地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 220-229.DOI: 10.13745/j.esf.sf.2024.12.83
收稿日期:
2024-04-01
修回日期:
2025-01-08
出版日期:
2025-09-25
发布日期:
2025-10-14
通信作者:
毛绪美
基金资助:
Received:
2024-04-01
Revised:
2025-01-08
Online:
2025-09-25
Published:
2025-10-14
Contact:
MAO Xumei
摘要:
地热水循环深度是地热研究中的重要参数,在评估地热资源及其更新能力中起到重要作用。传统方法评估地热水循环深度基于补给段地下水的温度变化和地热系统的平均地热增温率。然而,由于地热系统中地下水补给段和排泄段的温度分布并不一致,基于补给段的地下水循环深度被高估。对流型地热系统的地下水温度分布特征表明:补给段的温度变化大,排泄段的温度变化小。这意味着补给段的地热增温率理论上应该大于排泄段的地热增温率。但实际观察结果恰恰相反,例如广东阳江新洲地热田补给段的地热增温率为3.04 ℃/100 m,排泄段的地热增温率为4.97 ℃/100 m。可能的原因是,补给段地下水温度随深度的变化并没有遵循地热田的地热增温率。排泄段靠近热交换区,深部热源和热对流使地热水保持高温,地下水温度主要受围岩热传导(或绝热冷却)的影响而降温,其变化遵循排泄段的地热增温率。因此,用排泄段地热水的温度变化和地热增温率评估的地热水循环深度代表热交换区对流顶部深度,用补给段评估的深度代表补给段地下水平流深度。在广东阳江新洲地热田研究实例中刻画了地下水各种深度的含义,用排泄段估算的热交换区对流顶部深度(0.75~1.49 km)比补给段地下水平流深度(3.25~4.34 km)要浅得多,对流热交换区(4.34~1.49 km)中某一深度的断裂带才是地热开发取水取热的理想位置。
中图分类号:
毛绪美, 李翠明. 地热系统中地下水循环深度的重新评估[J]. 地学前缘, 2025, 32(5): 220-229.
MAO Xumei, LI Cuiming. Reassessment of the depth of groundwater circulation in geothermal systems[J]. Earth Science Frontiers, 2025, 32(5): 220-229.
样品 | 类型 | 热交换温度/℃ | 循环深度 (传统方法)/km | 混合前地热水 温度/℃ | 热交换区到混合区 迁移距离/km | 热交换区对流顶部深度 (新认识)/km |
---|---|---|---|---|---|---|
HW1 | 热井 | 140 | 3.88 | 124 | 0.32 | 1.02 |
HW2 | 热井 | 148 | 4.14 | 126 | 0.44 | 1.14 |
HW3 | 热井 | 154 | 4.34 | 131 | 0.46 | 1.15 |
HW4 | 热井 | 153 | 4.31 | 132 | 0.42 | 1.12 |
HW5 | 热井 | 144 | 4.01 | 116 | 0.56 | 1.26 |
HS1 | 热泉 | 138 | 3.81 | 116 | 0.45 | 1.15 |
HS2 | 热泉 | 132 | 3.62 | 128 | 0.09 | 0.79 |
HS3 | 热泉 | 123 | 3.32 | 120 | 0.06 | 0.75 |
HS4 | 热泉 | 125 | 3.38 | 86 | 0.79 | 1.49 |
HS5 | 热泉 | 134 | 3.68 | 97 | 0.74 | 1.44 |
HS6 | 热泉 | 121 | 3.25 | 112 | 0.18 | 0.88 |
表1 分别采用补给段(传统方法)和排泄段(本文提出的新认识)估算的新州地热田地热水循环深度
Table 1 The circulation depths of geothermal water in Xinzhou geothermal field estimated with the recharge section (traditional method) and with the discharge section (new insight proposed in this paper), respectively
样品 | 类型 | 热交换温度/℃ | 循环深度 (传统方法)/km | 混合前地热水 温度/℃ | 热交换区到混合区 迁移距离/km | 热交换区对流顶部深度 (新认识)/km |
---|---|---|---|---|---|---|
HW1 | 热井 | 140 | 3.88 | 124 | 0.32 | 1.02 |
HW2 | 热井 | 148 | 4.14 | 126 | 0.44 | 1.14 |
HW3 | 热井 | 154 | 4.34 | 131 | 0.46 | 1.15 |
HW4 | 热井 | 153 | 4.31 | 132 | 0.42 | 1.12 |
HW5 | 热井 | 144 | 4.01 | 116 | 0.56 | 1.26 |
HS1 | 热泉 | 138 | 3.81 | 116 | 0.45 | 1.15 |
HS2 | 热泉 | 132 | 3.62 | 128 | 0.09 | 0.79 |
HS3 | 热泉 | 123 | 3.32 | 120 | 0.06 | 0.75 |
HS4 | 热泉 | 125 | 3.38 | 86 | 0.79 | 1.49 |
HS5 | 热泉 | 134 | 3.68 | 97 | 0.74 | 1.44 |
HS6 | 热泉 | 121 | 3.25 | 112 | 0.18 | 0.88 |
[11] | 汪集旸, 熊亮萍, 庞忠和. 利用地热资料确定地下热水循环深度[J]. 科学通报, 1990, 35(5): 378-380. |
[12] | 柳富田, 苏小四, 董维红, 等. 同位素技术在地下水循环深度确定中的应用[J]. 人民黄河, 2008, 30(4): 52-54. |
[13] | KEBEDE S, TRAVI Y, ALEMAYEHU T, et al. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia[J]. Applied Geochemistry, 2005, 20(9): 1658-1676. |
[14] | LUO L, PANG Z H, LIU J X, et al. Determining the recharge sources and circulation depth of thermal waters in Xianyang geothermal field in Guanzhong Basin: the controlling role of Weibei Fault[J]. Geothermics, 2017, 69: 55-64. |
[15] | 戴振宇. 地热温标法在循环深度计算的应用[J]. 内蒙古煤炭经济, 2017( 增刊2): 142-143. |
[16] | ZENG Y C, HE B, TANG L S, et al. Numerical simulation of temperature field and pressure field of the fracture system at Zhangzhou geothermal field[J]. Environmental Earth Sciences, 2020, 79(11): 262. |
[17] | LIAO Y Z, LIU Y G, WANG G L, et al. Genesis mechanisms of geothermal resources in Mangkang geothermal field, Tibet, China: evidence from hydrochemical characteristics of geothermal water[J]. Water, 2022, 14(24): 4041. |
[18] | QIU X L, WANG Y, WANG Z Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567: 339-350. |
[19] | MAO X M, ZHU D B, NDIKUBWIMANA I, et al. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 2021, 593: 125889. |
[20] | KIRYUKHIN A V, ASAULOVA N P, VOROZHEIKINA L A, et al. Recharge conditions of the low temperature paratunsky geothermal reservoir, Kamchatka, Russia[J]. Procedia Earth and Planetary Science, 2017, 17: 132-135. |
[21] | REN Z H, ZHOU X, YANG M L, et al. Hydrochemical characteristics and formation of the Madeng hot spring in Yunnan, China[J]. Geofluids, 2018, 2018: 2368246. |
[1] | AKRAM W, CHEN W, HUANG C S, et al. Genesis of geothermal waters in Suichuan County, China: an integrated method constrained by the hydrochemical and isotopic characteristics[J]. Water, 2022, 14(10): 1591. |
[2] | SUSMITA G, RAI ABHISHEK K, SUBHASISH T. Re-visiting geothermal fluid circulation, reservoir depth and temperature of geothermal springs of India[J]. Journal of Hydrology, 2022, 612(PA): 128131. |
[3] | CARREIRA P M, MARQUES J M, GUERRA A, et al. Caldelas and gerês hydrothermal systems (NW Portugal): a comparative study based on geochemical and isotopic signatures[J]. Environmental Earth Sciences, 2021, 80(3): 100. |
[4] | NDIKUBWIMANA I, MAO X M, NIYONSENGA J D, et al. Water-rock interaction, formation and circulation mechanism of highly bicarbonate groundwater in the northwestern geothermal prospects of Rwanda[J]. Episodes, 2022, 45(1): 73-86. |
[5] | ZHANG H, WANG G, ZHANG W, et al. Characteristics of the Rongcheng Bulge Geothermal Field and the Evolution of Geothermal Fluids, Xiong’ an New Area, China[J]. Water, 2022, 14(16): 2468. |
[6] | LIU Y G, WANG G L, GUO X Z, et al. A joint method based on geochemistry and magnetotelluric sounding for exploring geothermal resources in sedimentary basins and its application[J]. Water, 2022, 14(20): 3299. |
[7] | MAO X M, DONG Y Q, HE Y Y, et al. The effect of granite fracture network on silica-enriched groundwater formation and geothermometers in low-temperature hydrothermal system[J]. Journal of Hydrology, 2022, 609: 127720. |
[8] | CHATTERJEE S, GUSYEV M A, SINHA U K, et al. Understanding water circulation with tritium tracer in the Tural-Rajwadi geothermal area, India[J]. Applied Geochemistry, 2019, 109: 104373. |
[9] | TRUESDELL A H, NATHENSON M, RYE R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research, 1977, 82(26): 3694-3704. |
[10] | ADIARATOU T, MAO X M, FENG L, et al. Use of microbial communities to assess the mixing of deep and shallow groundwater: case study from Southern China[J]. Hydrogeology Journal, 2022, 30(8): 2299-2313. |
[22] | YIN Z B, LI X, HUANG C S, et al. Analysis of the formation mechanism of medium and low-temperature geothermal water in Wuhan based on hydrochemical characteristics[J]. Water, 2023, 15(2): 227. |
[23] | HU H Y, LU G P, LU Q Y, et al. Hydrogeochemical characteristics and geothermometry of hot springs in the tensile tectonic Region Leizhou Peninsula and Hainan Island in South China[J]. Geofluids, 2022, 2022: 1101015. |
[24] | WANG G W, KUANG J. Genetic analysis of geothermal resources in deep-seated fault area in Tonghe County, NorthEast China and implications of geothermal exploration[J]. Sustainability, 2022, 14(9): 5431. |
[25] | WANG Z T, JIANG G Z, ZHANG C, et al. Thermal regime of the lithosphere and geothermal potential in Xiongan New Area[J]. Energy Exploration and Exploitation, 2019, 37(2): 787-810. |
[26] | LONG X T, ZHANG K N, YUAN R Q, et al. Hydrogeochemical and isotopic constraints on the pattern of a deep circulation groundwater flow system[J]. Energies, 2019, 12(3): 404. |
[27] | TIAN J, STEFÁNSSON A, LI Y M, et al. Geochemistry of thermal fluids and the genesis of granite-hosted Huangshadong geothermal system, SouthEast China[J]. Geothermics, 2023, 109: 102647. |
[28] | MOECK I S. Catalog of geothermal play types based on geologic controls[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 867-882. |
[29] | BELHAI M, FUJIMITSU Y, NISHIJIMA J, et al. Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters[J]. Arabian Journal of Geosciences, 2016, 10(1): 8. |
[30] | ZHANG Y Q, ZHOU X, LIU H S, et al. Hydrogeochemistry, geothermometry, and genesis of the hot springs in the Simao basin in southwestern China[J]. Geofluids, 2019, 2019: 7046320. |
[31] | 多吉. 典型高温地热系统: 羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. |
[32] | BIRKLE P, BUNDSCHUH J, SRACEK O. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico[J]. Water Research, 2010, 44(19): 5605-5617. |
[33] | CHIODINI G, LICCIOLI C, VASELLI O, et al. The Domuyo volcanic system: an enormous geothermal resource in Argentine Patagonia[J]. Journal of Volcanology and Geothermal Research, 2014, 274: 71-77. |
[34] | 史自德, 毛绪美, 叶建桥, 等. 中低温地热系统低盐度地热水高含量钠的地球化学成因: 以广东惠州黄沙洞地热田为例[J]. 地球科学, 2024, 49(1): 271-287. |
[35] | XU P P, LI M N, QIAN H, et al. Hydrochemistry and geothermometry of geothermal water in the central Guanzhong Basin, China: a case study in Xi’an[J]. Environmental Earth Sciences, 2019, 78(3): 87. |
[36] | 王莹, 周训, 于湲, 等. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4): 605-612. |
[37] | 张发旺, 王贵玲, 侯新伟, 等. 地下水循环对围岩温度场的影响及地热资源形成分析: 以平顶山矿区为例[J]. 地球学报, 2000, 21(2): 142-146. |
[38] | 林塨. 漳州汤洋地下水循环对围岩温度场的影响及水热系统成因分析[J]. 能源与环境, 2023(2): 43-45. |
[39] | 邓孝. 地下水垂直运动的地温场效应与实例剖析[J]. 地质科学, 1989, 24(1): 77-81. |
[40] | CLAUSER C, VILLINGER H. Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben[J]. Geophysical Journal International, 1990, 100(3): 393-414. |
[41] | YANG J W, FENG Z H, LUO X R, et al. Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 64-71. |
[42] | CSEREPES L, LENKEY L. Forms of hydrothermal and hydraulic flow in a homogeneous unconfined aquifer[J]. Geophysical Journal International, 2004, 158(2): 785-797. |
[43] | 毛绪美, 叶建桥, 董亚群, 等. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法[J]. 地质科技通报, 2022, 41(1): 137-145. |
[44] | DOMENICO P A, PALCIAUSKAS VV. Theoretical analysis of forced convective heat transfer in regional ground-water flow[J]. Geological Society of America Bulletin, 1973, 84(12): 3803-3814. |
[45] | SZIJÁRTÓ M, GALSA A, TÓTH Á, et al. Numerical investigation of the combined effect of forced and free thermal convection in synthetic groundwater basins[J]. Journal of Hydrology, 2019, 572: 364-379. |
[46] | LÓPEZ D L, SMITH L. Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow[J]. Water Resources Research, 1995, 31(6): 1489-1503. |
[47] | YANG J, LARGE RR, BULL S, et al. Basin-scale numerical modeling to test the role of buoyancy-driven fluid flow and heat transfer in the formation of stratiform Zn-Pb-Ag deposits in the northern mount isa basin[J]. Economic Geology, 2006, 101(6): 1275-1292. |
[48] | PRZYBYCIN A M, SCHECK-WENDEROTH M, SCHNEIDER M. The origin of deep geothermal anomalies in the German Molasse Basin: results from 3D numerical models of coupled fluid flow and heat transport[J]. Geothermal Energy, 2017, 5(1): 1. |
[49] | 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉: 中国地质大学(武汉), 2018. |
[50] | NDIKUBWIMANA I, MAO X M, ZHU D B, et al. Geothermal evolution of deep parent fluid in Western Guangdong, China: evidence from water chemistry, stable isotopes and geothermometry[J]. Hydrogeology Journal, 2020, 28(8): 2947-2961. |
[1] | 肖昀廷, 蔡晨康, 黄亦心, 朱佳雷. 海表温度日变化特征对海陆风模拟的影响研究[J]. 地学前缘, 2025, 32(3): 218-230. |
[2] | 张艳利, 冉浩汎, 曾建强, 鲁钰婷, 庞伟华, 郭昊, 王新明. 全球变化背景下天然源痕量活性有机气体研究进展与展望[J]. 地学前缘, 2025, 32(3): 288-310. |
[3] | 李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157. |
[4] | 李柯然, 杨迪, 宋金民, 李智武, 金鑫, 刘芳, 杨雄, 刘树根, 叶玥豪, 范建平, 任佳鑫, 赵玲丽, 夏舜, 陈伟. 滇东北地区下寒武统龙王庙组白云石化模式研究:来自钙同位素模拟结果[J]. 地学前缘, 2024, 31(2): 313-326. |
[5] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[6] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424. |
[7] | 谭宁, 张仲石, 郭正堂, 王会军. 上新世热带海道变化影响东亚气候的模拟研究[J]. 地学前缘, 2022, 29(5): 310-321. |
[8] | 贾永刚, 阮文凤, 胡乃利, 乔玥, 李正辉, 胡聪. 现代暖期气候变暖对南海北部陆坡天然气水合物分解潜在影响[J]. 地学前缘, 2022, 29(4): 191-201. |
[9] | 张小刚, 张芳, 李书鹏, 韦云霄, 侯德义, 李广贺. 污染场地原位热修复技术与能效分析[J]. 地学前缘, 2022, 29(3): 200-206. |
[10] | 唐勇, 覃山县, 赵景宇, 吕正航, 刘喜强, 王宏, 陈剑争, 张辉. 稀有金属矿物溶解度对花岗伟晶岩成矿作用的制约[J]. 地学前缘, 2022, 29(1): 81-92. |
[11] | 樊馥, 侯献华, 郑绵平, 孟凡巍, 杨振京, 苗青. 柴达木盆地大浪滩梁ZK02孔早—中更新世石盐纯液相流体包裹体均一温度及其对钾盐成矿的约束[J]. 地学前缘, 2021, 28(6): 105-114. |
[12] | 倪艳华, 李明慧, 方小敏, 孟凡巍, 颜茂都, 刘迎新. 柴达木盆地西部中更新世气候转型期的古水温:来自SG-1钻孔石盐流体包裹体的证据[J]. 地学前缘, 2021, 28(6): 115-124. |
[13] | 董智, 石学法, 邹欣庆, 邹建军, 杨宝菊, 刘季花, 程振波. 冲绳海槽表层沉积物放射虫属种空间分布特征及其影响因素[J]. 地学前缘, 2020, 27(6): 300-312. |
[14] | 申俊峰,王书豪,徐立为,罗照华,李金春,刘海明,聂潇, 秦玉良,彭自栋,牛刚,杜佰松,刘家军. 西秦岭岗岔—克莫金矿区石英闪长玢岩多金属“珠滴构造”及其找矿意义[J]. 地学前缘, 2019, 26(5): 222-242. |
[15] | 刘绍文,李香兰,郝春艳,李旭东. 塔里木盆地的热流、深部温度和热结构[J]. 地学前缘, 2017, 24(3): 41-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||