地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 170-180.DOI: 10.13745/j.esf.sf.2023.10.15
• 青藏高原结构构造及成矿效应(“印度-欧亚大陆碰撞及其远程效应”专栏之十) • 上一篇 下一篇
蔡蔚1,2,3(), 卢占武1,3,*(
), 黄荣2,4, 李文辉1,3, 罗银河2,4, 王光文1, 穆青2,3,4, 程永志1, 陈司1, 王冠1, 陈子龙1
收稿日期:
2023-08-10
修回日期:
2023-10-11
出版日期:
2024-01-25
发布日期:
2024-01-25
通信作者:
*卢占武(1978—),男,博士,研究员,博士生导师,主要从事深部地球物理探测和地球动力学研究。E-mail: 作者简介:
蔡 蔚(1995—),男,硕士,主要从事远震接收函数研究。E-mail: 457886032@qq.com
基金资助:
CAI Wei1,2,3(), LU Zhanwu1,3,*(
), HUANG Rong2,4, LI Wenhui1,3, LUO Yinhe2,4, WANG Guangwen1, MU Qing2,3,4, CHENG Yongzhi1, CHEN Si1, WANG Guan1, CHEN Zilong1
Received:
2023-08-10
Revised:
2023-10-11
Online:
2024-01-25
Published:
2024-01-25
摘要:
位于印度-欧亚板块碰撞前缘的北喜马拉雅构造带,是研究陆陆碰撞过程中地壳增厚和深部岩浆活动的典型区域之一。北喜马拉雅穹窿带作为其中重要的伸展构造,其形成过程与造山运动引起的地壳增厚以及地壳深熔作用引起的地壳流动密切相关。本文以近年新发现的错那洞穹窿为例,利用短周期密集台阵观测,通过远震P波接收函数共转换叠加成像方法获取了错那洞穹窿区域地壳结构。结果表明:错那洞穹窿区域的地壳结构在东西方向上存在差异,壳内速度间断面存在多处不连续现象,局部区域甚至发生界面错断;而在错那裂谷和错那洞穹窿中、上地壳内存在低速区。综合前人研究,本文认为印度-欧亚板块持续碰撞使喜马拉雅东南缘岩石圈经历过地壳尺度拉伸变形。在地壳增厚及持续的高温变质作用下,中、上地壳随藏南拆离系伸展减压发生部分熔融,而熔融岩浆沿着藏南拆离系薄弱处不断上涌并在错那洞穹窿下方聚集,并使错那洞穹窿及错那裂谷中、上地壳弱化,促进区域东西向伸展,进而发生岩浆底辟形成错那洞穹窿。
中图分类号:
蔡蔚, 卢占武, 黄荣, 李文辉, 罗银河, 王光文, 穆青, 程永志, 陈司, 王冠, 陈子龙. 基于短周期密集台阵接收函数揭示的藏南错那洞穹窿地壳结构[J]. 地学前缘, 2024, 31(1): 170-180.
CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array[J]. Earth Science Frontiers, 2024, 31(1): 170-180.
图1 北喜马拉雅穹窿带(a)和研究区地质构造简图(b)(a据文献[4-5]修改; b据文献[4⇓⇓⇓-8]修改) 蓝色十字—70 km接收函数穿刺点;绿色十字—45 km接收函数穿刺点。
Fig.1 Geological sketch maps of NHGD. a is modified after [4-5] and b is modified after [4⇓⇓⇓-8].
图3 不同速度模型(a)和主要界面深度对比图(b) a—IASP91、CRUST1.0以及USTClitho2.0速度模型对比,其中粉色矩形框为低速区;b—不同速度模型进行CCP成像提取主要转换震相界面对比图。
Fig.3 Velocity models (a) and depth comparison of main interfaces in CCP image (b)
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[2] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1/2): 1-131.
DOI URL |
[3] |
ZHANG J J, SANTOSH M, WANG X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4): 939-960.
DOI URL |
[4] |
ZENG L S, GAO L E, XIE K J, et al. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes: melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266.
DOI URL |
[5] | 薛帅, 卢占武, 李文辉, 等. 北喜马拉雅错那洞穹窿深部三维电性结构及其构造意义[J]. 中国科学:地球科学, 2022, 52(8): 1516-1531. |
[6] |
UNSWORTH M J, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81.
DOI |
[7] |
SHI D N, WU Z H, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15.
DOI URL |
[8] |
吴佳杰, 徐啸, 郭晓玉, 等. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230.
DOI |
[9] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007(6): 639-649. |
[10] | 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹窿早渐新世地壳深熔作用及其地质意义[J]. 科学通报, 2009, 54(3): 373-381. |
[11] | 许志琴, 马绪宣. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J]. 岩石学报, 2015, 31(12): 3509-3523. |
[12] | 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质, 2006(6): 629-651. |
[13] |
TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12): 1139-1142.
DOI URL |
[14] |
BURG J P, BRUNEL M, GAPAIS D, et al. Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China)[J]. Journal of Structural Geology, 1984, 6(5): 535-542.
DOI URL |
[15] |
SIDDOWAY C S, BALDWIN S L, FITZGERALD P G, et al. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system[J]. Geology, 2004, 32(1): 57-60.
DOI URL |
[16] | 李德威, 刘德民, 廖群安, 等. 藏南萨迦拉轨岗日变质核杂岩的厘定及其成因[J]. 地质通报, 2003(5): 303-307. |
[17] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865): 738-742.
DOI |
[18] |
UNSWORTH M. Magnetotelluric studies of active continent-continent collisions[J]. Surveys in Geophysics, 2010, 31(2): 137-161.
DOI URL |
[19] |
LEE J, MCCLELLAND W, WANG Y, et al. Oligocene-Miocene middle crustal flow in southern Tibet: geochronology of Mabja Dome[J]. Geological Society, London, Special Publications, 2006, 268(1): 445-469.
DOI URL |
[20] |
GUO L, ZHANG J J, ZHANG B. Structures, kinematics, thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya[J]. Progress in Natural Science: Materials International, 2008, 18(7): 851-860.
DOI URL |
[21] |
LE FORT P, CUNEY M, DENIEL C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987, 134(1): 39-57.
DOI URL |
[22] | TIREL C, BRUN J P, BUROV E. Thermomechanical modeling of extensional gneiss domes[J]. Special Paper of the Geological Society of America, 2004, 380: 67-78. |
[23] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36. |
[24] | WANG J M, WU F Y, RUBATTO D, et al. Early Miocene rapid exhumation in southern Tibet: insights from p-T-t-D-magmatism path of Yardoi dome[J]. Lithos, 2018, 304: 38-56. |
[25] |
WARD K M, LIN F C. On the viability of using autonomous three-component nodal geophones to calculate teleseismic Ps receiver functions with an application to Old Faithful, Yellowstone[J]. Seismological Research Letters, 2017, 88(5): 1268-1278.
DOI URL |
[26] |
LIU Z, TIAN X B, GAO R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41.
DOI URL |
[27] |
WAN B, YANG X, TIAN X, et al. Seismological evidence for the earliest global subduction network at 2 Ga ago[J]. Science Advances, 2020, 6(32): eabc5491.
DOI URL |
[28] | 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2): 495-511. |
[29] |
WU C D, NELSON K D, WORTMAN G, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89 degrees-90 degrees E)[J]. Tectonics, 1998, 17(1): 28-45.
DOI URL |
[30] |
ZHANG J J, GUO L. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 2007, 29(5/6): 722-736.
DOI URL |
[31] | 高利娥, 高家昊, 赵令浩, 等. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用[J]. 岩石学报, 2017, 33(8): 2395-2411. |
[32] | 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4): 1003-1008. |
[33] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定[J]. 中国地质, 2018, 45(4): 783-802. |
[34] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹窿Ar-Ar年代学证据[J]. 地球科学, 2018, 43(8): 2638-2650. |
[35] | 丁慧霞, 李文坛, 江媛媛. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义[J]. 岩石学报, 2019, 35(2): 312-324. |
[36] | 焦彦杰, 黄旭日, 李光明, 等. 藏南扎西康矿集区深部结构与成矿:来自地球物理的证据[J]. 地球科学, 2019, 44(6): 2117-2128. |
[37] | 郭镜, 李文昌, 李光明, 等. 多尺度综合地球物理方法在扎西康铅锌锑金多金属矿找矿预测中的应用[J]. 地球科学, 2019, 44(6): 2129-2142. |
[38] |
ZHU L P. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves[J]. Earth and Planetary Science Letters, 2000, 179(1): 183-190.
DOI URL |
[39] | ZHU L P, MITCHELL B J, AKYOL N, et al. Crustal thickness variations in the Aegean region and implications for the extension of continental crust[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B01301. |
[40] |
LIGORRIA J P, AMMON C J. Iterative deconvolution and receiver-function estimation[J]. Bulletin of the Seismological Society of America, 1999, 89(5): 1395-1400.
DOI URL |
[41] |
NELSON K D, ZHAO W J, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5293): 1684-1688.
PMID |
[42] |
KLEMPERER S L. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society, London, Special Publications, 2006, 268(1): 39-70.
DOI URL |
[43] | JIN S, SHENG Y, COMEAU M J, et al. Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese Terrane (Southern Tibet) based on a 3-D electrical model[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11): e2022JB024318. |
[44] |
HAN S C, ZHANG H J, XIN H L, et al. USTClitho 2.0: updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion Data[J]. Seismological Research Letters, 2022, 93(1): 201-215.
DOI URL |
[45] |
李春森, 徐啸, 向波, 等. 北喜马拉雅构造带东部Moho形态研究:以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67.
DOI |
[46] | ZHU L P, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. |
[47] | 滕吉文. 地球深部壳-幔边界的层束精细结构与物理属性研究[J]. 吉林大学学报(地球科学版), 2006(1): 1-23. |
[48] |
ZHAO W J, NELSON K D. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366(6455): 557-559.
DOI |
[49] |
NáBĚLEK J, HETENYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1374.
DOI PMID |
[50] |
CALDWELL W B, KLEMPERER S L, LAWRENCE J F, et al. Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking[J]. Earth and Planetary Science Letters, 2013, 367: 15-27.
DOI URL |
[51] |
SCHULTE-PELKUM V, MONSALVE G, SHEEHAN A, et al. Imaging the Indian subcontinent beneath the Himalaya[J]. Nature, 2005, 435(7046): 1222-1225.
DOI |
[52] |
NáBĚLEK P I, NáBĚLEK J L. Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen[J]. Earth and Planetary Science Letters, 2014, 395: 116-123.
DOI URL |
[53] |
KELLETT D A, GRUJIC D, ERDMANN S. Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: implications for continental collision[J]. Lithosphere, 2009, 1(5): 259-281.
DOI URL |
[54] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9(7): 555-560.
DOI |
[55] |
卢占武, 高锐, KLEMPERER S, 等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217.
DOI |
[56] |
GUO X Y, GAO R, ZHAO J M, et al. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 2018, 185: 751-762.
DOI URL |
[57] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395.
DOI URL |
[58] |
高锐, 周卉, 卢占武, 等. 深地震反射剖面揭露青藏高原陆-陆碰撞与地壳生长的深部过程[J]. 地学前缘, 2022, 29(2): 14-27.
DOI |
[59] |
GE W P, MOLNAR P, SHEN Z K, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42(13): 5227-5235.
DOI URL |
[60] |
KIND R, YUAN X, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 2002, 298(5596): 1219-1221.
PMID |
[61] |
SHI D N, KLEMPERER S M L, SHI J Y, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(40): 24742-24747.
DOI PMID |
[62] |
ZHANG Z M, XIANG H, DONG X, et al. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, East-central Himalaya[J]. Gondwana Research, 2017, 41: 173-187.
DOI URL |
[63] |
WANG J M, LANARI P, WU F Y, et al. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: implications for collisional tectonics on early Earth[J]. Earth and Planetary Science Letters, 2021, 558: 116760.
DOI URL |
[64] |
LI C, VAN DER HILST R D, MELTZER A S, et al. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.
DOI URL |
[65] |
ZHAO J M, YUAN X H, LIU H B, et al. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11229-11233.
DOI PMID |
[66] |
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
DOI URL |
[67] |
YIN A, TAYLOR M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1798-1821.
DOI URL |
[68] |
BISCHOFF S H, FLESCH L M. Normal faulting and viscous buckling in the Tibetan Plateau induced by a weak lower crust[J]. Nature Communications, 2018, 9: 4952.
DOI PMID |
[69] |
BIAN S, GONG J F, ZUZA A V, et al. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 2020, 544: 116383.
DOI URL |
[70] |
CHEN Y, LI W, YUAN X, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24.
DOI URL |
[71] | YIN A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21745-21759. |
[72] |
LI J T, SONG X D. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(33): 8296-8300.
DOI PMID |
[73] | REN Y, SHEN Y. Finite frequency tomography in southeastern Tibet: evidence for the causal relationship between mantle lithosphere delamination and the north-south trending rifts[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B10316. |
[74] |
KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254.
DOI URL |
[75] |
GUO Z F, WILSON M. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 2019, 47(8): 776-780.
DOI URL |
[76] | WU Y K, BAO X W, ZHANG B F, et al. Seismic evidence for stepwise lithospheric delamination beneath the Tibetan Plateau[J]. Geophysical Research Letters, 2022, 49: e2022GL098528. |
[77] | PANG Y, ZHANG H, SHI Y, et al. Plume-induced rifting of thickened crust: 2D numerical model and implications for N-S rifts in southern Tibet[J]. Geophysical Research Letters, 2022, 49: e2022GL101479. |
[78] |
GUILLOT S, PêCHER A, ROCHETTE P, et al. The emplacement of the Manaslu granite of central Nepal: field and magnetic susceptibility constraints[J]. Geological Society, London, Special Publications, 1993, 74(1): 413-428.
DOI URL |
[79] |
HARRISON M T, GROVE M, MCKEEGAN K D, et al. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya[J]. Journal of Petrology, 1999, 40(1): 3-19.
DOI URL |
[80] |
GUILLOT S, LE FORT P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J]. Lithos, 1995, 35(3): 221-234.
DOI URL |
[81] | 董汉文, 许志琴, 孟元库, 等. 藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定[J]. 岩石学报, 2017, 33(12): 3741-3752. |
[82] |
黄春梅, 李光明, 张志, 等. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(6): 182-195.
DOI |
[1] | 穆青, 黄荣, 严加永, 卢占武, 罗银河, 张永谦, 姜小欢, 文宏斌, 魏鹏龙, 周万里. 利用接收函数H-κ-c叠加方法约束武陵山重力梯度带地壳结构[J]. 地学前缘, 2023, 30(5): 369-383. |
[2] | 姜小欢, 黄荣, 朱露培, 卢占武, 罗银河, 张荣堂, 徐浩. RF-RTM成像方法研究新疆西准噶尔地区线性台阵下方地壳结构[J]. 地学前缘, 2023, 30(5): 358-368. |
[3] | 徐啸, 余嘉豪, 向波, 郭晓玉, 李春森, 罗旭聪, 仝霄飞, 袁梓昭, 林燕琪, 时宏城. 拉萨地体东南缘地壳深部结构[J]. 地学前缘, 2023, 30(3): 221-232. |
[4] | 吴佳杰, 徐啸, 郭晓玉, 卢占武, 吴优, 向波, 于洋, 李春森, 余嘉豪, 仝霄飞, 罗旭聪. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230. |
[5] | 卢占武, 高锐, Simon KLEMPERER, 王海燕, 董树文, 李文辉, 李洪强. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217. |
[6] | 梁锋,吕庆田,严加永,刘振东. 宁芜盆地深部地壳结构和岩浆侵入体形态特征及其对成矿的启示[J]. 地学前缘, 2017, 24(5): 138-148. |
[7] | 朱俊江,李三忠,孙宗勋,李先鹏,李健. 南海东部马尼拉俯冲带的地壳结构和俯冲过程[J]. 地学前缘, 2017, 24(4): 341-351. |
[8] | 李宗星, 高俊, 李文飞, 吴剑锋. 柴达木盆地地温场分布特征及控制因素[J]. 地学前缘, 2016, 23(5): 23-32. |
[9] | 王杰,曾佐勋,贺赤诚,杨巍然. 天水地震核心区的确定及其特征和意义[J]. 地学前缘, 2014, 21(4): 293-302. |
[10] | 董树文, 李廷栋, 陈宣华, 高锐, 吕庆田, 石耀霖, 黄大年, 杨经绥. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘, 2014, 21(3): 201-225. |
[11] | 颜丹平, 李书兵, 曹文涛, 张维宸. 龙门山多层分层拆离地壳结构:新构造变形与深部构造证据[J]. 地学前缘, 2010, 17(5): 106-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||