野外地质剖面(a据文献[18,46]修改;b据文献[18]修改;c, d据文献[18]修改) a—华北边庄晚石炭世喀斯特型铝土矿床;b—华南桂西第四纪堆积型喀斯特型铝土矿;c, d—华南桂中第四纪岩溶盆地铝土矿堆积体及三水铝石结核;O2—中奥陶世;C2—晚石炭世;Q—第四纪。
Fig.4 Field geological profile of karst-type bauxite in China. a modified after [18,46]; b modified after [18]; (c, d) modified after [18].
图5 典型铝土矿剖面矿物及地球化学纵向变化(数据来自附表S1-S3;附图S1,限于篇幅,见网络版此文文献后的附表、附图——编者注) a—典型剖面岩性及主量纵向变化;b—典型剖面矿物纵向变化;c—典型剖面不同元素纵向变化。
Fig.5 Mineralogical and geochemical vertical variations in a typical bauxite profile. (a-c) data are derived from supplementary tables S1-S3 and supplementary figure S1.
图6 喀斯特型铝土矿成矿热力学条件(a据文献[50]修改;b据文献[51,52]修改) a—Si-Al溶解度和pH函数变化,S代表溶解度;b—铝土矿和红土形成的Eh-pH条件,Al-Fe等溶线是基于三水铝石和赤铁矿/针铁矿平衡(mol/L)。①~⑥代表不同Eh-pH条件的区域:在区域①和②中,Fe和Al溶解度高易淋滤,不会形成红土和铝土矿;区域③中,Fe迁移活性较低,Al优先且显著从土壤中淋失,长期作用会导致红土的形成; 区域④中,Al和Fe溶解度中等,源岩中Al和Fe较高时会分别形成铝土矿和红土;区域⑤中,地下水中通常含较高的Fe,因此主要形成红土和高铁铝土矿;区域⑥中,Fe优先且大量溶解迁出土壤,是形成铝土矿的最佳条件。
Fig.6 Thermodynamic conditions for metallogenesis of Karst-type bauxite. a modified after [50]; b modified after [51,52].
图7 喀斯特型铝土矿主要矿物共生序列(a-e据文献[23,52]修改) a—地表风化期酸性氧化环境,桂中第四纪风化物中特征矿物为三水铝石和高岭石;b—沉积成岩期碱性还原环境,桂西晚二叠世铝土矿特征矿物为硬水铝石、鲕绿泥石和氟碳钙铈矿;c—热液改造期,铝土矿经历热液作用,黔中早石炭世铝土矿特征矿物为热液伊利石;d—抬升期,铝土矿暴露在酸性氧化地表环境,桂西第四纪堆积型铝土矿特征矿物为针铁矿及少量三水铝石等矿物;e—喀斯特型铝土矿不同演化阶段主要矿物共生序列。
Fig.7 Paragenetic sequence of major minerals in karst-type bauxite. (a-e) modified after [23,52].
图8 中国铝土矿不同构造环境碎屑锆石年龄分布与形态特征(a-c据文献[17,63-64]修改) a—大陆伸展背景贵州早石炭世铝土矿碎屑锆石U-Pb年龄;b—俯冲背景桂西晚二叠世铝土矿碎屑锆石U-Pb年龄;c—岛弧拼贴背景华北晚石炭世铝土矿碎屑锆石U-Pb年龄。
Fig.8 Detrital zircon age distribution and morphological characteristics in Chinese bauxites generated in different tectonic settings. (a-c) modified after [17,63-64].
图9 喀斯特型铝土矿构造成矿模式示意图(a-c据文献[23]修改) a—大陆伸展背景沉积基底提供物质;b—大洋俯冲背景火山灰提供物质;c—岛弧拼贴背景增生岛弧提供成矿物质。
Fig.9 Tectonic-metallogenic model for karst-type bauxite deposits. (a-c) modified after [23].
图10 不同构造背景铝土矿δ202Hg-Δ199Hg和THg-Δ199Hg图解(a据文献[72-73]修改;原始数据引自文献[21]) a—华北铝土矿与陆壳熔融岩浆岩有关,华南铝土矿中有弧环境岩浆岩风化物质贡献;b—华北铝土矿样品显示陆相Hg同位素指标,华南铝土矿样品部分显示大洋Hg同位素指标,THg表示总Hg含量。
Fig.10 Detrital zircon age distribution and morphological characteristics in chinese bauxites from different tectonic settings. a modified after [72-73]; b adapted from [21].
图11 中国铝土矿成矿构造背景与古地理环境(a据文献[23]修改;b据文献[63,65]修改) a—中—晚二叠世古特提斯洋格局、大火成岩省分布与喀斯特型铝土矿分布,V1代表塔里木大火成岩省(280 Ma),V2代表斯卡格拉克大火成岩省(297 Ma),V3代表冈瓦纳大陆南缘(南羌塘-保山)成矿省(320~280 Ma);b—华南板块早石炭世-晚三叠世古地理模型,为不同时期古地理格局综合。
Fig.11 Tectonic setting and paleogeographic environment of bauxite mineralization in china. a modified after [23]; b modified after [63,65].
图12 喀斯特型铝土矿岩溶地貌控矿模式 成矿期岩溶地貌由高地势溶斗溶洼向低地势溶盆溶原过渡,溶斗溶洼内矿体厚度变化大连续性差,溶盆溶原矿体厚度相对稳定连续性好;现代喀斯特化破坏沉积矿体在新的喀斯特地貌中形成堆积型矿体。
Fig.12 Karst geomorphology-controlled mineralization model of bauxite deposits
图13 华北地台矿体厚度分布与矿体厚度-品位相关性 a—华北板块喀斯特地势与矿体厚度关系;喀斯特地势高低用晚石炭世太原组煤层厚度代表,厚度越大地势越低;铝土矿厚度来自河南与山西铝土矿钻孔数据;b—河南、山西铝土矿Al2O3品位与厚度关系示意图;c—河南郁山铝土矿厚度与铁铝质层厚度、Al2O3品位关系; 数据来自河南省郁山铝土矿勘查钻孔。
Fig.13 Thickness distribution and thickness-grade correlation of ore bodies in the north china platform
图14 河南省郁山矿区钻孔位置 a—郁山矿区平面地质图与工程布置;b—郁山矿区典型勘探线剖面图,显示矿体空间形态受到石炭纪喀斯特地貌起伏与后期褶皱与断层构造联合控制。
Fig.14 Drill hole locations in the Yushan mining area, Henan Province
图15 喀斯特型铝土矿岩溶红土成矿模式图(据文献[34]修改) 显示不同成矿期矿物变化,风化残余物或/和火山灰提供主要成矿物质,异地物质搬运到喀斯特洼地中经历铝土矿化作用,不同成矿期矿物随深度有系统变化,Fe-Si被淋滤迁移导致Al在喀斯特洼地中富集。
Fig.15 Genetic model diagram of karst lateritization mineralization. Modified after [34].
[1] | BARDOSSY G. Karst bauxites:bauxite deposits on carbonate rock. developments in: developments in economic geology 14[M]. Amsterdam: Elsevier, 1982, 441. |
[2] | DENG J, WANG Q F, YANG S J, et al. Genetic relationship between the emeishan plume and the bauxite deposits in western Guangxi, China: constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores[J]. Journal of Asian Earth Sciences, 2010, 37: 412-424. |
[3] | SCHULZ K J, DWYOUNG J H, SEAL R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply[M]. Virginia: United States Geological survey, 2017. |
[4] | 温汉捷, 朱传威, 杜胜江, 等. 中国镓锗铊镉资源[J]. 科学通报, 2020, 65: 3699-3699. |
[5] | 王庆飞, 刘学飞, 邓军, 等. 喀斯特型铝土矿是如何形成的?[J]. 地球科学, 2022, 47: 3880-3881. |
[6] | BERTHIER P. Analyse del’alumine hydratee des baux, departement des bouches du rhone[J]. Anne Miner. 1821, 6: 531-4. |
[7] | DOLFUSS G. Obeservations a la note de f[J]. Laur. Bull. Soc. Geol. Fr. Paris, 1905, 4: 171. |
[8] | GORETSKY Y K. Regularities in the distribution of bauxite deposits[C]// Trudy VIMS Novaya Ser. Moscow, 1960: 1-257. |
[9] | COQUAND H. Sur les bauxites de la chaine des des alpilles et leur age geologique[M]. Paris: Société Géologique de France Bulletin, 1871, 28: 98-114. |
[10] | GEDEON T. The possibility of bauxite formation[J]. Acta Geol. Acad. Sci. Hung. Budapest, 1952, 4: 95-105. |
[11] | BERG L S. On the origin of the Uralian bauxites. in: outlines of physical geography. Izd[M]. Moscow: Ansssr, 1949. |
[12] | 刘长龄. 中国石炭纪铝土矿的地质特征与成因[J]. 沉积学报, 1988, 6: 1-10. |
[13] | 廖士范, 梁同荣, 张月恒. 论我国铝土矿床类型及其红土化风化壳形成机制问题[J]. 沉积学报, 1989, 7: 1-10. |
[14] | 王庆飞, 邓军, 刘学飞, 等. 铝土矿地质与成因研究进展[J]. 地质与勘探, 2012, 48: 430-448. |
[15] | 刘平. 八论贵州之铝土矿-黔中—渝南铝土矿成矿背景及成因探讨[J]. 贵州地质, 2001, 18: 238-243. |
[16] | 王力, 龙永珍, 彭省临. 桂西铝土矿成矿物质来源的地质地球化学分析[J]. 桂林理工大学学报, 2004, 24: 1-6. |
[17] | WANG Q F, DENG J, LIU X F, et al. Provenance of late carboniferous bauxite deposits in the north China craton: new constraints on marginal arc construction and accretion processes[J]. Gondwana Research, 2016, 38: 86-98. |
[18] | WANG Q F, YANG L, XU X J, et al. Multi-stage tectonics and metallogeny associated with phanerozoic evolution of the south China block: a holistic perspective from the Youjiang basin[J]. Earth-Science Reviews, 2020, 211: 103405. |
[19] | LIU X F, WANG Q F, Zhang Q Z, et al. Genesis of the permian karstic Pingguo bauxite deposit, western Guangxi, China[J]. Mineralium Deposita, 2017, 52: 1031-1038. |
[20] | LIU X F, WANG Q F, ZHANG Q Z, et al. Transformation from permian to quaternary bauxite in southwestern south China block driven by superimposed orogeny: a case study from Sanhe ore deposit[J]. Ore Geology Reviews, 2017, 90: 998-1017. |
[21] | LIU X F, WANG Q F, PENG B, et al. Intensified and apace bauxitization over the paleo-karstic surface linked to volcanism[J]. Geological Society Of America Bulletin, 2022, 135: 1187-1205. |
[22] | YANG S J, WANG Q F, ZHANG Q Z, et al. Terrestrial deposition processes of quaternary gibbsite nodules in the Yongjiang basin, southeastern margin of Tibet, and implication for the genesis of ancient karst bauxite[J]. Sedimentary Geology, 2018, 373: 292-306. |
[23] | YANG S J, WANG Q F, LIU X F, et al. Global spatio-temporal variations and metallogenic diversity of karst bauxites and their tectonic, paleogeographic and paleoclimatic relationship with the tethyan realm evolution[J]. Earth-Science Reviews, 2022, 233: 104184. |
[24] | BARDOSSY G, ALEVA G J J. Lateritic bauxites[M]. Amsterdam: Elsevier, 1990: 624. |
[25] | BARDOSSY G, COMBES P J. Karst bauxites:interfingering of deposition and palaeoweathering.in: thiry, m., simon-coinçon, r. (eds.), palaeoweathering, palaeosurfaces and related continental deposits[M]. Oxford, UK: Blackwell Publishing Ltd, 1999: 189-206. |
[26] | XIAO W J, HUANG B C, HAN C M, et al. A review of the western part of the altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18: 253-273. |
[27] | XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three permo-triassic collage systems in central-east Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. |
[28] | XIAO W J, SONG D F, WINDLEY B F, et al. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China Earth Sciences, 2020, 63: 329-361. |
[29] | WILHEM C, WINDLEY B F, STAMPFLI G M. The altaids of central Asia: a tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113: 303-341. |
[30] | KRONER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the central asian orogenic belt[J]. Gondwana Research, 2014, 25: 103-125. |
[31] | LI S Z, ZHAO S J, LIU X, et al. Closure of the proto-tethys ocean and early paleozoic amalgamation of microcontinental blocks in east Asia[J]. Earth-Science Reviews, 2018, 186: 37-75. |
[32] | LI P F, SUN M, SHU C T, et al. Evolution of the central asian orogenic belt along the siberian margin from neoproterozoicearly paleozoic accretion to devonian trench retreat and a comparison with phanerozoic eastern Australia[J]. Earth-Science Reviews, 2019, 198: 102951. |
[33] | BOGATYREV B A, ZHUKOV V V, TSEKHVSKY Y G. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits[J]. Lithology and Mineral Resources. 2009, 44: 135-151. |
[34] | WANG R X, WANG Q F, UYSAL I T, et al. Mesozoic hydrothermal overprint on carboniferous bauxite in China[J]. Economic Geology, 2021, 116: 787-800. |
[35] | ZARASVANDI A, CHARCHI A, CARRANZA E J M, et al. Karst bauxite deposits in the zagros mountain belt, Iran[J]. Ore Geology Reviews, 2008, 34: 521-532. |
[36] | KHOSRAVI M, V’ERARD C, ABEDINI A. Palaeogeographic and geodynamic control on the Iranian karst-type bauxite deposits[J]. Ore Geology Reviews, 2021, 139: 104589. |
[37] | SHAMANIAN G H, HATTORI K. Neoproterozoic evolution of northern gondwana recorded in detrital zircon grains from the gheshlagh bauxite deposit, alborz mountains, Iran block[J]. Gondwana Research, 2021, 93: 184-196. |
[38] | KELLER W D, WESTCOTT J F, BLEDSOE A O. The origin of missouri fire clays[J]. Clays and Clay Minerals. 1953, 2(1): 7-46. |
[39] | ROZELLE P L, FEINEMAN M D, WHITE T S. et al. The mercer clay in pennsylvania as a polymetallic mineral resource: review and update[J]. Mining Metallurgy Exploration. 2021, 38(5): 2037-2054. |
[40] | ÖZLU N. Trace element contents of karst bauxites and their parent rocks in the mediterranean belt[J]. MineraLIUm Deposita, 1983, 18: 469-476. |
[41] | MONGELLI G, BUCCIONE R, SINISI R. Genesis of autochthonous and allochthonous apulian karst bauxites (southern Italy): climate constraints[J]. Sedimentary Geology. 2015, 325: 168-176. |
[42] | KELEMEN P, DUNKL I, CSILLAG G. et al. Tracing multiple resedimentation on an isolated karstified plateau: the bauxitebearing miocene red clay of the southern Bakony mountains, Hungary[J]. Sedimentary Geology. 2017, 358, 84-96. |
[43] | Mondillo N, Chelle-Michou C, Putzolu F, et al. The mid-cretaceous bauxites of SE France: geochemistry, U-Pb zircon dating and their implications for the paleogeography at the junction between alpine tethys and pyrenean rift[J]. Gondwana Research, 2025, 137: 145-170. |
[44] | NELSON C E, PROENZA J A, LEWIS J F, et al. The metallogenic evolution of the greater antilles[J]. Geologica Acta, 2011, 9: 229-264. |
[45] | PATTERSON S H, KURTZ H F, OLSON J C, et al. World bauxite resources[D]. US Geological Survey Professional Paper. 1986, 1076-B: 151. |
[46] | YANG S J, WANG Q F, DENG J. Genesis of karst bauxite-bearing sequences in Baofeng, Henan (China), and the distribution of critical metals[J]. Ore Geology Reviews, 2023, 115: 103161. |
[47] | LIU X F, ZHAO L H, WANG Q F, et al. Provenance and genesis of karstic bauxite deposits in China: implications for the formation of super-large karstic bauxite deposits[J]. Earth-Science Reviews, 2024, 257: 104882. |
[48] | LIU X F, WANG Q F, FENG Y W, et al. Genesis of the Guangou karstic bauxite deposit in western Henan, China(Article)[J]. Ore Geology Reviews, 2013, 55: 162-175. |
[49] | LIU X F, WANG Q F, ZHAO L H, et al. Metallogeny of the large-scale carboniferous karstic bauxite in the Sanmenxia area, southern part of the north China craton, China[J]. Chemical Geology, 2020, 556: 119851. |
[50] | RAISWELL R W, BRIMBLECOMBE P, DENT D L, et al. Environmental chemistry: the earth-air-water factory[M]. London: Hodder Arnold, 1980: 184. |
[51] | NORTON SA. Laterite and bauxite formation[J]. Economic Geology, 1973, 68: 353-61. |
[52] | LIU X F, WANG Q F, ZHANG Q Z, et al. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit form ation conditions[J]. Ore Geology Reviews, 2016, 75: 100-115. |
[53] | LONG Y Z, CHI G X, LIU J P, et al. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China[J]. Ore Geology Reviews, 2017, 91: 404-418. |
[54] | WANG Q F, DENG J, LIU X F, et al. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, west Guangxi, China[J]. Journal of Asian Earth Sciences, 2010, 39: 701-712. |
[55] | WANG Z S, LI Y, ALGEO T J, et al. Critical metal enrichment in upper carboniferous karst bauxite[J]. Mineralium Deposita, 2023, 59: 237-254. |
[56] | HAO X L, LEUNG K, WANG R C, et al. The geomicrobiology of bauxite deposits[J]. Geoscience Frontiers, 2010, 1: 81-89. |
[57] | RICKARD D, MUSSMANN M, STEADMAN J A. Sedimentary sulfides[J]. Elements, 2017, 13: 117-122. |
[58] | SUN X F, YANG S J, LIU X F, et al. Metallogenic process of Permian Taiping karstic bauxite deposit in Youjiang basin, China[J]. Ore Geology Reviews, 2023, 152: 105258. |
[59] | ZWINGMANN H, MANCKTELOW N, ANTOGNINI M, et al. Dating of shallow faults: new constraints from the alp transit tunnel site (Switzerland)[J]. Geology, 2010, 38: 487-490. |
[60] | VIOLA G, SCHEIBER T, FREDIN O, et al. Deconvoluting complex structural histories archived in brittle fault zones[J]. Nature Communications, 2016, 7: 13448. |
[61] | 刘学飞, 王庆飞, 马遥. 华北克拉通南缘石炭系本溪组铁-铝黏土矿物质来源: 以河南三门峡大安铝黏土矿床为例[J]. 古地理学报, 2020, 22: 965-976. |
[62] | MARCHAND E, SERANNE M, BRUGUIER O, et al. LA-ICP-MS dating of detrital zircon grains from the cretaceous allochthonous bauxites of Languedoc (south of France): provenance and geodynamic consequences[J]. Basin Research, 2021, 33: 270-290. |
[63] | WANG R X, WANG Q F, HUANG Y X, et al. Combined tectonic and paleogeographic controls on the genesis of bauxite in the early carboniferous to permian central Yangtze island[J]. Ore Geology Reviews, 2018, 101: 468-480. |
[64] | YANG S J, WANG Q F, LAI X L, et al. Genesis of end-guadalupian bauxite and pyrite deposits in the Youjiang basin (south China): insights into the causative link between magmatic events and mass extinction[J]. Journal of Asian Earth Sciences, 2021, 215: 104801. |
[65] | ZHANG J Y, WANG Q F, LIU X F, et al. Provenance and ore-forming process of permian lithium-rich bauxite in central Yunnan, SW China[J]. Ore Geology Reviews, 2022, 169: 106078. |
[66] | YE Q, WEN H J, LUO C G, et al. Provenance of early permian Li-rich claystone from central Yunnan, south China: constrained by Sr-Nd-Pb isotopes, geochemistry, and zircon U-Pb ages[J]. Ore Geology Reviews, 2023, 162: 105708. |
[67] | YANG J H, CAWOOD P A, DU Y S, et al. Large igneous province and magmatic arc sourced permian-triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261-262: 120-131. |
[68] | YU W C, ALGEO T J, DU Y S, et al. Mixed volcanogeniclithogenic sources for permian bauxite deposits in southwestern Youjiang basin, south China, and their metallogenic significance[J]. Sedimentary Geology, 2016, 341: 276-288. |
[69] | ZHAO H N, LING K Y, DU S J, et al. Provenance of the Nb-rich bauxite and Li-rich claystone at the base of the Heshan formation in Pingguo, Guangxi, SW China: constrained by U-Pb ages and trace element contents of detrital zircon[J]. Ore Geology Reviews, 2023, 161: 105633. |
[70] | LIU Y, LIU D, MIAO L, et al. Devonian a-type graniticmagmatism on the northern margin of the north China craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17: 632-641. |
[71] | ZHAO L H, LIU X F. Metallogenic and tectonic implications of detrital zircon U-Pb, Hf isotopes, and detrital rutile geochemistry of late carboniferous karstic bauxite on the southern margin of the North China craton[J]. Lithos, 2019, 350-351: 105222. |
[72] | BLUM J D, BERGQUIST B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388: 353-359. |
[73] | YIN R S, FENG X B, HURLEY J P, et al. Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites[J]. Scientific Reports, 2016, 6(6): 18686. |
[74] | ÖZTURK H, HEIN J R, HANILOI N. Genesis of the Dogankuzu and Mortas bauxite deposits, Taurides, Turkey: separation of Fe, and Mn and implications for passive margin metallogeny[J]. Economic Geology, 2002, 97: 1063-1077. |
[75] | LING K Y, WEN H J, FAN H F, et al. Iron loss during continental weathering in the early carboniferous period recorded by karst bauxite[J]. Journal of Geophysical Research: Earth Surface, 2023, 128: e2022JF006906. |
[76] | LI S, JAHN B M, ZHAO S, et al. Triassic southeastward subduction of north China block to south China block: insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 2017, 166: 270-285. |
[77] | YANG S J, HUANG Y X, WANG Q F, et al. Mineralogical and geochemical features of karst bauxites from Poci (western Henan, China), implications for parental affinity and bauxitization[J]. Ore Geology Reviews, 2019, 105: 295-309. |
[78] | LI J W, VASCONCELOS P, DUZGOREN-AYDIN N, et al. Neogene weathering and supergene manganese enrichment in subtropical south China: an 40Ar/39Ar approach and paleoclimatic significance[J]. Earth and Planetary Science Letters, 2007, 256: 389-402. |
[79] | YU W C, ALGEO T J, YAN J X, et al. Climatic and hydrologic controls on upper paleozoic bauxite deposits in south China[J]. Earth-Science Reviews, 2019, 189: 159-176. |
[80] | WANG Q F, LIU X F, YAN C H, et al. Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region, SW Henan, China[J]. Ore Geology Reviews, 2012, 48: 258-270. |
[1] | 陈伟志, 陶兰初, 李静婷, 张亚, 巴永, 宋琳. 高原湿地纳帕海流域地表水水化学特征及控制因素[J]. 地学前缘, 2025, 32(5): 493-510. |
[2] | 徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34. |
[3] | 杨金玲, 董岳, 冯文澜, 张昊哲, 张甘霖. 红壤关键带质子产生和消耗及其环境效应综述[J]. 地学前缘, 2025, 32(3): 231-247. |
[4] | 杨睿涵, 杨业, 曹振平, 徐胜. 大气宇宙成因核素10Be在地球科学研究中的应用:进展与展望[J]. 地学前缘, 2025, 32(3): 392-407. |
[5] | 赵宇浩, 杨志明, 朱意萍, Kumul CONRAD, 杜等虎, Mosusu NATHAN, 王天刚, 姜瀚涛, 姚仲友. 巴布亚新几内亚镍元素地球化学特征及成矿潜力[J]. 地学前缘, 2025, 32(1): 183-193. |
[6] | 陈发家, 肖琼, 胡祥云, 郭永丽, 孙平安, 张宁. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459. |
[7] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[8] | 朱茂林, 刘震, 刘惠民, 张鹏飞, 赵振. 东营凹陷北带基岩风化壳储层发育特征及控制因素[J]. 地学前缘, 2024, 31(3): 324-336. |
[9] | 王野, 陈旸, 陈骏. 岩石有机碳风化及其控制因素[J]. 地学前缘, 2024, 31(2): 402-409. |
[10] | 陈瑜, 徐飞, 程宏飞, 陈贤哲, 温汉捷. 锂同位素地球化学研究新进展[J]. 地学前缘, 2023, 30(5): 469-490. |
[11] | 谢银财, 于奭, 缪雄谊, 李军, 何师意, 孙平安. 青藏高原流域岩石风化机制及其CO2消耗通量:以拉萨河为例[J]. 地学前缘, 2023, 30(5): 510-525. |
[12] | 欧阳恺皋, 蒋小伟, 马策, 闫宏彬, 任建光, 樊尧, 张润平, 付前方, 李旭, 万力. 岩体表层凝结水的形成与转化规律:对岩石风化水分来源的指示意义[J]. 地学前缘, 2023, 30(2): 506-513. |
[13] | 李海明, 李梦娣, 肖瀚, 刘学娜. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178. |
[14] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[15] | 易泽邦, 付伟, 赵芹, 许成, 陆济璞. 花岗岩风化壳中稀土纳米微粒的提取、表征及赋存状态研究[J]. 地学前缘, 2022, 29(1): 42-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||