地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 364-376.DOI: 10.13745/j.esf.sf.2021.7.19
史凯1(), 徐丽娟1,2,*(
), 苏煜雯1, 刘春阳1, 马海波1, 刘盛遨1,2
收稿日期:
2020-09-09
修回日期:
2021-06-18
出版日期:
2022-01-25
发布日期:
2022-02-22
通信作者:
徐丽娟
作者简介:
史 凯(1983—),男,博士研究生,助理研究员,主要从事稳定同位素地球化学相关研究工作。E-mail: shikai@cugb.edu.cn
基金资助:
SHI Kai1(), XU Lijuan1,2,*(
), SU Yuwen1, LIU Chunyang1, MA Haibo1, LIU Sheng’ao1,2
Received:
2020-09-09
Revised:
2021-06-18
Online:
2022-01-25
Published:
2022-02-22
Contact:
XU Lijuan
摘要:
铬(Cr)属于氧化还原敏感元素,在岩浆过程中是一种中度相容和轻度亲铁元素。Cr在硅酸盐地球中主要有三种价态:Cr2+、Cr3+和Cr6+。Cr存在于不同来源的矿物和岩石中,其氧化还原状态和同位素组成可以为其成因、氧化还原条件和相关成矿历史提供有价值的信息。近年来,铬同位素越来越多地应用到现代环境、古环境、行星的演化以及高温地质过程等领域中,而高温地质过程中储库的铬同位素及其分馏机理研究是其他工作的基础。尤其是随着质谱技术的发展,Cr同位素在高温环境中的分馏机制及行为也引起了更多的关注。本文主要介绍不同储库的Cr同位素组成及高温岩浆过程中Cr同位素研究的最新进展。
中图分类号:
史凯, 徐丽娟, 苏煜雯, 刘春阳, 马海波, 刘盛遨. 铬同位素在高温岩浆过程中的研究进展[J]. 地学前缘, 2022, 29(1): 364-376.
SHI Kai, XU Lijuan, SU Yuwen, LIU Chunyang, MA Haibo, LIU Sheng’ao. Research progress on Cr isotopes in high temperature magmatic processes: A review[J]. Earth Science Frontiers, 2022, 29(1): 364-376.
图2 不同方法处理有机质对TIMS测量所得52Cr信号强度的影响对比图 (据文献[47]修改) 样品上样量为1 μg。红色线代表使用硝酸+高氯酸处理有机质后的信号强度;蓝色线代表使用硝酸处理后的信号强度;黄色线为使用双氧水处理有机质后的信号强度;绿色线为没有有机质处理的样品信号。
Fig.2 Comparison of 52Cr signal intensities by TIMS measurements for samples (1 μg) treated by different chemical methods to minimize the influence of organic matter. Modified after [47].
图4 地幔橄榄岩Cr含量(a)与橄榄岩和玄武岩Cr同位素分布(b) (据文献[21,35,50-51,60-68])
Fig.4 Cr contents (a) and Cr isotopic distributions (b) in mantle derived rocks. Adapted from [21,35,50-51,60-68].
图5 地壳、变质岩Cr含量和铬同位素分布 (据文献[10,20-22,35,50-51,60,67,70,73-86])
Fig.5 Cr contents (left panels) and Cr isotopic distributions (right panels) in crustal and metamorphic rocks. Adapted from [10,20-22,35,50-51,60,67,70,73-86].
[1] |
ROSMAN K J R, TAYLOR P D P. Isotopic compositions of the elements 1997 (Technical Report)[J]. Pure and Applied Chemistry, 1998, 70(1):217-235.
DOI URL |
[2] |
BIRCK J L, ALLÈGRE C J. Evidence for the presence of 53Mn in the early solar system[J]. Geophysical Research Letters, 1985, 12(11):745-748.
DOI URL |
[3] |
LUGMAIR G W, SHUKOLYUKOV A. Early solar system timescales according to 53Mn-53Cr systematics[J]. Geochimica et Cosmochimica Acta, 1998, 62(16):2863-2886.
DOI URL |
[4] |
TRINQUIER A, BIRCK J L, ALLÈGRE C J. High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(12):1565-1574.
DOI URL |
[5] |
ROTARU M, BIRCK J L, ALLÈGRE C J. Clues to early Solar System history from chromium isotopes in carbonaceous chondrites[J]. Nature, 1992, 358(6386):465-470.
DOI URL |
[6] |
TRINQUIER A, BIRCK J L, ALLÈGRE C J. et al. 53Mn-53Cr systematics of the early Solar System revisited[J]. Geochimica et Cosmochimica Acta, 2008, 72(20):5146-5163.
DOI URL |
[7] |
NYQUIST L E, KLEINE T, SHIH C Y, et al. The distribution of short-lived radioisotopes in the early Solar System and the chronology of asteroid accretion, differentiation, and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2009, 73(17):5115-5136.
DOI URL |
[8] | QIN L P, RUMBLE D, ALEXANDER C M O, et al. The chromium isotopic composition of Almahata Sitta[J]. Meteoritics & Planetary Science, 2010, 45(10/11):1771-1777. |
[9] |
FREI R, GAUCHER C, POULTON S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461(7261):250-253.
DOI URL |
[10] |
FREI R, GAUCHER C, DØSSING L N, et al. Chromium isotopes in carbonates: a tracer for climate change and for reconstructing the redox state of ancient seawater[J]. Earth and Planetary Science Letters, 2011, 312(1/2):114-125.
DOI URL |
[11] |
CROWE S A, DØSSING L N, BEUKES N J, et al. Atmospheric oxygenation three billion years ago[J]. Nature, 2013, 501(7468):535-538.
DOI URL |
[12] |
PLANAVSKY N J, REINHARD C T, WANG X, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209):635-638.
DOI URL |
[13] |
ALLÈGRE C J, POIRIER J P, HUMLER E, et al. The chemical composition of the Earth[J]. Earth and Planetary Science Letters, 1995, 134(3/4):515-526.
DOI URL |
[14] |
FROST R L. Raman microscopy of selected chromate minerals[J]. Journal of Raman Spectroscopy, 2004, 35(2):153-158.
DOI URL |
[15] |
BALL J W, NORDSTROM D K. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides[J]. Journal of Chemical & Engineering Data, 1998, 43(6):895-918.
DOI URL |
[16] |
QIN L P, WANG X L. Chromium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):379-414.
DOI URL |
[17] | 王相力, 卫炜. 铬稳定同位素地球化学[J]. 地学前缘, 2020, 27(3):78-103. |
[18] |
ELLIS A S, JOHNSON T M, BULLEN T D. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects[J]. Environmental Science & Technology, 2004, 38(13):3604-3607.
DOI URL |
[19] |
ZINK S, SCHOENBERG R, STAUBWASSER M. Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media[J]. Geochimica et Cosmochimica Acta, 2010, 74(20):5729-5745.
DOI URL |
[20] |
BONNAND P, JAMES R H, PARKINSON I J, et al. The chromium isotopic composition of seawater and marine carbonates[J]. Earth and Planetary Science Letters, 2013, 382(6):10-20.
DOI URL |
[21] |
SCHOENBERG R, ZINK S, STAUBWASSER M, et al. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS[J]. Chemical Geology, 2008, 249(3/4):294-306.
DOI URL |
[22] |
SHEN J, LIU J, QIN L P, et al. Chromium isotope signature during continental crust subduction recorded in metamorphic rocks[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(11):3840-3854.
DOI URL |
[23] |
BALL J W, BASSETT R L. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis[J]. Chemical Geology, 2000, 168(1/2):123-134.
DOI URL |
[24] |
YAMAKAWA A, YAMASHITA K, MAKISHIMA A, et al. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry[J]. Analytical Chemistry, 2009, 81(23):9787-9794.
DOI URL |
[25] |
QIN L P, ALEXANDER C M O, CARLSON R W, et al. Contributors to chromium isotope variation of meteorites[J]. Geochimica et Cosmochimica Acta, 2010, 74(3):1122-1145.
DOI URL |
[26] |
BIRCK J L, ALLÈGRE C J. Manganese-chromium isotope systematics and the development of the early Solar System[J]. Nature, 1988, 331(6157):579-584.
DOI URL |
[27] |
BONNAND P, PARKINSON I J, JAMES R H, et al. Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3):528-535.
DOI URL |
[28] |
BONNAND P, WILLIAMS H M, PARKINSON I J, et al. Stable chromium isotopic composition of meteorites and metal-silicate experiments: implications for fractionation during core formation[J]. Earth and Planetary Science Letters, 2016, 435:14-21.
DOI URL |
[29] | LARSEN K K, WIELANDT D, SCHILLER M, et al. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A, 2016, 1443:162-174. |
[30] |
SCHOENBERG R, MERDIAN A, HOLMDEN C, et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J]. Geochimica et Cosmochimica Acta, 2016, 183:14-30.
DOI URL |
[31] |
LIU C Y, XU L J, LIU C T, et al. High-precision measurement of stable cr isotopes in geological reference materials by a double-spike TIMS method[J]. Geostandards and Geoanalytical Research, 2019, 43(4):647-661.
DOI URL |
[32] |
JOHNSON T M, BULLEN T D. Mass-dependent fractionation of selenium and chromium isotopes in low-temperature environments[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1):289-317.
DOI URL |
[33] |
HALICZ L, YANG L, TEPLYAKOV N, et al. High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(12):1622-1627.
DOI URL |
[34] |
DØSSING L N, DIDERIKSEN K, STIPP S L S, et al. Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments[J]. Chemical Geology, 2011, 285(1/2/3/4):157-166.
DOI URL |
[35] |
FARKAŠ J, CHRASTNÝ V, NOVÁK M, et al. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time[J]. Geochimica et Cosmochimica Acta, 2013, 123:74-92.
DOI URL |
[36] |
LI C F, FENG L J, WANG X C, et al. Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(12):2375-2383.
DOI URL |
[37] |
LI C F, FENG L J, WANG X C, et al. A low-blank two-column chromatography separation strategy based on a KMnO4 oxidizing reagent for Cr isotope determination in micro-silicate samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10):1938-1945.
DOI URL |
[38] |
ZHU J M, WU G L, WANG X L, et al. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33:809-821.
DOI URL |
[39] |
SCHILLER M, KOOTEN E V, HOLST J C, et al. Precise measurement of chromium isotopes by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(8):1406-1416.
DOI URL |
[40] |
GUEGUEN B, REINHARD C T, ALGEO T J, et al. The chromium isotope composition of reducing and oxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 184:1-19.
DOI URL |
[41] | GILLEAUDEAU G J, FREI R, KAUFMAN A J, et al. Oxygenation of the Mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates[J]. Geochemical Perspectives Letters, 2016, 2:178-187. |
[42] |
RUDGE J F, REYNOLDS B C, BOURDON B. The double spike toolbox[J]. Chemical Geology, 2009, 265(3/4):420-431.
DOI URL |
[43] | 张群, 秦礼萍. 双稀释剂计算及校正方法[J]. 地球化学, 2017, 46(1):15-21. |
[44] | 朱建明, 谭德灿, 王静. 同位素双稀释剂技术的数值模拟与应用[J]. 岩石学报, 2018, 34(2):503-512. |
[45] |
KURITANI T, NAKAMURA E. Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes[J]. Chemical Geology, 2002, 186(1/2):31-43.
DOI URL |
[46] |
CHRASTNÝ V, ROHOVEC J, ČADKOVÁ E, et al. A new method for low-temperature decomposition of chromites and dichromium trioxide using bromic acid evaluated by chromium isotope measurements[J]. Geostandards and Geoanalytical Research, 2014, 38(1):103-110.
DOI URL |
[47] |
LIU J, QIN L P, XIA J X, et al. Cosmogenic effects on chromium isotopes in meteorites[J]. Geochimica et Cosmochimica Acta, 2019, 251:73-86.
DOI URL |
[48] |
WU G, ZHU J M, WANG X, et al. High-sensitivity measurement of Cr isotopes by double spike MC-ICP-MS at the 10 ng level[J]. Analytical Chemistry, 2020, 92(1):1463-1469.
DOI URL |
[49] |
HONDA M, IMAMURA M. Half-life of Mn53[J]. Physical Review C, 1971, 4(4):1182-1188.
DOI URL |
[50] |
FREI R, ROSING M T. Search for traces of the late heavy bombardment on Earth: results from high precision chromium isotopes[J]. Earth and Planetary Science Letters, 2005, 236(1/2):28-40.
DOI URL |
[51] | SOSSI P A, MOYNIER F, VAN ZUILEN K. Volatile loss following cooling and accretion of the Moon revealed by chromium isotopes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(43):10920-10925. |
[52] | GLAVIN D P, KUBNY A, JAGOUTZ E, et al. Mn-Cr isotope systematics of the D’Orbigny angrite[J]. Meteoritics & Planetary Science, 2004, 39(5):693-700. |
[53] |
MOYNIER F, YIN Q Z, SCHAUBLE E. Isotopic evidence of Cr partitioning into Earth’s core[J]. Science, 2011, 331(6023):1417-1420.
DOI URL |
[54] | QIN L, XIA J, CARLSON R W, et al. Chromium stable isotope composition of meteorites[C]. 46th Lunar Planet Science Conference. The Woodlands, 2015. |
[55] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[56] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
DOI URL |
[57] |
LI X F, LIU Y. A theoretical model of isotopic fractionation by thermal diffusion and its implementation on silicate melts[J]. Geochimica et Cosmochimica Acta, 2015, 154:18-27.
DOI URL |
[58] |
SHEN J, QIN L P, FANG Z Y, et al. High-temperature inter-mineral Cr isotope fractionation: a comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton[J]. Earth and Planetary Science Letters, 2018, 499:278-290.
DOI URL |
[59] |
MALLMANN G, O’NEILL H S C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9):1765-1794.
DOI URL |
[60] |
SHEN J, XIA J X, QIN L P, et al. Stable chromium isotope fractionation during magmatic differentiation: insights from Hawaiian basalts and implications for planetary redox conditions[J]. Geochimica et Cosmochimica Acta, 2020, 278:289-304.
DOI URL |
[61] |
BRÖECKER M, ENDERS M. U-Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece)[J]. Geological Magazine, 1999, 136(2):111-118.
DOI URL |
[62] |
TERRY M P, ROBINSON P, RAVNA E J K. Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region, Norway[J]. American Mineralogist, 2000, 85(11/12):1637-1650.
DOI URL |
[63] |
AGUE J J. Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist[J]. American Journal of Science, 2003, 303(9):753-816.
DOI URL |
[64] |
PAGE F Z, ARMSTRONG L S, ESSENE E J, et al. Prograde and retrograde history of the Junction School eclogite, California, and an evaluation of garnet-phengite-clinopyroxene thermobarometry[J]. Contributions to Mineralogy and Petrology, 2007, 153(5):533-555.
DOI URL |
[65] |
BROVARONE A V, GROPPO C, HETÉNYI G, et al. Coexistence of lawsonite-bearing eclogite and blueschist: phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs[J]. Journal of Metamorphic Geology, 2011, 29(5):583-600.
DOI URL |
[66] |
WANG H, WU Y B, GAO S, et al. Continental origin of eclogites in the North Qinling terrane and its tectonic implications[J]. Precambrian Research, 2013, 230:13-30.
DOI URL |
[67] |
WANG X L, PLANAVSKY N J, REINHARD C T, et al. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration[J]. Chemical Geology, 2016, 423:19-33.
DOI URL |
[68] |
HUANG J, LIU J, ZHANG Y N, et al. Cr isotopic composition of the Laobao cherts during the Ediacaran-Cambrian transition in South China[J]. Chemical Geology, 2018, 482:121-130.
DOI URL |
[69] | 沈骥, 杨兵, 夏九星. 高温体系中Cr元素和同位素地球化学[J]. 中国科学技术大学学报, 2020, 50(9):1229-1248. |
[70] |
XIA J X, QIN L P, SHEN J, et al. Chromium isotope heterogeneity in the mantle[J]. Earth and Planetary Science Letters, 2017, 464:103-115.
DOI URL |
[71] |
JERRAM M, BONNAND P, KERR A C, et al. The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth[J]. Chemical Geology, 2020, 551:119761.
DOI URL |
[72] |
BONNAND P, DOUCELANCE R, BOYET M, et al. The influence of igneous processes on the chromium isotopic compositions of Ocean Island Basalts[J]. Earth and Planetary Science Letters, 2020, 532:116028.
DOI URL |
[73] |
FREI R, POIRÉ, D, FREI K M. Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective[J]. Chemical Geology, 2014, 381:110-124.
DOI URL |
[74] |
FREI R, POLAT A. Chromium isotope fractionation during oxidative weathering: implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada[J]. Precambrian Research, 2013, 224:434-453.
DOI URL |
[75] |
KOGISO T, TATSUMI Y, NAKANO S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth and Planetary Science Letters, 1997, 148(1/2):193-205.
DOI URL |
[76] |
JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4):339-353.
DOI URL |
[77] | BACH W, PEUCKER-EHRENBRINK B, HART S R, et al. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B: implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):8904. |
[78] | BACH W, GARRIDO C J, PAULICK H, et al. Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15°N[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9):Q09F26. |
[79] |
PAULICK H, BACH W, GODARD M, et al. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234(3/4):179-210.
DOI URL |
[80] |
WANNER C, EGGENBERGER U, KURZ D, et al. A chromate-contaminated site in southern Switzerland-Part 1: site characterization and the use of Cr isotopes to delineate fate and transport[J]. Applied Geochemistry, 2012, 27(3):644-654.
DOI URL |
[81] |
MARSCHALL H R, SCHUMACHER J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12):862-867.
DOI URL |
[82] |
SCHWARZENBACH E M, FRÜH-GREEN G L, BERNASCONI S M, et al. Sulfur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites[J]. Geochimica et Cosmochimica Acta, 2012, 91:283-305.
DOI URL |
[83] |
SCHWARZENBACH E M, FRÜH-GREEN G L, BERNASCONI S M, et al. Serpentinization and carbon sequestration: a study of two ancient peridotite-hosted hydrothermal systems[J]. Chemical Geology, 2013, 351:115-133.
DOI URL |
[84] |
BERGER A, FREI R. The fate of chromium during tropical weathering: a laterite profile from Central Madagascar[J]. Geoderma, 2014, 213:521-532.
DOI URL |
[85] |
SIAL A N, CAMPOS M S, GAUCHER C, et al. Algoma-type Neoproterozoic BIFs and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope evidence[J]. Journal of South American Earth Sciences, 2015, 61:33-52.
DOI URL |
[86] |
D’ARCY J, GILLEAUDEAU G J, PERALTA S, et al. Redox fluctuations in the Early Ordovician oceans: an insight from chromium stable isotopes[J]. Chemical Geology, 2017, 448:1-12.
DOI URL |
[87] |
WATENPHUL A, SCHMIDT C, JAHN S. Cr(III) solubility in aqueous fluids at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 126:212-227.
DOI URL |
[88] |
WEI W, FREI R, CHEN T Y, et al. Marine ferromanganese oxide: a potentially important sink of light chromium isotopes?[J]. Chemical Geology, 2018, 495:90-103.
DOI URL |
[89] |
BAUER K W, COLE D B, ASAEL D, et al. Chromium isotopes in marine hydrothermal sediments[J]. Chemical Geology, 2019, 529:119286.
DOI URL |
[90] |
REINHARD C T, PLANAVSKY N J, WANG X L, et al. The isotopic composition of authigenic chromium in anoxic marine sediments: a case study from the Cariaco Basin[J]. Earth and Planetary Science Letters, 2014, 407:9-18.
DOI URL |
[91] |
BRUGGMANN S, SCHOLZ F, KLAEBE R M, et al. Chromium isotope cycling in the water column and sediments of the Peruvian continental margin[J]. Geochimica et Cosmochimca Acta, 2019, 257:224-242.
DOI URL |
[92] |
EARY L E, RAI D. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide[J]. Environmental Science & Technology, 1987, 21(12):1187-1193.
DOI URL |
[93] |
FENDORF S E, ZASOSKI R J. Chromium(III) oxidation by δ-MnO2[J]. Environmental Science and Technology, 1992, 26:79-85.
DOI URL |
[94] | OZE C, BIRD D K, FENDORF S. Genesis of hexavalent chromium from natural sources in soil and groundwater[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(16):6544-6549. |
[95] |
VAN DER WEIJDEN C H, REITH M. Chromium(III)-chromium(VI) interconversions in seawater[J]. Marine Chemistry, 1982, 11(6):565-572.
DOI URL |
[96] |
JEANDEL C, MINSTER J F. Chromium behavior in the ocean: global versus regional processes[J]. Global Biogeochemical Cycles, 1987, 1(2):131-154.
DOI URL |
[97] |
PEREIRA N S, VÖEGELIN A R, PAULUKAT C, et al. Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic[J]. Geobiology, 2016, 14(1):54-67.
DOI URL |
[98] |
SCHEIDERICH K, AMINI M, HOLMDEN C, et al. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples[J]. Earth and Planetary Science Letters, 2015, 423:87-97.
DOI URL |
[99] | NRIAGU J O, NIEBOER E. Chromium in the natural and human environments[M]. New York: Wiley, 1988. |
[100] |
PAULUKAT C, GILLEAUDEAU G J, CHERNYAVSKIY P, et al. The Cr-isotope signature of surface seawater: a global perspective[J]. Chemical Geology, 2016, 444:101-109.
DOI URL |
[101] |
GORING-HARFORD H J, KLAR J K, PEARCE C R, et al. Behaviour of chromium isotopes in the eastern sub-tropical Atlantic Oxygen Minimum Zone[J]. Geochimica et Cosmochimica Acta, 2018, 236:41-59.
DOI URL |
[102] |
RICKLI J, JANSSEN D J, HASSLER C, et al. Chromium biogeochemistry and stable isotope distribution in the Southern Ocean[J]. Geochimica et Cosmochimica Acta, 2019, 262:188-206.
DOI URL |
[103] |
BONNAND P, BRUAND E, MATZEN A K, et al. Redox control on chromium isotope behaviour in silicate melts in contact with magnesiochromite[J]. Geochimica et Cosmochimica Acta, 2020, 288:282-300.
DOI URL |
[104] |
BONNAND P, PARKINSON I J, ANAND M. Mass dependent fractionation of stable chromium isotopes in mare basalts: implications for the formation and the differentiation of the Moon[J]. Geochimica et Cosmochimica Acta, 2016, 175(20):208-221.
DOI URL |
[105] |
ZHU K, SOSSI P A, SIEBERT J, et al. Tracking the volatile and magmatic history of Vesta from chromium stable isotope variations in eucrite and diogenite meteorites[J]. Geochimica et Cosmochimica Acta, 2019, 266:598-610.
DOI URL |
[106] |
BAI Y, SU B X, XIAO Y, et al. Diffusion-driven chromium isotope fractionation in ultramafic cumulate minerals: elemental and isotopic evidence from the Stillwater Complex[J]. Geochimica et Cosmochimica Acta, 2019, 263:167-181.
DOI URL |
[1] | 王水炯, 李曙光. 混合岩研究及地球动力学意义[J]. 地学前缘, 20140101, 21(1): 21-32. |
[2] | 李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319. |
[3] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[4] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[5] | 李曙光, 汪洋, 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘, 2024, 31(1): 15-27. |
[6] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[7] | 蔡蔚, 卢占武, 黄荣, 李文辉, 罗银河, 王光文, 穆青, 程永志, 陈司, 王冠, 陈子龙. 基于短周期密集台阵接收函数揭示的藏南错那洞穹窿地壳结构[J]. 地学前缘, 2024, 31(1): 170-180. |
[8] | 王瑞, 张京渤, 罗晨皓, 周秋石, 夏文杰, 赵云. 深部过程和物质架构对大陆碰撞带Cu-REE成矿系统的控制:以冈底斯和三江碰撞带为例[J]. 地学前缘, 2024, 31(1): 211-225. |
[9] | 张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45. |
[10] | 金之钧, 陈书平, 张瑞. 沉积盆地波动过程分析:研究现状与展望[J]. 地学前缘, 2024, 31(1): 284-296. |
[11] | 张旗, 翟明国, 魏春景, 周李岗, 黄广宇, 陈万峰, 焦守涛, 汤军, 刘睿, 原杰, 王振, 王跃, 袁方林. 新时代花岗岩的新理论:花岗岩四阶段理论探讨[J]. 地学前缘, 2023, 30(6): 406-435. |
[12] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[13] | 姜小欢, 黄荣, 朱露培, 卢占武, 罗银河, 张荣堂, 徐浩. RF-RTM成像方法研究新疆西准噶尔地区线性台阵下方地壳结构[J]. 地学前缘, 2023, 30(5): 358-368. |
[14] | 穆青, 黄荣, 严加永, 卢占武, 罗银河, 张永谦, 姜小欢, 文宏斌, 魏鹏龙, 周万里. 利用接收函数H-κ-c叠加方法约束武陵山重力梯度带地壳结构[J]. 地学前缘, 2023, 30(5): 369-383. |
[15] | 李强, 吴建平. 中国大陆东南缘地壳厚度与泊松比及其构造意义[J]. 地学前缘, 2023, 30(5): 408-419. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||