地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 102-118.DOI: 10.13745/j.esf.sf.2021.9.18
官玉龙1(), 陈亮2,3,*(
), 姜兆霞1,4, 李三忠1,4, 肖春凤1, 陈龙1
收稿日期:
2021-04-10
修回日期:
2021-07-25
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
陈亮
作者简介:
官玉龙(1995—),男,博士研究生,主要从事沉积学与环境磁学研究工作。E-mail: sgyl1995@163.com
基金资助:
GUAN Yulong1(), CHEN Liang2,3,*(
), JIANG Zhaoxia1,4, LI Sanzhong1,4, XIAO Chunfeng1, CHEN Long1
Received:
2021-04-10
Revised:
2021-07-25
Online:
2022-09-25
Published:
2022-08-24
Contact:
CHEN Liang
摘要:
东北印度洋地理位置独特,其沉积物记录了青藏高原隆升及孟加拉扇的“源-汇”过程、印度季风与东亚季风的“海-气”交互作用、印-太暖池热传输的演变与高纬气候之间的相位关系等关键信息,是喜马拉雅地区“构造-气候-沉积”耦合演化的良好记录载体,是探讨多圈层相互作用、探索古气候与古环境演化的理想“窗口”。本文系统总结了近年来有关东北印度洋季风与表层环流特征、沉积物组成及物源、气候环境演化以及环境磁学记录等方面的研究进展。分析表明,东北印度洋为典型的季风风场,表层环流受季风影响强烈,夏季和冬季环流差异明显。沉积物类型丰富,包括河流输运而来的陆源碎屑、钙质和硅质为主的生物沉积以及火山物质等。但目前对于该区域的沉积物的具体组成、“源-汇”过程、迁移历史、季风演化与青藏高原隆升、高纬气候变化之间相互关系等方面的认识尚存在较大的分歧。同时,受样品获取难度大、磁学信号稀释严重等因素的限制,环境磁学作为一种在示踪沉积物物质来源、恢复古气候和古环境等方面被普遍认可的技术手段,在东北印度洋区并没有得到充分的发挥与应用。因此,未来需要在前人研究的基础上,将目光向东北印度洋更南、更深处延伸,对其“源-汇”过程进行全面分析。在研究方法上进一步拓展,采用更高精度的技术手段提取磁学信号,加大环境磁学的应用,寻找有效的替代性指标,解决该地区季风演化、古海洋环境变化等气候环境问题,为该地区环境气候研究提供新认识。并尝试开展地磁场长期变化(paleosecular variation, PSV)研究,建立东北印度洋的PSV记录,辅助修正全球地磁场模型,探究地球深部动力过程。
中图分类号:
官玉龙, 陈亮, 姜兆霞, 李三忠, 肖春凤, 陈龙. 东北印度洋源汇过程及古环境与古季风演化[J]. 地学前缘, 2022, 29(5): 102-118.
GUAN Yulong, CHEN Liang, JIANG Zhaoxia, LI Sanzhong, XIAO Chunfeng, CHEN Long. Source-sink processes, paleoenvironment and paleomonsoon evolution in the Northeast Indian Ocean[J]. Earth Science Frontiers, 2022, 29(5): 102-118.
区域 | 沉积物类型 | 沉积物主要来源 |
---|---|---|
孟加拉扇 | 陆源碎屑,少量火山物质、生物沉积 | 喜马拉雅山及青藏高原、印度、东南亚等区域 |
安达曼海 | 陆源碎屑,碳酸盐含量较低,微量火山源物质 | 青藏高原、马来西亚半岛等区域 |
中印度洋海盆 | 分带明显,向南陆源碎屑减少、硅质软泥增多,少量火山物质 | 远洋生物,青藏高原、印度、东南亚等区域 |
东经90°海岭 | 钙质软泥,少量陆源的粉砂、黏土以及火山玻璃等 | 远洋生物,青藏高原、印度、东南亚、印尼群岛等区域 |
表1 东北印度洋各区沉积物类型及来源
Table 1 Sediment types and sources in NIO
区域 | 沉积物类型 | 沉积物主要来源 |
---|---|---|
孟加拉扇 | 陆源碎屑,少量火山物质、生物沉积 | 喜马拉雅山及青藏高原、印度、东南亚等区域 |
安达曼海 | 陆源碎屑,碳酸盐含量较低,微量火山源物质 | 青藏高原、马来西亚半岛等区域 |
中印度洋海盆 | 分带明显,向南陆源碎屑减少、硅质软泥增多,少量火山物质 | 远洋生物,青藏高原、印度、东南亚等区域 |
东经90°海岭 | 钙质软泥,少量陆源的粉砂、黏土以及火山玻璃等 | 远洋生物,青藏高原、印度、东南亚、印尼群岛等区域 |
图3 全新世各种古环境记录对比 a—Qunf洞石笋δ18O值(据文献[99]);b—三宝洞石笋δ18O值(据文献[100]);c—董歌洞石笋δ18O值(据文献[96]);d—安达曼海RC12-344的δ18OSW值(据文献[103]);e—阿拉伯海 SO90-111KL TOC值(据文献[102]);f—安达曼海ADM-C1 平均粒径值(据文献[104]);g-i—安达曼海ADM-C1浮游有孔虫Q型因子1-3载荷(据文献[105])
Fig.3 Comparison of Holocene paleoenvironmental records
区域 | 岩心 | 沉积物类型 | 磁性矿物类型 | 磁畴 | 参考文献 |
---|---|---|---|---|---|
孟加拉湾 | MD77-180 | 陆源泥质黏土和钙质软泥 | 钛磁铁矿 | PSD | [ |
孟加拉湾 | MD77-181 | 粉砂质黏土 | 磁铁矿 | PSD | [ |
孟加拉湾 | GD盆地 | 粗粒玄武质、硅质碎屑 | 软铁磁性矿物 | SD | [ |
孟加拉湾 | MD161系列 | 细粒碎屑和碳酸盐组分 | 钛磁铁矿,少量钛赤铁矿 | SP/SD | [ |
安达曼海 | MD77-169 | 黏土和粉砂质泥 | 钛磁铁矿 | PSD | [ |
表2 东北印度洋各区域磁学特征
Table 2 Magnetic characteristics of various regions in NIO
区域 | 岩心 | 沉积物类型 | 磁性矿物类型 | 磁畴 | 参考文献 |
---|---|---|---|---|---|
孟加拉湾 | MD77-180 | 陆源泥质黏土和钙质软泥 | 钛磁铁矿 | PSD | [ |
孟加拉湾 | MD77-181 | 粉砂质黏土 | 磁铁矿 | PSD | [ |
孟加拉湾 | GD盆地 | 粗粒玄武质、硅质碎屑 | 软铁磁性矿物 | SD | [ |
孟加拉湾 | MD161系列 | 细粒碎屑和碳酸盐组分 | 钛磁铁矿,少量钛赤铁矿 | SP/SD | [ |
安达曼海 | MD77-169 | 黏土和粉砂质泥 | 钛磁铁矿 | PSD | [ |
图6 KG盆地MD161/11、海南双池岭以及日本琵琶湖古倾角变化(据文献[124,133-134])
Fig.6 Temporal variation of records from MD161/11 in KG basin, SCL Lake in Hainan and Biwa Lake in Japan. Adapted from [124,133-134].
[1] | 刘海生, 侯胜利, 方念乔, 等. 东北印度洋沉积岩芯热释光与古气候变化[J]. 气候与环境研究, 2008, 13(1): 45-52. |
[2] | 李景瑞, 刘升发, 吴建政, 等. 孟加拉扇沉积作用与古气候研究进展[J]. 海洋科学, 2016, 40(6): 139-157. |
[3] |
黄云, 向荣, 刘升发, 等. 安达曼海沉积物粒度记录的全新世印度洋夏季风演化[J]. 热带海洋学报, 2017, 36(6): 19-26.
DOI |
[4] |
KLOOTWIJK C T, GEE J S, PEIRCE J W, et al. Neogene evolution of the Himalayan-Tibetan region: constraints from ODP site 758, northern ninetyeast ridge; bearing on climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 95(1/2): 95-110.
DOI URL |
[5] | 方念乔, 陈学方, 胡超涌, 等. 东北印度洋深海记录基本特征及其对青藏高原隆升的响应[J]. 第四纪研究, 2001, 21(6): 490-499. |
[6] | PEIRCE J, WEISSEL J. 12. Site 758[C]// Proceedings of the Ocean Drilling Program, Initial Reports. Texas: Ocean Drilling Program, 1989, 121: 359-453. |
[7] | 李铁刚, 熊志方, 贾奇. 晚中新世以来印度洋-太平洋暖池水体交换过程及其气候效应[J]. 海洋科学进展, 2020, 38(3): 377-389. |
[8] | 刘勇勤. 晚中新世以来东北印度洋赤道海岭的远洋沉积记录及其环境意义[D]. 北京: 中国地质大学(北京), 2003. |
[9] | 刘志学. 印度洋东经90°海岭更新世晚期的上层海水性质及其古气候意义[D]. 北京: 中国地质大学(北京), 2016. |
[10] | 曹鹏. 末次盛冰期以来安达曼海东南部沉积特征及其对印度季风的响应[D]. 青岛: 中国海洋大学, 2015. |
[11] |
AN Z S, CLEMENS S C, SHEN J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723.
DOI URL |
[12] | SCHOTT F A, XIE S P, MCCREARY J P Jr. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 2009, 47(1): RG1002. |
[13] |
CLEMENS S, PRELL W, MURRAY D, et al. Forcing mechanisms of the Indian Ocean monsoon[J]. Nature, 1991, 353(6346): 720-725.
DOI URL |
[14] |
SCHOTT F A, MCCREARY J P Jr. The monsoon circulation of the Indian Ocean[J]. Progress in Oceanography, 2001, 51(1): 1-123.
DOI URL |
[15] | 张涟漪, 杜岩, 郑少军, 等. 南印度洋表层副热带环流的漂流示踪[J]. 科学通报, 2016, 61(33): 3596-3605. |
[16] | 张振芳. 孟加拉湾上新世以来沉积记录及古气候演化[D]. 北京: 中国地质大学(北京), 2003. |
[17] |
SHENOI S S C, SAJI P K, ALMEIDA A M. Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from Lagrangian drifters[J]. Journal of Marine Research, 1999, 57(6): 885-907.
DOI URL |
[18] |
CHEN Z H, WU L X, QIU B, et al. Seasonal variation of the south equatorial current bifurcation off Madagascar[J]. Journal of Physical Oceanography, 2014, 44(2): 618-631.
DOI URL |
[19] |
NAIK D K, SARASWAT R, KHARE N, et al. Hydrographic changes in the Agulhas Recirculation Region during the late Quaternary[J]. Climate of the Past, 2014, 10(2): 745-758.
DOI URL |
[20] |
KUHNT W. Monitoring Indonesian throughflow variability: challenges and perspectives[J]. PAGES News, 2006, 14(2): 43.
DOI URL |
[21] |
JENSEN T G. Cross-equatorial pathways of salt and tracers from the northern Indian Ocean: modelling results[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(12/13): 2111-2127.
DOI URL |
[22] | VARKEY M J, MURTY V S N, SURYANARAYANA A. Physical oceanography of the Bay of Bengal[J]. Oceanography and Marine Biology: an Annual Review, 1996, 34: 1-70. |
[23] |
SUWANNATHATSA S, WONGWISES P, VONGVISESSOMJAI S, et al. Phytoplankton tracking by oceanic model and satellite data in the bay of Bengal and Andaman Sea[J]. APCBEE Procedia, 2012, 2: 183-189.
DOI URL |
[24] | 方念乔, 丁旋, 刘勇勤, 等. 东经90°海岭的远洋沉积记录与晚新生代重大构造环境事件[J]. 地学前缘, 2002, 9(1): 103-111. |
[25] | 方念乔, 陈学方, 丁旋, 等. 孟加拉湾和东经90°海岭260 ka以来的古海洋学记录与印度季风的影响[J]. 中国科学D辑: 地球科学, 2001, 31 (增刊1): 280-286. |
[26] | 方念乔. 恒河深海扇东北区域晚第四纪气候和海平面变化对沉积作用的控制[J]. 现代地质, 1990, 4(1): 10-22. |
[27] |
PHILLIPS S C, JOHNSON J E, UNDERWOOD M B, et al. Long-timescale variation in bulk and clay mineral composition of Indian continental margin sediments in the Bay of Bengal, Arabian Sea, and Andaman Sea[J]. Marine and Petroleum Geology, 2014, 58: 117-138.
DOI URL |
[28] |
VENKATARATHNAM K, BISCAYE P E. Clay mineralogy and sedimentation in the eastern Indian Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(8): 727-738.
DOI URL |
[29] |
WEBER M E, LANTZSCH H, DEKENS P, et al. 200,000 years of monsoonal history recorded on the lower Bengal Fan-strong response to insolation forcing[J]. Global and Planetary Change, 2018, 166: 107-119.
DOI URL |
[30] |
RAMASWAMY V, KUMAR B V, PARTHIBAN G, et al. Lithogenic fluxes in the Bay of Bengal measured by sediment traps[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1997, 44(5): 793-810.
DOI URL |
[31] |
TRIPATHY G R, SINGH S K, RAMASWAMY V. Major and trace element geochemistry of Bay of Bengal sediments: implications to provenances and their controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 397: 20-30.
DOI URL |
[32] |
FAGEL N, DEBRABANT P, ANDRÉ L. Clay supplies in the Central Indian Basin since the Late Miocene: climatic or tectonic control?[J]. Marine Geology, 1994, 122(1/2): 151-172.
DOI URL |
[33] |
FAGEL N, ANDRÉ L, DEBRABANT P. Multiple seawater-derived geochemical signatures in Indian oceanic pelagic clays[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 989-1008.
DOI URL |
[34] |
COLIN C, TURPIN L, BERTAUX J, et al. Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles[J]. Earth and Planetary Science Letters, 1999, 171(4): 647-660.
DOI URL |
[35] |
WEBER M E, WIEDICKE-HOMBACH M, KUDRASS H R, et al. Bengal Fan sediment transport activity and response to climate forcing inferred from sediment physical properties[J]. Sedimentary Geology, 2003, 155(3/4): 361-381.
DOI URL |
[36] |
KESSARKAR P M, RAO V P, AHMAD S M, et al. Changing sedimentary environment during the Late Quaternary: sedimentological and isotopic evidence from the distal Bengal Fan[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(9): 1591-1615.
DOI URL |
[37] |
IYER S D, GUPTA S M, CHARAN S N, et al. Volcanogenic-hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin[J]. Marine Geology, 1999, 158(1/2/3/4): 15-25.
DOI URL |
[38] |
PATTAN J N, SHANE P, BANAKAR V K. New occurrence of Youngest Toba Tuff in abyssal sediments of the Central Indian Basin[J]. Marine Geology, 1999, 155(3/4): 243-248.
DOI URL |
[39] |
RODOLFO K S. Sediments of the Andaman Basin, northeastern Indian Ocean[J]. Marine Geology, 1969, 7(5): 371-402.
DOI URL |
[40] |
RAMASWAMY V, RAO P S, RAO K H, et al. Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban[J]. Marine Geology, 2004, 208(1): 33-42.
DOI URL |
[41] |
RAO P S, RAMASWAMY V, THWIN S. Sediment texture, distribution and transport on the Ayeyarwady continental shelf, Andaman Sea[J]. Marine Geology, 2005, 216(4): 239-247.
DOI URL |
[42] |
RAMASWAMY V, GAYE B, SHIRODKAR P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137-150.
DOI URL |
[43] |
KURIAN S, NATH B N, RAMASWAMY V, et al. Possible detrital, diagenetic and hydrothermal sources for Holocene sediments of the Andaman backarc basin[J]. Marine Geology, 2008, 247(3/4): 178-193.
DOI URL |
[44] |
VALSANGKAR A B. Spatial distribution and longitudinal variation of clay minerals in the central Indian Basin[J]. Acta Geologica Sinica (English Edition), 2011, 85(4): 814-825.
DOI URL |
[45] | MUDHOLKAR A V, PATTAN J N, PARTHIBAN G. Geochemistry of deep-sea sediment cores from the Central Indian Ocean Basin[J]. Indian Journal of Geo-Marine Sciences, 1993, 22(4): 241-246. |
[46] | 滕国超, 张霄宇, 石学法, 等. 印度洋洋盆BC02站位表层沉积物地球化学特征及其物源指示意义[J]. 地质科技情报, 2018, 37(3): 99-106. |
[47] |
VALSANGKAR A B, AMBRE N V. Distribution of grain size and clay minerals in sediments from the INDEX area, central Indian Basin[J]. Marine Georesources and Geotechnology, 2000, 18(3): 189-199.
DOI URL |
[48] |
IYER S D. Comparison of internal features and microchemistry of ferromanganese crusts from the Central Indian Basin[J]. Geo-Marine Letters, 1991, 11(1): 44-50.
DOI URL |
[49] |
IYER S D. Evidences for incipient hydrothermal event(s) in the central Indian Basin: a review[J]. Acta Geologica Sinica (English Edition), 2005, 79(1): 77-86.
DOI URL |
[50] | 魏华玲, 方念乔, 丁旋, 等. 赤道东经90°海岭3.5 Ma以来远洋记录反映的重大环境事件[J]. 地质通报, 2007, 26(12): 1627-1632. |
[51] | 张振芳, 方念乔, 吴琳, 等. 孟加拉湾东经90°海岭中上新世以来沉积记录及亚洲季风[J]. 地球科学: 中国地质大学学报, 2004, 29(2): 157-161. |
[52] | 张振国, 方念乔, 李文宝, 等. 东经90°海岭远洋沉积物非碳酸盐组分的粒度特征及环境指示意义[J]. 太原理工大学学报, 2007, 38(1): 85-87. |
[53] | 魏华玲. 3.5Ma来赤道东经90°海岭远洋记录与重大环境事件[D]. 北京: 中国地质大学(北京), 2006. |
[54] | FARRELL J W, JANECEK T R. Late Neogene paleoceanography and paleoclimatology of the northeast Indian Ocean (site 758)[C]// Proceedings of the Ocean Drilling Program, Scientific Results. Texas: Ocean Drilling Program, 1991, 121: 297-355. |
[55] | 孙兴全, 刘升发, 李景瑞, 等. 孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2020, 40(2): 80-89. |
[56] | STOW D A V, AMANO K, BALSON P S, et al. Sediment facies and processes on the distal Bengal fan, Leg 116[C]// Proceedings of the Ocean Drilling Program, Scientific Results. Texas: Ocean Drilling Program, 1990, 116: 377-396. |
[57] |
XIE S P, HU K M, HAFNER J, et al. Indian Ocean capacitor effect on indo-western Pacific climate during the summer following El Niño[J]. Journal of Climate, 2009, 22(3): 730-747.
DOI URL |
[58] |
BEHERA S K, LUO J J, MASSON S, et al. A CGCM study on the interactions between IOD and ENSO[J]. Journal of Climate, 2006, 19(9): 1688-1705.
DOI URL |
[59] |
FISCHER A S, TERRAY P, GUILYARDI E, et al. Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM[J]. Journal of Climate, 2005, 18(17): 3428-3449.
DOI URL |
[60] |
GUALDI S, GUILYARDI E, NAVARRA A, et al. The interannual variability in the tropical Indian Ocean as simulated by a CGCM[J]. Climate Dynamics, 2003, 20(6): 567-582.
DOI URL |
[61] |
LAU N C, NATH M J. Coupled GCM simulation of atmosphere-ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean[J]. Journal of Climate, 2004, 17(2): 245-265.
DOI URL |
[62] |
BJERKNES J. Atmospheric teleconnections from the equatorial Pacific[J]. Monthly Weather Review, 1969, 97(3): 163-172.
DOI URL |
[63] | PRELL W L, MURRAY D W, CLEMENS S C, et al. Evolution and variability of the Indian Ocean summer monsoon: evidence from the western Arabian Sea drilling program[M]// DUNCANR A, READ K, KIDDR B, et al.Synthesis of results from scientific drilling in the Indian Ocean. Washington, D. C.: American Geophysical Union, 2013: 447-469. |
[64] |
PRELL W L, KUTZBACH J E. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 1992, 360(6405): 647-652.
DOI URL |
[65] |
FLUTEAU F, RAMSTEIN G, BESSE J. Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D10): 11995-12018.
DOI URL |
[66] |
ABRAM N J, GAGAN M K, LIU Z, et al. Seasonal characteristics of the Indian Ocean dipole during the Holocene epoch[J]. Nature, 2007, 445(7125): 299-302.
DOI URL |
[67] | KROON D, STEENS T N F, TROELSTRA S R. 13. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers[C]// Proceedings of the Ocean Drilling Program, Scientific Results. Texas: Ocean Drilling Program, 1991, 117: 257-263. |
[68] |
BURBANK D W, DERRY L A, FRANCE-LANORD C. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon[J]. Nature, 1993, 364(6432): 48-50.
DOI URL |
[69] | 施雅风, 汤懋苍, 马玉贞. 青藏高原二期隆升与亚洲季风孕育关系探讨[J]. 中国科学D辑: 地球科学, 1998, 28(3): 263-271. |
[70] |
AN Z S, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
DOI URL |
[71] | 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391. |
[72] | 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1): 1-12. |
[73] | KLOOTWIJK C T, GEE J S, PEIRCE J W, et al. Constraints on the India-Asia Convergence: paleomagnetic results from Ninetyeast Ridge[C]// Proceedings of the Ocean Drilling Program, Scientific Results. Texas: Ocean Drilling Program, 1991, 121: 777-882. |
[74] |
SHACKLETON N J, BACKMAN J, ZIMMERMAN H, et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region[J]. Nature, 1984, 307(5952): 620-623.
DOI URL |
[75] | CURRAY J R, DICKINSON W R, DOW W G, et al. Geology of continental margins[M]. Berlin: Springer-Verlag, 1974. |
[76] |
BOOS W R, KUANG Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 2010, 463(7278): 218-222.
DOI URL |
[77] |
ZHANG Z S, FLATØY F, WANG H J, et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons[J]. Journal of Asian Earth Sciences, 2012, 44: 24-35.
DOI URL |
[78] |
CHEN G S, LIU Z, KUTZBACH J E. Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon[J]. Climate of the Past, 2014, 10(3): 1269-1275.
DOI URL |
[79] | 王富葆, 李升峰, 张捷, 等. 吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起[J]. 中国科学D辑: 地球科学, 1996, 26(4): 329-335. |
[80] |
CHEN J J, FARRELL J W, MURRAY D W, et al. Timescale and paleoceanographic implications of a 3.6 m.y. oxygen isotope record from the northeast Indian Ocean (Ocean Drilling Program Site 758)[J]. Paleoceanography, 1995, 10(1): 21-47.
DOI URL |
[81] | 方念乔, 丁旋, 胡超涌, 等. 氧同位素第6期北印度洋的一次重大古海洋学事件[J]. 地球科学: 中国地质大学学报, 2004, 29(2): 127-134. |
[82] | 李海燕, 张世红, 方念乔, 等. 孟加拉湾MD77-181岩芯磁学记录及其古环境意义[J]. 科学通报, 2006, 51(18): 2166-2174. |
[83] |
COLIN C, KISSEL C, BLAMART D, et al. Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 623-635.
DOI URL |
[84] | 丁旋, 方念乔. 东北印度洋区BAR9427岩心末次冰期以来的古季风活动记录[J]. 地球科学: 中国地质大学学报, 2006, 31(6): 765-772. |
[85] |
OTTO J, HERMELIN R, SHIMMIELD G B. Impact of productivity events on the benthic foraminiferal fauna in the Arabian Sea over the last 150,000 years[J]. Paleoceanography, 1995, 10(1): 85-116.
DOI URL |
[86] |
SHI Y F, LIU X D, LI B Y, et al. A very strong summer monsoon event during 30-40 kaBP in the Qinghai-Xizang (Tibet) Plateau and its relation to precessional cycle[J]. Chinese Science Bulletin, 1999, 44(20): 1851-1858.
DOI URL |
[87] | 施雅风, 姚檀栋. 中低纬度MIS 3b(54-44 ka BP)冷期与冰川前进[J]. 冰川冻土, 2002, 24(1): 1-9. |
[88] |
CLEMENS S C, PRELL W L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea[J]. Marine Geology, 2003, 201(1/2/3): 35-51.
DOI URL |
[89] |
KUTZBACH J E. Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago[J]. Science, 1981, 214(4516): 59-61.
DOI URL |
[90] |
ROSSIGNOL-STRICK M. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 49(3/4): 237-263.
DOI URL |
[91] |
KUTZBACH J E, STREET-PERROTT F A. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP[J]. Nature, 1985, 317(6033): 130-134.
DOI URL |
[92] |
RUDDIMAN W F. What is the timing of orbital-scale monsoon changes?[J]. Quaternary Science Reviews, 2006, 25(7/8): 657-658.
DOI URL |
[93] |
ZONNEVELD K A F, GANSSEN G, TROELSTRA S, et al. Mechanisms forcing abrupt fluctuations of the Indian Ocean summer monsoon during the last deglaciation[J]. Quaternary Science Reviews, 1997, 16(2): 187-201.
DOI URL |
[94] | 李海燕. 还原成岩作用对海洋沉积物磁记录的影响及其环境学意义[D]. 北京: 中国地质大学(北京), 2006. |
[95] | 方念乔, 丁旋, 陈学方, 等. 孟加拉湾MD77190柱状样第3期的韵律沉积记录及快速气候变化[J]. 第四纪研究, 1999, 19(6): 511-517. |
[96] |
YUAN D X, CHENG H, EDWARDS R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.
DOI URL |
[97] |
DYKOSKI C A, EDWARDS R L, CHENG H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
DOI URL |
[98] |
WANG Y J, CHENG H, EDWARDS R L, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.
DOI URL |
[99] |
FLEITMANN D, BURNS S J, MUDELSEE M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science, 2003, 300(5626): 1737-1739.
DOI URL |
[100] |
DONG J G, WANG Y J, CHENG H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China[J]. The Holocene, 2010, 20(2): 257-264.
DOI URL |
[101] |
YANG Y P, ZHANG H C, CHANG F Q, et al. Vegetation and climate history inferred from a Qinghai Crater Lake pollen record from Tengchong, southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 1-11.
DOI URL |
[102] |
SCHULZ H, VON RAD U U, ERLENKEUSER H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years[J]. Nature, 1998, 393(6680): 54-57.
DOI URL |
[103] |
RASHID H, FLOWER B P, POORE R Z, et al. A 25 ka Indian Ocean monsoon variability record from the Andaman Sea[J]. Quaternary Science Reviews, 2007, 26(19/20/21): 2586-2597.
DOI URL |
[104] |
HUANG Y, XIAO J L, XIANG R, et al. Holocene Indian Summer Monsoon variations inferred from end-member modeling of sediment grain size in the Andaman Sea[J]. Quaternary International, 2020, 558: 28-38.
DOI URL |
[105] |
张玲芝, 向荣, 唐灵刚, 等. 安达曼海浮游有孔虫群落对全新世海洋环境变化的响应[J]. 热带海洋学报, 2019, 38(6): 51-61.
DOI |
[106] | 陈萍, 方念乔, 胡超涌, 等. 浮游有孔虫壳体Mg/Ca值: SST的替代性指标[J]. 地球科学: 中国地质大学学报, 2004, 29(6): 697-702. |
[107] |
SONZOGNI C, BARD E, ROSTEK F. Tropical sea-surface temperatures during the last glacial period: a view based on alkenones in Indian ocean sediments[J]. Quaternary Science Reviews, 1998, 17(12): 1185-1201.
DOI URL |
[108] | NAIDU P D, MALMGREN B A. Seasonal sea surface temperature contrast between the Holocene and last glacial maximum in the Arabian Sea (Ocean Drilling Project Site 723A): odulated by monsoon upwelling[J]. Paleoceanography, 2005, 20(1): PA1004. |
[109] | CLIMAP P M. Seasonal reconstruction of the Earth's surface at the last glacial maximum[J]. Geological Society America Map and Chart Series, 1981: MC-36. |
[110] |
MILLIMAN J D, MEADE R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21.
DOI URL |
[111] | 陈萍, 方念乔, 胡超涌. 浮游有孔虫壳体氧同位素的古水温及古盐度意义:以东北印度洋260 ka以来沉积记录为例[J]. 海洋地质与第四纪地质, 2005, 25(2): 141-145. |
[112] |
CULLEN J L. Microfossil evidence for changing salinity patterns in the bay of Bengal over the last 20 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 35: 315-356.
DOI URL |
[113] | THOMPSON R, OLDFIELD F. Environmental magnetism[M]. London: Allen and Unwin, 1986: 1-227. |
[114] | VEROSUB K L, ROBERTS A P. Environmental magnetism: past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175-2192. |
[115] |
HELLER F, TUNG-SHENG L. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891): 431-433.
DOI URL |
[116] | 刘志锋, 刘青松. 陕西延安两个坡度不同土壤剖面磁学性质及其在古降雨量重建中的意义[J]. 中国科学: 地球科学, 2013, 43(12): 2037-2048. |
[117] |
DENG C, ZHU R, JACKSON M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: a pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11/12): 873-878.
DOI URL |
[118] | 邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27(2): 193-209. |
[119] | JIANG Z X, LIU Q S. Quantification of hematite and its climatic significances[J]. Quaternary Sciences, 2016, 36(3): 676-689. |
[120] |
YAMAZAKI T, IOKA N. Environmental rock-magnetism of pelagic clay: implications for Asian eolian input to the North Pacific since the Pliocene[J]. Paleoceanography, 1997, 12(1): 111-124.
DOI URL |
[121] | 郑妍, 郑洪波, 邓成龙, 等. 还原成岩作用对磁性矿物的影响及古气候意义: 以长江口水下三角洲岩芯YD 0901沉积物为例[J]. 第四纪研究, 2012, 32(4): 655-662. |
[122] |
KULKARNI Y R, SANGODE S J, BLOEMENDAL J, et al. Mineral magnetic characterization of the Godavari River and western Bay of Bengal sediments: implications to source to sink relations[J]. Journal of the Geological Society of India, 2015, 85: 71-78.
DOI URL |
[123] |
DEWANGAN P, BASAVAIAH N, BADESAB F K, et al. Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari Basin, Bay of Bengal[J]. Marine Geology, 2013, 340: 57-70.
DOI URL |
[124] |
USAPKAR A, DEWANGAN P, BADESAB F K, et al. High resolution Holocene paleomagnetic secular variation records from Bay of Bengal[J]. Physics of the Earth and Planetary Interiors, 2016, 252: 49-76.
DOI URL |
[125] | 李海燕, 张世红, 方念乔. 东帝汶海MD98-2172岩芯磁记录与还原成岩作用过程[J]. 第四纪研究, 2007, 27(6): 1023-1030. |
[126] | HOUNSLOW M W, MAHER B A. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 5047-5061. |
[127] |
SAVIAN J F, JOVANE L, GIORGIONI M, et al. Environmental magnetic implications of magnetofossil occurrence during the Middle Eocene Climatic Optimum (MECO) in pelagic sediments from the equatorial Indian Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 212-222.
DOI URL |
[128] | 薛鹏飞, 常燎, 汪诗舜. 孟加拉湾上扇表层沉积物的岩石磁学特征及指示意义[C]// 2017年中国地球科学联合学术年会(CGU2017)论文集. 北京: 2017中国地球科学联合学术年会, 2017. |
[129] |
XUE P F, CHANG L, WANG S S, et al. Magnetic mineral tracing of sediment provenance in the central Bengal Fan[J]. Marine Geology, 2019, 415: 105955.
DOI URL |
[130] | 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048. |
[131] | FRANCE-LANORD C, SPIESS V, KLAUS A, et al. Neogene and late Paleogene record of Himalayan orogeny and climate: a transect across the Middle Bengal Fan[R]// Integrated Ocean Drilling Program: Preliminary Reports. Texas: Ocean Drilling Program, 2015: 1-46. |
[132] |
FARRELL J W, PRELL W L. Pacific CaCO3 Preservation and 18O since 4 Ma: paleoceanic and paleoclimatic implications[J]. Paleoceanography, 1991, 6(4): 485-498.
DOI URL |
[133] |
YANG X Q, HELLER F, YANG J, et al. Paleosecular variations since -9000 yr BP as recorded by sediments from maar lake Shuangchiling, Hainan, South China[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 1-9.
DOI URL |
[134] |
ALI M, ODA H, HAYASHIDA A, et al. Holocene palaeomagnetic secular variation at Lake Biwa, central Japan[J]. Geophysical Journal International, 1999, 136(1): 218-228.
DOI URL |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 张七道, 李德宗, 李致伟, 王东晖, 于一帆, 朱星强, 蔡泉宇, 李明. 黔西北普底地区富锂黏土岩地球化学特征及成因[J]. 地学前缘, 2024, 31(4): 258-280. |
[3] | 李佩, 张春霞, 罗浩, 刘志成, 高战武. 青藏高原东南缘昭通盆地晚中新世到上新世古环境演化过程[J]. 地学前缘, 2024, 31(4): 326-339. |
[4] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[5] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[6] | 邢智峰, 张湘赟, 李婉颖, 齐永安, 郑伟, 吴盼盼, 张立军. PTME后华北板块南缘生物复苏后期古环境特征:来自豫西登封中三叠统二马营组的证据[J]. 地学前缘, 2023, 30(5): 491-509. |
[7] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[8] | 侯啸林, 徐继尚, 姜兆霞, 曹立华, 张强, 李广雪, 王双, 翟科. 热带西太平洋沉积物的环境磁学特征对东亚冬季风的响应[J]. 地学前缘, 2022, 29(5): 23-34. |
[9] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[10] | 雷子炎, 葛倩, 陈东, 张泳聪, 韩喜彬, 叶黎明, 边叶萍, 许冬. 中全新世以来西南极阿蒙森海沉积物来源和古气候意义[J]. 地学前缘, 2022, 29(4): 179-190. |
[11] | 龚承林, 刘力, 邵大力, 郭荣涛, 朱一杰, 齐昆. 晚中新世以来孟加拉-尼科巴扇跷跷板式沉积转换及其源-汇成因机制[J]. 地学前缘, 2022, 29(4): 25-41. |
[12] | 由文智, 向芳, 黄恒旭, 杨坤美, 喻显涛, 丁力, 杨奇. 青藏高原东缘宜宾地区第四纪河流沉积物中铁质重矿物特征及物源意义[J]. 地学前缘, 2022, 29(4): 278-292. |
[13] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[14] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[15] | 颜茂都, 张大文, 李明慧. 思茅和呵叻盆地钾盐矿研究新进展和新认识[J]. 地学前缘, 2021, 28(6): 10-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||