地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 497-509.DOI: 10.13745/j.esf.sf.2024.11.77
王帅1,2(), 董涛1, 李雅楠1,2, 徐小涛3, 高莲凤1,2, 张振国1,2
收稿日期:
2024-08-04
修回日期:
2024-11-29
出版日期:
2025-07-25
发布日期:
2025-08-04
作者简介:
王 帅(1989—),男,副教授,硕士生导师,主要从事沉积学、煤地质学和中生代-新生代古气候研究。E-mail: shuaiwang2018@163.com
基金资助:
WANG Shuai1,2(), DONG Tao1, LI Yanan1,2, XU Xiaotao3, GAO Lianfeng1,2, ZHANG Zhenguo1,2
Received:
2024-08-04
Revised:
2024-11-29
Online:
2025-07-25
Published:
2025-08-04
摘要:
早白垩世是全球野火盛行的时期。野火是全球生态系统的重要组成部分,对深时生态系统的影响作用越来越受到重视。基于中国东北地区早白垩世古野火记录与全球CO2、O2含量和植被演化记录,总结早白垩世古野火特征和影响因素,分析古野火对深时生态系统的影响作用。研究结果表明东北地区早白垩世阿尔必阶惰质组含量(体积分数)为24.17%,阿普特阶惰质组含量为18.68%。基于惰质组含量与氧气含量的关系模型,计算出阿尔必期时大气氧气含量为24.92%,阿普特期时大气氧气含量为24.21%。惰质组反射率与燃烧温度关系模型反映出,东北地区早白垩世阿尔必阶和阿普特阶野火类型为地下火和地表火。阿普特阶和阿尔必阶的野火类型均以地下火为主。早白垩世早期被子植物以低矮、更短的生命周期、高叶脉密度和高光合作用速率为特征,更好地适应了早白垩世低强度的野火。早白垩世野火的频繁发生反过来促进被子植物广泛传播,导致裸子植物和蕨类植物种类减少。野火导致地表侵蚀和径流作用增强,有助于大量陆源有机质和氮磷等营养物质进入湖泊或海洋,引发湖泊或海洋的富营养化,有利于浮游生物大量繁殖。当大量陆源有机质和浮游生物在水中下沉时,消耗水中氧气,有利于早白垩世缺氧环境和富有机质泥岩形成。
中图分类号:
王帅, 董涛, 李雅楠, 徐小涛, 高莲凤, 张振国. 东北地区早白垩世古野火事件及其对深时生态系统影响[J]. 地学前缘, 2025, 32(4): 497-509.
WANG Shuai, DONG Tao, LI Yanan, XU Xiaotao, GAO Lianfeng, ZHANG Zhenguo. Early Cretaceous wildfire events in NE China and implications on deep-time ecosystems[J]. Earth Science Frontiers, 2025, 32(4): 497-509.
图2 东北地区早白垩世地层对比图(据文献[59-60]修改;锆石U-Pb定年数据来源:海拉尔盆地据文献[53-55],阜新盆地据文献[21,56],松辽盆地据文献[57],三江盆地群据文献[58])
Fig.2 Stratigraphic correlation map of Early Cretaceous basins in NE China. Modified after [59-60].
图3 东北地区典型盆地下白垩统主要含煤岩系岩性柱状图(据文献[34,60]修改)
Fig.3 Lithological column of Lower Cretaceous main coal-bearing series in the typical basins in NE China. Modified after [34,60].
图4 海拉尔盆地伊敏组煤中惰质组显微镜下特征 A-F—丝质体,亮白色,保存了较好的细胞结构,具有较高的反射率,样品来自海拉尔盆地扎赉诺尔煤田伊敏组。
Fig.4 Photomicrographs of inertinites in coal from the Yimin Formation in the Hailar Basin
图5 海拉尔盆地伊敏组煤中惰质组扫描电镜下特征 A-D—丝质体横切面,具有明显的细胞结构,细胞腔发生了不同程度变形,样品来自海拉尔盆地扎赉诺尔煤田伊敏组。
Fig.5 Scanning electron microscope images of inertinites in coal from the Yimin Formation in the Hailar Basin
时期 | 盆地 | 层位 | 惰质组(mmf)含量/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 8.70~42.50 | 据文献[ | ||
(38/22.49) | ||||||
二连盆地 | 赛汉塔拉组 | 0.20~85.00 | 据文献[ | |||
(19/33.48) | 0.20~85.00 | |||||
海拉尔盆地 | 伊敏组 | 2.60~59.80 | (129/24.17) | 据文献[ | ||
(65/22.06) | ||||||
松辽盆地 | 沙河子组上部 | 21.69~39.42 | 据文献[ | |||
(7/27.59) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 8.30~20.30 | 据文献[ | ||
(16/12.26) | ||||||
三江盆地群 | 城子河组 | 2.70~24.30 | 据文献[ | |||
(5/9.76) | 2.70~38.71 | |||||
松辽盆地 | 沙河子组中下部 | 23.65~38.71 | (41/18.68) | 据文献[ | ||
(8/30.13) | ||||||
海拉尔盆地 | 大磨拐河组 | 8.37~35.73 | 据文献[ | |||
(12/23.34) |
表1 东北地区早白垩世惰质组含量特征
Table 1 The Early Cretaceous inertinite contents in NE China
时期 | 盆地 | 层位 | 惰质组(mmf)含量/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 8.70~42.50 | 据文献[ | ||
(38/22.49) | ||||||
二连盆地 | 赛汉塔拉组 | 0.20~85.00 | 据文献[ | |||
(19/33.48) | 0.20~85.00 | |||||
海拉尔盆地 | 伊敏组 | 2.60~59.80 | (129/24.17) | 据文献[ | ||
(65/22.06) | ||||||
松辽盆地 | 沙河子组上部 | 21.69~39.42 | 据文献[ | |||
(7/27.59) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 8.30~20.30 | 据文献[ | ||
(16/12.26) | ||||||
三江盆地群 | 城子河组 | 2.70~24.30 | 据文献[ | |||
(5/9.76) | 2.70~38.71 | |||||
松辽盆地 | 沙河子组中下部 | 23.65~38.71 | (41/18.68) | 据文献[ | ||
(8/30.13) | ||||||
海拉尔盆地 | 大磨拐河组 | 8.37~35.73 | 据文献[ | |||
(12/23.34) |
时期 | 盆地 | 层位 | 惰质组反射率Ro/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 1.30~2.30 | 据文献[ | ||
(38/1.69) | ||||||
二连盆地 | 赛汉塔拉组 | 0.59~1.24 | 据文献[ | |||
(19/0.90) | 0.58~2.51 | |||||
海拉尔盆地 | 伊敏组 | 0.58~1.66 | (96/1.30) | 据文献[ | ||
(32/1.01) | ||||||
松辽盆地 | 沙河子组上部 | 1.21~2.51 | 据文献[ | |||
(7/1.64) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 1.60~2.80 | 据文献[ | ||
(16/2.29) | ||||||
三江盆地群 | 城子河组 | 0.94~1.24 | 据文献[ | |||
(5/1.05) | 0.94~2.80 | |||||
松辽盆地 | 沙河子组中下部 | 1.22~2.73 | (41/1.77) | 据文献[ | ||
(8/1.73) | ||||||
海拉尔盆地 | 大磨拐河组 | 1.33~1.52 | 据文献[ | |||
(12/1.42) |
表2 东北地区早白垩世煤和泥岩惰质组反射率
Table 2 Inertinite reflectance of Early Cretaceous coals and mudstones from NE China
时期 | 盆地 | 层位 | 惰质组反射率Ro/% | 数据来源 | ||
---|---|---|---|---|---|---|
阿尔必期 | 阜新盆地 | 阜新组和沙海组四段 | 1.30~2.30 | 据文献[ | ||
(38/1.69) | ||||||
二连盆地 | 赛汉塔拉组 | 0.59~1.24 | 据文献[ | |||
(19/0.90) | 0.58~2.51 | |||||
海拉尔盆地 | 伊敏组 | 0.58~1.66 | (96/1.30) | 据文献[ | ||
(32/1.01) | ||||||
松辽盆地 | 沙河子组上部 | 1.21~2.51 | 据文献[ | |||
(7/1.64) | ||||||
阿普特期 | 阜新盆地 | 沙海组一段至三段 | 1.60~2.80 | 据文献[ | ||
(16/2.29) | ||||||
三江盆地群 | 城子河组 | 0.94~1.24 | 据文献[ | |||
(5/1.05) | 0.94~2.80 | |||||
松辽盆地 | 沙河子组中下部 | 1.22~2.73 | (41/1.77) | 据文献[ | ||
(8/1.73) | ||||||
海拉尔盆地 | 大磨拐河组 | 1.33~1.52 | 据文献[ | |||
(12/1.42) |
图6 东北地区早白垩世惰质组反射率与野火燃烧温度 a—阿尔必阶;b—阿普特阶。
Fig.6 Inertinite reflectance and inferred burning temperatures of wildfires in the Early Cretaceous in NE China
图7 东北地区早白垩世惰质组含量、野火类型、全球CO2与O2含量和植物演化 a—惰质组含量;b—各野火类型占比;c—CO2含量(据文献[76]);d—O2含量(据文献[80]);e—各植物类型占比(据文献[85-86])。
Fig.7 Inertinite content and wildfire types in the Early Cretaceous in NE China and their correlation with global CO2, O2 concentrations and plant evolution
图8 东北地区早白垩世惰质组含量与氧气含量关系图(据文献[16]修改)
Fig.8 Relationship between Early Cretaceous inertinite content and oxygen content in NE China. Modified after [16].
[1] | 邵龙义, 王学天, 鲁静, 等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报, 2017, 35(5): 1016-1031. |
[2] | DAI S F, BECHTEL A, EBLE C F, et al. Recognition of peat depositional environments in coal: a review[J]. International Journal of Coal Geology, 2020, 219: 103383. |
[3] | WANG S, SHAO L Y, WANG D D, et al. Controls on accumulation of anomalously thick coals: implications for sequence stratigraphic analysis[J]. Sedimentology, 2020, 67(2): 991-1013. |
[4] | 李勇, 潘松圻, 宁树正, 等. 煤系成矿学内涵与发展: 兼论煤系成矿系统及其资源环境效应[J]. 中国科学: 地球科学, 2022, 52(10): 1948-1965. |
[5] | GLASSPOOL I J, SCOTT A C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal[J]. Nature Geoscience, 2010, 3(9): 627-630. |
[6] | SCOTT A C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1/2): 11-39. |
[7] | HUDSPITH V, SCOTT A C, COLLINSON M E, et al. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the Late Permian, Kuznetsk Basin, Russia[J]. International Journal of Coal Geology, 2012, 89: 13-25. |
[8] | SUN Y Z, ZHAO C L, PÜTTMANN W, et al. Evidence of widespread wildfires in a coal seam from the Middle Permian of the North China Basin[J]. Lithosphere, 2017, 9(4): 595-608. |
[9] | WANG D D, YIN L S, SHAO L Y, et al. Characteristics and evolution of inertinite abundance and atmospheric pO2 during China’s coal-forming periods[J]. Journal of Palaeogeography, 2021, 10(2): 259-283. |
[10] | GLASSPOOL I J, GASTALDO R A. Silurian wildfire proxies and atmospheric oxygen[J]. Geology, 2022, 50(9): 1048-1052. |
[11] | SUN Y Z. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology[J]. Palaeoworld, 2024, 33(6): 1449-1463. |
[12] | XU H Y, GEORGE S C, HOU D J. Algal-derived polycyclic aromatic hydrocarbons in Paleogene lacustrine sediments from the Dongying Depression, Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 402-425. |
[13] | SONG Y, TIAN Y, YU J X, et al. Wildfire response to rapid climate change during the Permian-Triassic biotic crisis[J]. Global and Planetary Change, 2022, 215: 103872. |
[14] | JIAO S L, ZHANG H, CAI Y F, et al. Collapse of tropical rainforest ecosystems caused by high-temperature wildfires during the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2023, 614: 118193. |
[15] |
BOWMAN D M J S, BALCH J K, ARTAXO P, et al. Fire in the Earth system[J]. Science, 2009, 324(5926): 481-484.
DOI PMID |
[16] |
GLASSPOOL I J, SCOTT A C, WALTHAM D, et al. The impact of fire on the Late Paleozoic Earth system[J]. Frontiers in Plant Science, 2015, 6: 756.
DOI PMID |
[17] | HUA F H, SHAO L Y, WANG X T, et al. The impact of frequent wildfires during the Permian-Triassic transition: floral change and terrestrial crisis in southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 641: 112129. |
[18] | SHEN W J, SUN Y G, LIN Y T, et al. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events[J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1992-2006. |
[19] | BROWN S A E, SCOTT A C, GLASSPOOL I J, et al. Cretaceous wildfires and their impact on the Earth system[J]. Cretaceous Research, 2012, 36: 162-190. |
[20] | ROBSON B E, COLLINSON M E, RIEGEL W, et al. Early Paleogene wildfires in peat-forming environments at Schöningen, Germany[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 437: 53-62. |
[21] | XU X T, SHAO L Y, ERIKSSON K A, et al. Terrestrial records of the early albian ocean anoxic event: evidence from the Fuxin lacustrine basin, NE China[J]. Geoscience Frontiers, 2022, 13(1): 101275. |
[22] | ZHANG P X, YANG M F, JIANG Z F, et al. Significant floral changes across the Permian-Triassic and Triassic-Jurassic transitions induced by widespread wildfires[J]. Frontiers in Ecology and Evolution, 2023, 11: 1284482. |
[23] | ZHANG P X, YANG M F, LU J, et al. Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition[J]. Frontiers in Ecology and Evolution, 2024, 12: 1329533. |
[24] | HU X M, WAGREICH M, YILMAZ I O. Marine rapid environmental/climatic change in the Cretaceous greenhouse world[J]. Cretaceous Research, 2012, 38: 1-6. |
[25] | WANG Y D, HUANG C M, SUN B N, et al. Paleo-CO2 variation trends and the Cretaceous greenhouse climate[J]. Earth-Science Reviews, 2014, 129: 136-147. |
[26] |
万晓樵, 吴怀春, 席党鹏, 等. 中国东北地区白垩纪温室时期陆相生物群与气候环境演化[J]. 地学前缘, 2017, 24(1): 18-31.
DOI |
[27] | 胡修棉, 李娟, 韩中, 等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学: 地球科学, 2020, 50(8): 1023-1043. |
[28] | 刘昕羽, 胡修棉, 李娟. 白垩纪大洋缺氧事件与富氧事件[J]. 自然杂志, 2020, 42(4): 347-354. |
[29] | PERCIVAL L M E, MATSUMOTO H, CALLEGARO S, et al. Cretaceous large igneous provinces: from volcanic formation to environmental catastrophes and biological crises[J/OL]. Geological Society, London, Special Publications, 2025, 544[2024-05-10]. https://doi.org/10.1144/SP544-2023-88. |
[30] | 王成善, 高远, 王璞珺, 等. 松辽盆地国际大陆科学钻探: 白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430, 511-534. |
[31] |
BOND W J, SCOTT A C. Fire and the spread of flowering plants in the Cretaceous[J]. New Phytologist, 2010, 188(4): 1137-1150.
DOI PMID |
[32] | DIESSEL C F K. The stratigraphic distribution of inertinite[J]. International Journal of Coal Geology, 2010, 81(4): 251-268. |
[33] | LÜ D W, DU W X, ZHANG Z H, et al. A synthesis of the Cretaceous wildfire record related to atmospheric oxygen levels?[J]. Journal of Palaeogeography, 2024, 13(1): 149-164. |
[34] | WANG S, SHAO L Y, YAN Z M, et al. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China[J]. Journal of Palaeogeography, 2019, 8(1): 17. |
[35] | WANG S, SHAO L Y, LI J X, et al. Coal petrology of the Yimin Formation (Albian) in the Hailar Basin, NE China: paleoenvironments and wildfires during peat formation[J]. Cretaceous Research, 2021, 124: 104815. |
[36] | HE T H, LAMONT B B. Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth’s flora[J]. National Science Review, 2018, 5(2): 237-254. |
[37] | ZHANG M Z, DAI S, DU B X, et al. Mid-cretaceous hothouse climate and the expansion of early angiosperms[J]. Acta Geologica Sinica (English Edition), 2018, 92(5): 2004-2025. |
[38] | XU X T, SHAO L Y, ERIKSSON K A, et al. Widespread wildfires linked to early albian ocean anoxic event 1b: evidence from the Fuxin lacustrine basin, NE China[J]. Global and Planetary Change, 2022, 215: 103858. |
[39] | ZHANG Z H, LÜ D W, WANG T T, et al. Intensive peatland wildfires during the Aptian-Albian oceanic anoxic event 1b: Evidence from borehole SK-2 in the Songliao Basin, NE China[J]. Journal of Palaeogeography, 2022, 11(3): 448-467. |
[40] | WU F Y, SUN D Y, GE W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. |
[41] | WAN X Q, CHEN P J, WEI M J. The Cretaceous system in China[J]. Acta Geologica Sinica (English Edition), 2007, 81(6): 957-983. |
[42] | 邵凯, 邵龙义, 曲延林, 等. 东北地区早白垩世含煤岩系层序地层研究[J]. 煤炭学报, 2013, 38(增刊2): 423-433. |
[43] | SHA J G. Cretaceous stratigraphy of Northeast China: non-marine and marine correlation[J]. Cretaceous Research, 2007, 28(2): 146-170. |
[44] | LIN C S, KENNETH E, LI S T, et al. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, Northeast China[J]. AAPG Bulletin, 2001, 85(11): 2017-2043. |
[45] | 祝玉衡, 张文朝, 王洪生, 等. 二连盆地下白垩统沉积相及含油性[M]. 北京: 科学出版社, 2000. |
[46] | GAO Y Q, LIU L, HU W X. Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer Basin, northeastern China[J]. Applied Geochemistry, 2009, 24(9): 1724-1738. |
[47] | 贾立城, 李真真, 黄笑, 等. 松辽盆地中-新生代构造-沉积演化及其对铀成矿地控制作用[J]. 铀矿地质, 2024, 40(1): 90-104. |
[48] | 刘建英, 王世云, 尹继宏. 阜新盆地石油地质特征[J]. 石油与天然气地质, 1992, 13(4): 450-457. |
[49] | 王伟锋, 陆诗阔, 孙月平. 辽西地区构造演化与盆地成因类型研究[J]. 地质力学学报, 1997, 3(3): 81-89. |
[50] | 贾建亮, 吴彦佳, 杨帝, 等. 阜新盆地早白垩世火山成因古潜山油气藏的发现及成藏机制[J]. 地质学报, 2022, 96(11): 3977-3993. |
[51] |
朱志敏, 闫剑飞, 沈冰, 等. 从“构造热事件” 分析阜新盆地多能源矿产共存成藏[J]. 地球科学进展, 2007, 22(5): 468-479.
DOI |
[52] | 张文浩, 刘卫彬, 王丹丹, 等. 黑龙江三江盆地早中生界大架山组硅质泥岩成烃潜力评价[J]. 中国地质, 2020, 47(1): 121-132. |
[53] | JI Z, WAN C B, MENG Q A, et al. Chronostratigraphic framework of late Mesozoic terrestrial strata in the Hailar-Tamtsag Basin, Northeast China, and its geodynamic implication[J]. Geological Journal, 2020, 55(7): 5197-5215. |
[54] | LI Y L, ZHENG D R, SHA J G, et al. Lower Cretaceous Hailar amber: the oldest-known amber from China[J]. Cretaceous Research, 2023, 145: 105472. |
[55] | WANG L Y, WAN C B, SUN Y W. A spore-pollen assemblage from the damoguaihe formation in the Tamutsag Basin, Mongolia and its geological implication[J]. Acta Geologica Sinica (English Edition), 2014, 88(1): 46-61. |
[56] | SU N, ZHU G, WU X D, et al. Back-arc tectonic tempos: records from Jurassic-Cretaceous basins in the eastern North China Craton[J]. Gondwana Research, 2021, 90: 241-257. |
[57] | WANG T T, WANG C S, RAMEZANI J, et al. High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China[J]. Geoscience Frontiers, 2022, 13(4): 101386. |
[58] | CHEN D X, ZHANG F Q, TIAN Y T, et al. Timing of the late Jehol biota: new geochronometric constraints from the Jixi Basin, NE China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 492: 41-49. |
[59] | 席党鹏, 孙立新, 覃祚焕, 等. 中国白垩纪岩石地层划分和对比[J]. 地层学杂志, 2021, 45(3): 375-401. |
[60] | 王帅. 中国东北地区早白垩世层序格架内聚煤模式研究[D]. 北京: 中国矿业大学(北京), 2018. |
[61] | 李思田. 断陷盆地分析与煤聚积规律: 中国东北部晚中生代断陷盆地沉积, 构造演化和能源预测研究的方法与成果[M]. 北京: 地质出版社, 1988. |
[62] | 徐小涛. 阜新盆地早白垩世湖相沉积及其对大洋缺氧事件的响应[D]. 北京: 中国矿业大学(北京), 2022. |
[63] | GUO B, SHAO L Y, HILTON J, et al. Sequence stratigraphic interpretation of peatland evolution in thick coal seams: examples from Yimin Formation (Early Cretaceous), Hailaer Basin, China[J]. International Journal of Coal Geology, 2018, 196: 211-231. |
[64] | WANG Z W, XU Y, ZHAO Q J, et al. Peatland wildfires in the Lower Cretaceous Damoguaihe Formation, Hailar Basin, Northeast China[J]. Cretaceous Research, 2023, 150: 105578. |
[65] | 邵龙义, 周家民, JONES T P, 等. 煤中惰质组及其古环境意义: 来自AI和大数据分析的启示[J]. 中国科学: 地球科学, 2024, 54(6): 1806-1829. |
[66] | ZHOU J M, SHAO L Y, JONES T P, et al. Mechanisms of inertinite enrichment in Jurassic coals: insights from a big data-driven review[J]. Earth-Science Reviews, 2024, 257: 104889. |
[67] | JONES T P. Fusain in late Jurassic sediments from the Witch Ground Graben, North Sea, UK[J]. Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 1997, 58: 93-103. |
[68] | SCOTT A C. The pre-quaternary history of fire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/2/3/4): 281-329. |
[69] | SCOTT A C, JONES T P. The nature and influence of fire in Carboniferous ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106(1/2/3/4): 91-112. |
[70] | 续颜. 内蒙古东部霍林河煤田早白垩世古火灾研究[D]. 长春: 吉林大学, 2011. |
[71] | 邵凯. 中国东北地区早白垩世层序地层与聚煤规律研究[D]. 北京: 中国矿业大学(北京), 2013. |
[72] | WHEELER A, SHEN J, MOORE T A, et al. Palaeoecology and palaeoclimate of an Early Cretaceous peat mire in east Laurasia (Hailar Basin, Inner Mongolia, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599: 111050. |
[73] | DENG S H. Ecology of the Early Cretaceous ferns of Northeast China[J]. Review of Palaeobotany and Palynology, 2002, 119(1/2): 93-112. |
[74] | ZHONG Y T, HUYSKENS M H, YIN Q Z, et al. High-precision geochronological constraints on the duration of ‘Dinosaur Pompeii’ and the Yixian Formation[J]. National Science Review, 2021, 8(6): nwab063. |
[75] | 徐其虎. 华北克拉通早白垩世火山活动及其对热河生物群的影响[D]. 杭州: 浙江大学, 2022. |
[76] | FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8(1): 14845. |
[77] | BELCHER C M, YEARSLEY J M, HADDEN R M, et al. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22448-22453. |
[78] | JONES T P, CHALONER W G. Fossil charcoal, its recognition and palaeoatmospheric significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 97(1/2): 39-50. |
[79] | BELCHER C M, MCELWAIN J C. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic[J]. Science, 2008, 321(5893): 1197-1200. |
[80] | MILLS BENJAMIN J W, KRAUSE ALEXANDER J, IAN J, et al. Evolution of atmospheric O2 through the Phanerozoic, revisited[J]. Annual Review of Earth and Planetary Sciences, 2023, 51: 253-276. |
[81] | 陶明华, 崔周旗, 陈国强. 中国东北部中生代孢粉组合序列及古气候演变[J]. 微体古生物学报, 2013, 30(3): 275-287. |
[82] |
BRODRIBB T J, FEILD T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecology Letters, 2010, 13(2): 175-183.
DOI PMID |
[83] | HAWORTH M, HESSELBO S P, MCELWAIN J C, et al. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae)[J]. Geology, 2005, 33(9): 749-752. |
[84] | FEILD T S, ARENS N C, DOYLE J A, et al. Dark and disturbed: a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1): 82-107. |
[85] | BOER H J, EPPINGA M B, WASSEN M J, et al. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution[J]. Nature Communications, 2012, 3(1): 1221. |
[86] | BENTON M J, WILF P, SAUQUET H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity[J]. New Phytologist, 2022, 233(5): 2017-2035. |
[87] | SUN G, DILCHER D L. Early angiosperms from thelower Cretaceous of Jixi, eastern Heilongjiang, China[J]. Review of Palaeobotany and Palynology, 2002, 121(2): 91-112. |
[88] | SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events: causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3/4): 179-184. |
[89] | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
[90] | BAKER S J, BELCHER C M, BARCLAY R S, et al. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2[J]. GSA Bulletin, 2020, 132(1/2): 321-333. |
[91] | BOUDINOT F G, SEPÚLVEDA J. Marine organic carbon burial increased forest fire frequency during Oceanic Anoxic Event 2[J]. Nature Geoscience, 2020, 13(10): 693-698. |
[92] | SHAKESBY R A, DOERR S H. Wildfire as a hydrological and geomorphological agent[J]. Earth-Science Reviews, 2006, 74(3/4): 269-307. |
[93] | SHAKESBY R A. Post-wildfire soil erosion in the Mediterranean: review and future research directions[J]. Earth-Science Reviews, 2011, 105(3/4): 71-100. |
[94] | KUMP L R. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus[J]. Nature, 1988, 335(6186): 152-154. |
[95] | LENTON T M, WATSON A J. Redfield revisited: 2. What regulates the oxygen content of the atmosphere?[J]. Global Biogeochemical Cycles, 2000, 14(1): 249-268. |
[96] | YAN Z M, SHAO L Y, GLASSPOOL I J, et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event[J]. International Journal of Coal Geology, 2019, 207: 75-83. |
[97] | JIMÉNEZ BERROCOSO Á, MACLEOD K G, MARTIN E E, et al. Nutrient trap for Late Cretaceous organic-rich black shales in the tropical North Atlantic[J]. Geology, 2010, 38(12): 1111-1114. |
[98] | KRAAL P, SLOMP C P, FORSTER A, et al. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295(1/2): 42-54. |
[1] | 吴渴, 闫相宇, 杨冬红. 辽东半岛早白垩世鸡冠山花岗斑岩的岩石成因:岩石地球化学及单矿物U-Pb-Hf-Nd同位素的制约[J]. 地学前缘, 2025, 32(4): 388-404. |
[2] | 李磊, 徐鹏, 曾昭, 赵丹丹, 马韶君, 刘丛强. 社会-生态系统科学与人类世可持续发展[J]. 地学前缘, 2025, 32(3): 105-117. |
[3] | 徐胜, 杨业, 张茂亮, 邵延秀, 李云帅, 徐海, 刘静, 刘丛强. 构造-地貌-气候-生态系统动力学研究进展[J]. 地学前缘, 2025, 32(3): 23-34. |
[4] | 李婉珠, 王宝利, 刘丛强. 水体硅碳化学计量趋同的浮游植物驱动机制[J]. 地学前缘, 2025, 32(3): 311-319. |
[5] | 桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. |
[6] | 刘静, 孙照通, 王文鑫, 李云帅, 姚文倩, 崔凤珍, 刘丛强. 表层地球系统的深部过程响应与地表自然灾害[J]. 地学前缘, 2025, 32(3): 7-22. |
[7] | 王铁军, 晏智锋, 宋照亮, 周浩然, 孙新超, 陈伟, 李攀, 刘丛强. 表层地球系统科学视角下的生态系统科学研究[J]. 地学前缘, 2025, 32(3): 78-91. |
[8] | 焦守涛, 刘东娜, 张旗, 靳职斌, 张玉生, 原杰, 周李岗, 刘铁翊, 解团结, 范宗胜, 闫彤彤, 周新鹏, 张双奎, 卫倩倩, 闫涛, 张坤, 尹碧菡. 山西省早白垩世下地壳地质图:基于镜质组反射率证据的修正[J]. 地学前缘, 2025, 32(1): 418-431. |
[9] | 王岩, 秦燕, 黎华, 王登红, 孙赫, 王成辉, 黄凡. 东北地区金矿成矿规律及找矿方向[J]. 地学前缘, 2024, 31(3): 235-244. |
[10] | 李柯然, 杨迪, 宋金民, 李智武, 金鑫, 刘芳, 杨雄, 刘树根, 叶玥豪, 范建平, 任佳鑫, 赵玲丽, 夏舜, 陈伟. 滇东北地区下寒武统龙王庙组白云石化模式研究:来自钙同位素模拟结果[J]. 地学前缘, 2024, 31(2): 313-326. |
[11] | 张力钰, 陈强路, 黎茂稳, 袁坤, 马晓潇, 席斌斌, 岳勇, 黄泰誉. 鄂西-黔东北地区早寒武世有机质富集机理对比研究[J]. 地学前缘, 2023, 30(6): 181-198. |
[12] | 李毕松, 金民东, 朱祥, 代林呈, 杨毅. 川东北地区灯四段储层成岩作用及孔隙演化[J]. 地学前缘, 2023, 30(6): 32-44. |
[13] | 邢智峰, 张湘赟, 李婉颖, 齐永安, 郑伟, 吴盼盼, 张立军. PTME后华北板块南缘生物复苏后期古环境特征:来自豫西登封中三叠统二马营组的证据[J]. 地学前缘, 2023, 30(5): 491-509. |
[14] | 毛龙, 汪胜兰, 邱晓峄, 陶卓琳, 冯永忠, 黄银洲. 生态系统恢复力理论在甘肃省国土空间生态修复规划编制中的应用[J]. 地学前缘, 2023, 30(4): 504-513. |
[15] | 王璐琳, 刘晓鸿, 张志光. 香港世界地质公园东平洲平洲组新发现火山岩的锆石U-Pb测年、地球化学及地质意义[J]. 地学前缘, 2023, 30(2): 239-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||