地学前缘 ›› 2021, Vol. 28 ›› Issue (6): 10-28.DOI: 10.13745/j.esf.sf.2021.1.40
颜茂都1,2,*, 张大文3,*, 李明慧1,2
收稿日期:
2020-03-25
修回日期:
2020-10-06
出版日期:
2021-11-25
发布日期:
2021-11-25
通信作者:
*张大文(1988—),男,博士,副教授,构造地质学专业,主要从事磁性地层年代学研究。E-mail:zhangdawen@uzz.edu.cn
作者简介:
颜茂都(1973—),男,博士,研究员,地质学专业,主要从事构造古地磁学研究。E-mail:maoduyan@itpcas.ac.cn
基金资助:
YAN Maodu1,2,*, ZHANG Dawen3,*, LI Minghui1,2
Received:
2020-03-25
Revised:
2020-10-06
Online:
2021-11-25
Published:
2021-11-25
摘要: 思茅盆地与呵叻盆地属于同一大地构造带。二者的含钾盐建造在区域分布、沉积特征、成盐层位、析盐矿物组合特征及物质来源等方面具有良好的可比性,是中国海相找钾实现突破的重要潜在区之一。尽管目前对两地钾盐矿的成矿认识取得了许多进展,但对于二者的关系和成矿模式及规律等还存在着较大争议。为了下一步更好地建立思茅盆地钾盐矿的成矿规律和实现深部找钾的突破,本文从构造背景、地层年代、古气候环境和物质来源等方面对最近一些重要进展和认识做了梳理,现已确定:(1)思茅陆块与印度支那陆块在中生代可能为统一的整体,思茅与呵叻盆地基本位于副热带高压带内,在晚三叠世、中—晚侏罗世和晚白垩世具有较好的成盐成钾构造和古气候条件;(2)思茅和呵叻盆地在含钾盐及其下伏地层沉积期间可能具有相似的潜在物源区,包括扬子、松潘—甘孜、可可西里、义敦、北羌塘和南羌塘陆块等;(3)思茅与呵叻盆地钾盐矿的成钾物质主要来自陆源水体,同时也有海水和深部热液补给;(4)思茅和呵叻盆地含钾盐地层的年代部分重叠,但不完全吻合;(5)勐野井钾盐矿与呵叻钾盐矿可能系非同期矿床。综合构造和气候等证据,推测思茅盆地在约85.0 Ma这一呵叻钾盐矿成矿的时段就可能具有了重要的成钾潜力。
中图分类号:
颜茂都, 张大文, 李明慧. 思茅和呵叻盆地钾盐矿研究新进展和新认识[J]. 地学前缘, 2021, 28(6): 10-28.
YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins[J]. Earth Science Frontiers, 2021, 28(6): 10-28.
[1] 李文光. 我国重晶石矿床成因类型及找矿方向初探[J]. 河南地质, 1994, 12(3): 177-181. [2] 曲懿华, 袁品泉, 帅开业, 等. 兰坪—思茅盆地钾盐成矿规律及预测[M]. 北京: 地质出版社, 1998: 1-120. [3] 郑绵平, 张震, 张永生, 等. 我国钾盐找矿规律新认识和进展[J]. 地球学报, 2012, 33(3): 280-294. [4] 张中伟. 世界钾盐储量统计数有大变[J]. 中国地质, 1991(9): 31-31. [5] 刘成林. 大陆裂谷盆地钾盐矿床特征与成矿作用[J]. 地球学报, 2013, 34(5): 515-527. [6] 吴天柱. 云南勐野井钾盐矿床的成因[J]. 化工矿产地质, 1981(1): 1-8. [7] 夏文杰, 李秀华. 蒸发岩成因理论研究中的几个问题: 以云南勐野井钾盐石盐矿床为例[J]. 矿物岩石, 1983(3): 1-11. [8] 曲懿华. 兰坪—思茅盆地与泰国呵叻盆地含钾卤水同源性研究: 兼论该区找钾有利层位和地区[J]. 化工矿产地质, 1997, 19(2): 81-98. [9] 张西营, 马海州, 韩元红. 泰国—老挝呵叻高原钾盐矿床研究现状及展望[J]. 地球科学进展, 2012, 27(5): 549-556. [10] 钟晓勇, 袁秦, 秦占杰, 等. 老挝甘蒙省晚白垩世农波组下段孢粉分析及成钾时代[J]. 地球学报, 2012, 33(3): 323-330. [11] LI M H, YAN M D, WANG Z R, et al.The origins of the Mengye potash deposit in the Lanping-Simao Basin, Yunnan Province, western China[J]. Ore Geology Reviews, 2015, 69: 174-186. [12] LI M H, YAN M D, FANG X M, et al.Origins of the Mid-Cretaceous evaporite deposits of the Sakhon Nakhon Basin in Laos: evidence from the stable isotopes of halite[J]. Journal of Geochemical Exploration, 2018, 184: 209-222. [13] 孙淑蕊, 李明慧, 颜茂都, 等. 云南勐野井钾盐矿床中Br和I的影响因素及意义[J]. 矿物岩石地球化学通报, 2016, 35(2): 360-367. [14] ZHANG D W, YAN M D, FANG X M, et al.Magnetostratigraphic study of the potash-bearing strata from drilling core ZK2893 in the Sakhon Nakhon Basin, eastern Khorat Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 40-51. [15] SUN S R, LI M H, YAN M D, et al.Bromine content and Br/Cl molar ratio of halite in a core from Laos: implications for origin and environmental changes[J]. Carbonates Evaporites, 2019, 34: 1107-1115. [16] 袁秦, 秦占杰, 魏海成, 等. 云南江城勐野井组钾盐成矿时代及其古环境研究[J]. 地球学报, 2013, 34(5): 631-637. [17] WANG L C, LIU C L, FEI M M, et al.First shrimp U-Pb zircon ages of the potash-bearing Mengyejing Formation, Simao Basin, southwestern Yunnan, China[J]. Cretaceous Research, 2015, 52: 238-250. [18] HANSEN B T, WEMMER K, ECKHARDT M, et al.Isotope dating of the potash and rock salt deposit at Bamnet Narong, NE-Thailand[J]. Open Journal of Geology, 2016, 6: 875-894. [19] 高翔, 蔡克勤, 李代荣, 等. 老挝甘蒙省钾镁盐矿床含矿段的矿物学和地球化学特征及成因[J]. 岩石矿物学杂志, 2012, 31(4): 578-588. [20] LIU C L, WANG L C, YAN M D, et al.The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: implications for potash formation[J]. Ore Geology Reviews, 2018, 102: 406-425. [21] 郑绵平, 张震, 尹宏伟, 等. 云南江城勐野井钾盐成矿新认识[J]. 地球学报, 2014, 35(1): 11-24. [22] METCALFE I.Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. [23] MAO J W, PIRAJNO F, LEHMANN B, et al.Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 2014, 79(2): 576-584. [24] LI P W, GAO R, CUI J W, et al.Paleomagnetic analysis of eastern Tibet: implications for the collisional and amalgamation history of the Three Rivers Region, SW China[J]. Journal of Asian Earth Sciences, 2004, 24(3): 291-310. [25] 李朋武, 高锐, 崔军文, 等. 西藏和云南三江地区特提斯洋盆演化历史的古地磁分析[J]. 地球学报, 2005, 26(5): 3-20. [26] CAI J X, ZHANG K J.A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 2009, 467(1/2/3/4): 35-43. [27] ZHANG R Y, LO C H, CHUNG S L, et al.Origin and tectonic implication of ophiolite and eclogite in the Song Ma suture zone between the South China and Indochina blocks[J]. Journal of Metamorphic Geology, 2013, 31(1): 49-62. [28] 常承法, 郑锡澜. 中国西藏南部珠穆朗玛峰地区地质构造特征以及青藏高原东西向诸山系形成的探讨[J]. 中国科学: 地球科学, 1973(2): 190-201. [29] YIN A, HARRISON T M.Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. [30] 李勇, 王成善, 伊海生. 中生代羌塘前陆盆地充填序列及演化过程[J]. 地层学杂志, 2002, 26(1): 62-67, 79. [31] KAPP P, YIN A, MANNING C E, et al.Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, Central Tibet[J]. Tectonics, 2003, 22(4): 1043. [32] PAN G T, DING J, YAO D S, et al.Guidebook of 1∶1500000 geologic map of the Qinghai-Xizang(Tibet)plateau and adjacent areas[M]. Chengdu: Cartographic Publishing House, 2004: 1-148. [33] YAN M D, ZHANG D W, FANG X M, et al.Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: implications for the evolution of the Paleo- and Meso-Tethys[J]. Gondwana Research, 2016, 39: 292-316. [34] LELOUP P H, LACASSIN R, TAPPONNIER P, et al.The Ailaoshan-Red River shear zone(Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 252: 3-84. [35] TONG Y B, YANG Z Y, ZHENG L D, et al.Internal crustal deformation in the northern part of Shan-Thai Block: new evidence from paleomagnetic results of Cretaceous and Paleogene redbeds[J]. Tectonophysics, 2013, 68: 1138-1158. [36] BARR S M.Petrochemistry, U-Pb(zircon)age and paleotectonic setting of the Lampang volcanic belt, northern Thailand[J]. Journal of the Geological Society, London, 2000, 157: 553-563. [37] SONE M, METCALFE I.Parallel Tethyan suture in mainland Southeast Asia: new insights from Paleo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340: 166-179. [38] YANG Z Y, BESSE J.Paleomagnetic study of Permian and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina[J]. Earth and Planetary Science Letters, 1993, 117(3): 525-552. [39] CHUNG S L.Interplate extension prior to continental extrusion along the Ailao Shan - Red River shear zone[J]. Geology, 1997, 25(4): 311-314. [40] WU H R.Discovery of Early Carboniferous deep-sea sediments from Jinsha Belt, NW Yunnan[J]. Scientia Geologica Sinica, 1993, 28(4): 395-397. [41] CHEN B W, XIE G L.Evolution of the Tethys in Yunnan and Tibet[J]. Journal of Southeast Asian Earth Sciences, 1994, 9: 349-354. [42] ŞENGÖR A M C, ALTINER D, CIN A, et al. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana land[J]. Geological Society London Special Publications, 1988, 37(1): 119-181. [43] LELOUP P H, KIENAST J R.High temperature metamorphism in a major Tertiary ductile strike-slip shear zone: the Ailaoshan - Red River(P.R.C.)[J]. Earth and Planetary Science Letter, 1993, 118(1/2/3/4): 213-234. [44] 姚伯初. 东南亚地质构造特征和南海地区新生代构造发展史[J]. 南海地质研究, 1999, 11: 1-13. [45] UENO K, HISADA K.Closure of the Paleo-Tethys caused by the collision of Indochina and Sibumasu[J]. Chikyu Monthly, 1999, 21: 832-839(in Japanese). [46] SINGHARAJWARAPAN S, BERRY R, PANJASAWATWONG Y.Geochemical characteristics and tectonic significance of the Permo-Triassic Pak Pat Volcanics, Uttarudit, Northern Thailand[J]. Journal of Geological Society of Thailand, 2000, 1(1): 1-7. [47] 张大文. 兰坪—思茅盆地与沙空那空盆地含钾盐及其下伏地层碎屑锆石U-Pb年代学对比研究及其构造意义[R]. 北京: 中国科学院青藏高原研究所, 2019: 1-140. [48] METCALFE I.Permian tectonic framework and paleogeography of SE Asia[J]. Journal of Asian Earth Sciences, 2002, 20: 551-566. [49] LEPVRIER C, MALUSKI H, TICH V V, et al.The Early Triassic Indosinian orogeny in Vietnam(Truong Son belt and Kontum massif): implications for the geodynamic evolution of Indochina[J]. Tectonophysics, 2004, 393(1): 87-118. [50] 陈朝德, 谌举锋, 罗文雄. 滇西思茅坳陷构造特征[G]∥青藏高原地质文集. 北京: 地质出版社, 1983: 105-117. [51] 朱创业, 夏文杰. 兰坪—思茅中生代盆地性质及构造演化[J]. 成都理工学院学报, 1997, 24(4): 23-30. [52] 李兴振. 西南三江地区特提斯构造演化与成矿(总论)[M]. 北京: 地质出版社, 1999: 1-276. [53] 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版社, 1998: 1-231. [54] 谭富文. 云南思茅三叠纪弧后前陆盆地的沉积特征[J]. 沉积学报, 2002, 20(4): 560-567. [55] 尹福光, 潘桂棠, 万方, 等. 西南“三江”造山带大地构造相[J]. 沉积与特提斯地质, 2007, 26(4): 33-39. [56] 云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990: 1-728. [57] ZHU D C, ZHAO Z D, NIU Y L, et al.The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. [58] 云南省地质矿产局. 云南省岩石地层[M]. 武汉: 中国地质大学出版社, 1996: 1-366. [59] MORLEY C K.Combined escape tectonics and subduction rollback-back arc extension: a model for the evolution of Tertiary rift basins in Thailand, Malaysia and Laos[J]. Journal of the Geological Society, 2001, 158(3): 461-474. [60] MORLEY C K, WOGANAN N, SANKUMARN N, et al.Late Oligocene-recent stress evolution in rift basins of northern and central Thailand: implications for escape tectonics[J]. Tectonophysics, 2001, 334(2): 115-150. [61] KORNSAWAN A, MORLEY C K.The origin and evolution of complex transfer zones(graben shifts)in conjugate fault systems around the Funan Field, Pattani Basin, Gulf of Thailand[J]. Journal of Structural Geology, 2002, 24(3): 435-449. [62] AKCIZ S, BURCHFIEL B C, CROWLEY J L, et al.Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China[J]. Geosphere, 2008, 4: 292-314. [63] KATZ M B.The Kannack complex of the Vietnam Kontum massif of the Indochina Block-an exotic fragment of Precambrian Gondwanaland?[C]∥Gondwana 8-Assembly, Evolution, and Dispersal. Rotterdam: A. A. Balkema, 1993: 161-164. [64] LAN C Y, CHUNG S L, LONG T V, et al.Geochemical and Sr-Nd isotopic constraints from the Kontum massif, central Vietnam on the crustal evolution of the Indochina Block[J]. Precambrian Research, 2003, 122(1/2/3/4): 7-27. [65] 钟维敷, 李志伟, 单卫国. 呵叻盆地钾镁盐矿沉积特征及成因探讨[J]. 云南地质, 2003, 22(2): 142-150. [66] 曲懿华. 泰国呵叻高原钾盐矿床沉积特征及成因探讨[J]. 化工矿产地质, 1980(1): 13-22. [67] Wannakomol A.Soil and groundwater salinization problems in the Khorat Plateau, NE Thailand-Integrated study of remote sensing, geophysical and field data[D]. Berlin: Freie Universität Berlin, 2005: 1-204. [68] SENGOR A M C, NATAL’LN BA. Turkic-type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 263-337. [69] METCALFE I.The Bentong-Raub Suture Zone[J]. Journal of Asian Earth Sciences, 2000, 18: 691-712. [70] RACEY A.Mesozoic red bed sequence from SE Asia and the significance of the Khorat Group of NE Thailand[J]. The Geological Society of London Special Publications, 2009, 315(1): 41-67. [71] BOOTH J E, SATTAYARAK N.Subsurface carboniferous-cretaceous geology of Northeast Thailand[M]. London: The Geological Society, 2011: 184-222. [72] LOVATT SMITH P F, STOKES R B, Bristow C, et al. Mid-Cretaceous inversion in the northern Khorat Plateau of Lao PDR and Thailand[J]. The Geological Society of London Special Publication, 1996, 106: 97-123. [73] 郭远生, 吴军, 朱延浙, 等. 老挝万象钾盐地质[M]. 昆明: 云南科技出版社, 2005: 17-40. [74] SINGSOUPHO S, BHONGSUWAN T, ELMING S A.Palaeocurrent direction estimated in Mesozoic redbeds of the Khorat Plateau, Lao PDR, Indochina Block using anisotropy of magnetic susceptibility[J]. Journal of Asian Earth Sciences, 2015, 106: 1-18. [75] HITE R J, JAPAKASETR T.Potash deposits of the Khorat Plateau, Thailand and Laos[J]. Economic Geology, 1979, 74(2): 448-458. [76] TABAKH M E, UTHA-AROON C, SCHREIBER B C.Sedimentology of the Cretaceous Maha Sarakham evaporates in the Khorat Plateau of northern Thailand[J]. Sedimentology Geology, 1999, 31-62. [77] SUWANICH P.Potash-evaporite deposits in Thailand[C]∥Geothai 07 International Conference on Geology of Thailand. Bankok: Towards Sustainable Development and Sufficiency Economy, 2007: 252-262. [78] UTHA-AROON C.Continental origin of the Maha Sarakham evaporites, northeastern Thailand[J]. Journal of Southeast Asia Earth Sciences, 1993, 8(1/2/3/4): 193-203. [79] TABAKH M E, SCHREIBER B C, UTHA-AROON C, et al.Diagenetic origin of Basal Anhydrite in the Cretaceous Maha Sarakham salt: Khorat Plateau, NE Thailand[J]. Sedimentology, 1998, 45: 579-594. [80] 秦占杰, 袁秦, 魏海成, 等. 老挝甘蒙省晚白垩世农波组孢粉组合及其对成盐环境的指示意义[J]. 地球学报, 2013, 34(5): 638-642. [81] 云南省地质矿产局. 中华人民共和国地质矿产部地质专报[M]. 北京: 地质出版社, 1986. [82] 李代芸. 云南侏罗系、 白垩系的划分及其界线: 着重讨论景星组、 勐野井组的时代[J]. 云南地质, 1987, 6(3): 211-226. [83] 陈乐尧. 云南江城地区早白垩世孢粉组合特征及地层意义[G]∥云南思茅地区钾盐地质研究论文集. 昆明: 云南省地质局, 1980: 169-202. [84] 尹济云, 孙知明, 杨振宇, 等. 滇西兰坪盆地白垩纪—早第三纪古地磁结果及其地质意义[J]. 地球物理学报, 1999, 42(5): 648-659. [85] GARDNER L S, HAWORTH H F, NA CHIANGMAI P.Salt resources of Thailand[J]. Thailand Department of Mineral Resources, 1967, 11: 1-100. [86] SUWANICH P.Potash and rock salt in Thailand[M]∥Nonmetallic minerals bulletin No. 2 Economic Geology Division. Bangkok: Department of Mineral Resources, 1986: 1-339. [87] 冯明刚, 吴军, 韩润生, 等. 老挝万象地区含盐系地层[J]. 云南地质, 2005, 24(4): 407-413. [88] HARRIS R W.Paleontology of the Phu Horm-1 well[M]∥Open-file report by Harris R W of ESSO. Bangkok: Department of Mineral Resources, 1977. [89] RACEY A, GOODALL J G S. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand[J]. The Geological Society of London Special Publications, 2009, 315(1): 69-83. [90] HANSEN B T, WENNER K, PAWLIG S, et al.Isotopic evidence for a Late Cretaceous age of the potash and rock salt deposit at Bamnet Narong, NE Thailand[C]∥Proceeding of the Symposium on the Geology of Thailand. Bangkok: Department of Mineral Resources, 2002: 26-31. [91] PISUTHA-ARNOND V, CHIBA H, YUMUANG S.A preliminary sulphur and oxygen isotope study of the Maha Sarakham evaporitic anhydrite from the Bamnet Narong area of northeastern Thailand[J]. Geology Society Malaysia Bulletin, 1986, 19: 209-222. [92] MARANATE S, VELLA P.Paleomagnetism of the Khorat Group, Mesozoic, northeast Thailand[J]. Journal of Southeast Asian Earth Sciences, 1986, 1(1): 23-31. [93] MARANATE S.Paleomagnetism of the Khorat Group in Northeast Thailand[D]. Wellington: Victoria University of Wellington, 1982: 1-398. [94] 张望平. Dicheiropollis在云南富民盆地安宁组孢粉组合中的出现及其意义[J]. 微体古生物学报, 1995, 12(1): 39-49. [95] 张显球, 林小燕. 广西合浦盆地晚白垩世和古新世的介形类化石[J]. 微体古生物学报, 2011, 28(1): 109-121. [96] SATTYAVARK N, POLACHAN S.Rock salt beneath the Khorat Plateau[C]∥Proceedings on Mineral Management. Bangkok: Department of Mineral Resources, 1990: 1-14. [97] 沙金庚, ASSANEE M, XUAN KHIEN N.泰国、 老挝南部和越南中部的非海相白垩纪双壳类生物地层学[J]. 地层学杂志, 2012, 36(2): 382-399. [98] SUNDAROVAT S.For whom the bell tolls[J]. Mineral Resources Gazette, 1978, 23(3): 7-17. [99] 严城民, 朱延浙, 吴军, 等. 老挝万象地区基础地质调研的主要进展[J]. 地球学报, 2006, 27(1): 81-84. [100] WARREN J K.Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268. [101] FANG X M, SONG C H, YAN M D, et al.Mesozoic litho- and magneto-stratigraphic evidence from the central Tibetan Plateau for megamonsoon evolution and potential evaporites[J]. Gondwana Research, 2016, 37: 110-129. [102] SIMMS M J, RUFFELL A H.Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268. [103] VAKHRAMEEV V A.Jurassic and Cretaceous floras and climates of the Earth[M]. Cambridge: Cambridge University Press, 1991: 1-285. [104] SOREGHAN G S, SOREGHAN M J, HAMILTON M A.Origin and significance of loess in late Paleozoic western Pangaea: a record of tropical cold?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268: 234-259. [105] 颜茂都, 张大文. 中国主要陆块特定时段的漂移演化历史及其对海相钾盐成矿作用的制约[J]. 矿床地质, 2014, 33(5): 945-963. [106] 赵艳军, 刘成林, 张华, 等. 古盐湖卤水温度对钾盐沉积的控制作用探讨[J]. 岩石学报, 2015, 31(9): 2751-2756. [107] NELSON D R. An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons[J]. Sedimentary Geology, 2001, 141/142: 37-60. [108] ANDERSON T, LAAJOKI K, SAEED A.Age, provenance and tectonostratigraphic status of the Mesoproterozoic Blefjell quartzite, Telemark sector, southern Norway[J]. Precambrian Research, 2004, 135: 217-244. [109] POLLOCK J C, HIBBARD J P, SYLVESTER P J.Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U-Pb detrital zircon constraints from Newfoundland[J]. Journal of the Geological Society, 2009, 166(3): 501-515. [110] CHEN Y, YAN M D, FANG X M, et al.Detrital zircon U-Pb geochronological and sedimentological study of the Simao Basin, Yunnan: implications for the Early Cenozoic evolution of the Red River[J]. Earth and Planetary Science Letters, 2017, 476: 22-33. [111] GEHRELS G.Detrital zircon U-Pb geochronology: current methods and new opportunities[M]∥Tectonics of sedimentary basins: recent advances. Oxford: Wiley-Blackwell, 2012: 45-62. [112] SUN W H, ZHOU M F, GAO J F et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172(1/2): 99-126. [113] ZHAO X F, ZHOU M F, LI J W, et al.Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 2010, 182(1/2): 57-69. [114] WANG L J, YU J H, GRIFFIN W L, et al.Early crustal evolution in the western Yangtze Block: evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 2012, 222: 368-385. [115] LUO L, QI J F, ZHANG M Z, et al.Detrital zircon U-Pb ages of Late Triassic-Late Jurassic deposits in the western and northern Sichuan Basin margin: constraints on the foreland basin provenance and tectonic implications[J]. International Journal of Earth Sciences, 2014, 103(6): 1553-1568. [116] SHAO T B, CHENG N F, SONG M S.Provenance and tectonic-paleogeographic evolution: constraints from detrital zircon U-Pb ages of Late Triassic - Early Jurassic deposits in the northern Sichuan Basin, central China[J]. Journal of Asian Earth Sciences, 2016, 127: 12-31. [117] LI Y Q, HE D F, LI D, et al.Detrital zircon U-Pb geochronology and provenance of Lower Cretaceous sediments: constraints for the northwestern Sichuan pro-foreland basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 52-72. [118] LI Y Q, HE D F, LI D, et al.Sedimentary provenance constraints on the Jurassic to Cretaceous paleogeography of Sichuan Basin, SW China[J]. Gondwana Research, 2018, 60: 15-33. [119] WEISLOGEL A L, GRAHAM S A, CHANG E Z, et al.Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: sedimentary record of collision of the North and South China blocks[J]. Geology, 2006, 34(2): 97-100. [120] ENKELMANN E, WEISLOGEL A, RATSCHBACHER L, et al. How was the Triassic Songpan-Ganzi basin filled? A provenance study[J]. Tectonics, 2007, 26(4): TC4007. [121] DING L, YANG D, CAI F L.et al.Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: implications for the tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Tectonics, 2013, 32: 34-48. [122] ZHANG Y X, ZENG L, LI Z W, et al.Late Permian - Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau: evidence from U-Pb ages, trace elements, and Hf isotopes of detrital zircons[J]. International Geology Review, 2015, 57(2): 159-181. [123] WANG B Q, WANG W, CHEN W T, et al.Constraints of detrital zircon U-Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet[J]. Sedimentary Geology, 2013, 289: 74-98. [124] GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30(5): TC5016. [125] LEIER A L, KAPP P, GEHRELS G E, et al.Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, southern Tibet[J]. Basin Research, 2007, 19(3): 361-378. [126] WANG L C, LIU C L, GAO X, et al.Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: whole-rock geochemistry, U-Pb geochronology, and Hf isotopic constraints[J]. Sedimentary Geology, 2014, 304: 44-58. [127] CLIFT P D, CARTER A, CAMPBELL I H, et al.Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: provenance and exhumation implications for Southeast Asia[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): Q10005. [128] RINO S, KON Y, SATO W, et al.The Grenvillian and Pan-African orogens: world's largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 2008, 14(1/2): 51-72. [129] 郝杰, 翟明国. 罗迪尼亚超大陆与晋宁运动和震旦系[J]. 地质科学, 2004, 39(1): 139-152. [130] CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al.Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4): 228-242. [131] CARTER A, MOSS S J.Combined detrital-zircon fission-track and U-Pb dating: a new approach to understanding hinterland evolution[J]. Geology, 1999, 27, 235-238. [132] 董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11): 1449-1461. [133] 赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319-328. [134] 张嘉澍, 李官贤. 云南江城勐野井钾盐矿床地质特征[G]∥云南思茅地区钾盐地质研究论文集. 昆明: 云南省地质局, 1980: 38-44. [135] 邓尔新. 云南省江城、 勐腊一带钾矿床和盐溶岩类的特征、 形成条件以及找矿问题[J]. 地球化学, 1982(2): 143-154. [136] 曲懿华. 钾盐矿床母液来源的新途径: 深卤补给[J]. 矿物岩石, 1982(1): 7-14. [137] 颜仰基, 袁敬阆, 康承林, 等. 云南思茅拗陷勐野井组盐类矿床的成钾条件[J]. 中国地质科学院院报(成都地质矿产研究所分刊), 1981, 2(1): 29-47. [138] 许效松, 吴嘉陵. 云南勐野井钾盐矿床特征、 微量元素地球化学及成因探讨[J]. 中国地质科学院院报, 1983, 5(1): 17-38. [139] 肖章程, 黄和旺. 云南省思茅盆地固体钾盐矿成矿物质来源[J]. 中国西部科技, 2009, 8(23): 9-11. [140] 张从伟, 高东林, 张西营, 等. 兰坪—思茅盆地与楚雄盆地古新统含盐系地球化学特征对比[J]. 盐湖研究, 2011, 19(3): 8-14. [141] 帅开业. 云南中、 新生代地质构造演化与蒸发岩建造[J]. 现代地质, 1987, 1(2): 207-229. [142] TAN H, MA H, LI B K, et al.Strontium and boron isotopic constraint on the marine origin of the Khammouane potash deposits in southeastern Laos[J]. Chinese Science Bulletin, 2010, 55(27): 3181-3188. [143] 王立成, 刘成林, 费明明, 等. 云南兰坪盆地云龙组硫酸盐硫同位素特征及其地质意义[J]. 中国矿业, 2014, 23(12): 60-68. [144] VEIZER J, ALA D, AZMY K, et al.87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161: 59-88. [145] PAYTAN A, KASTNER M, CAMPBELL D, et al.Seawater sulfur isotope fluctuations in the Cretaceous[J]. Science, 2004, 304: 1663-1665. [146] CLAYPOOR G E, HOLSER W T, KAPLAN I R, et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28: 199-260. [147] PIERRE C.Isotopic evidence of the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans[J]. Chemical Geology, 1985, 53: 191-196. [148] LU F H, MEYERS W J, SCHOONEN M A, et al.S and O(SO4)isotopes, simultaneous modeling, and environmental significance of the Nijar Messinian gypsum, Spain[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3081-3092. [149] 张华, 刘成林, 王立成, 等. 老挝他曲盆地钾盐矿床蒸发岩硫同位素特征及成钾指示意义[J]. 地质论评, 2014, 60(4): 851-857. [150] NIELSEN H.Sulphur isotopes and the formation of evaporate deposits[J]. Earth Science, 1972, 7: 91-102. [151] 张芳, 耿文辉, 王滋平. 兰坪—思茅盆地石盐矿床盐矿物包裹体特征[J]. 矿产与地质, 2001, 15(2): 113-115. [152] 吴乾蕃, 祖金华, 谢毅真, 等. 云南地区地热基本特征[J]. 地震地质, 1988, 10(4): 179-185. [153] 赵慈平. 由相对地热梯度推断的腾冲火山区现存岩浆囊[J]. 岩石学报, 2006, 22(6): 1517-1528. [154] 袁玉松, 马永生, 胡圣标, 等. 中国南方现今地热特征[J]. 地球物理学报, 2006, 49(4): 1118-1126. [155] 张永双, 曲永新, 刘景儒, 等. 滇藏铁路滇西北段蒙脱石化蚀变岩的工程地质研究[J]. 岩土工程学报, 2007, 29(4): 531-536. [156] 刘成林, 吴驰华, 王立成, 等. 中国陆块海相盆地成钾条件与预测研究进展综述[J]. 地球学报, 2016, 37(5): 581-606. [157] 王立成, 刘成林, 沈立建, 等. 东特提斯域思茅盆地钾盐成矿研究进展[J]. 地质学报, 2018, 92(8): 1707-1723. [158] 刘成林, 赵艳军, 方小敏, 等. 板块构造对海相钾盐矿床分布与成矿模式的控制[J]. 地质学报, 2015, 89(11): 1893-1907. [159] WANG Y L, WANG L C, WEI Y S, et al.Provenance and paleogeography of the Mesozoic strata in the Muang Xai Basin, northern Laos: petrology, whole-rock geochemistry, and U-Pb geochronology constraints[J]. International Journal of Earth Sciences, 2017, 106: 1409-1427. [160] 薛春纪, 陈毓川, 杨建民, 等. 滇西兰坪盆地构造体制和成矿背景分析[J]. 矿床地质, 2002, 21(1): 36-44. [161] 钟康惠, 唐菊兴, 刘肇昌, 等. 青藏东缘昌都—思茅构造带中新生代陆内裂谷作用[J]. 地质学报, 2006, 80(9): 1295-1311. |
[1] | 张七道, 李德宗, 李致伟, 王东晖, 于一帆, 朱星强, 蔡泉宇, 李明. 黔西北普底地区富锂黏土岩地球化学特征及成因[J]. 地学前缘, 2024, 31(4): 258-280. |
[2] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[3] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[4] | 官玉龙, 陈亮, 姜兆霞, 李三忠, 肖春凤, 陈龙. 东北印度洋源汇过程及古环境与古季风演化[J]. 地学前缘, 2022, 29(5): 102-118. |
[5] | 叶涛, 牛成民, 王德英, 王清斌, 代黎明, 陈安清. 渤海西南海域中生代构造演化、动力学机制及其对华北克拉通破坏的启示[J]. 地学前缘, 2022, 29(5): 133-146. |
[6] | 雷子炎, 葛倩, 陈东, 张泳聪, 韩喜彬, 叶黎明, 边叶萍, 许冬. 中全新世以来西南极阿蒙森海沉积物来源和古气候意义[J]. 地学前缘, 2022, 29(4): 179-190. |
[7] | 由文智, 向芳, 黄恒旭, 杨坤美, 喻显涛, 丁力, 杨奇. 青藏高原东缘宜宾地区第四纪河流沉积物中铁质重矿物特征及物源意义[J]. 地学前缘, 2022, 29(4): 278-292. |
[8] | 董宏坤, 万世明, 刘畅, 赵德博, 曾志刚, 李安春. 南海北部晚中新世红绿韵律层成因的矿物学和地球化学约束[J]. 地学前缘, 2022, 29(4): 42-54. |
[9] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[10] | 张永生, 郑绵平. 中国钾盐矿产基地成矿规律与深部探测技术示范[J]. 地学前缘, 2021, 28(6): 1-9. |
[11] | 邵春景, 胡欢, 尹宏伟, 苗忠英, 张雪飞, 李伟强, 夏芝广. 思茅盆地石盐矿物的原位元素含量特征对成矿模式的启示[J]. 地学前缘, 2021, 28(6): 66-78. |
[12] | 陈宁生, 田树峰, 张勇, 王政. 泥石流灾害的物源控制与高性能减灾[J]. 地学前缘, 2021, 28(4): 337-348. |
[13] | 王旭影, 姜在兴. 苏北盆地古近系阜三段物源特征及其形成的构造背景分析[J]. 地学前缘, 2021, 28(2): 376-390. |
[14] | 罗霞, 方旭庆, 张云银, 张云涛. 济阳坳陷桩海地区古生界潜山构造特征及形成机制[J]. 地学前缘, 2021, 28(1): 33-42. |
[15] | 杜一帆, 朱筱敏, 高园, 李玲珑, 叶蕾, 李小冬, 刘强虎, 李成海, 赵铁东, 陈亚青. 饶阳凹陷蠡县斜坡古近系沙河街组一段物源特征研究[J]. 地学前缘, 2021, 28(1): 115-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||