Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 199-212.DOI: 10.13745/j.esf.sf.2025.4.54
Previous Articles Next Articles
XIAO Fan1,2,3(), YANG Huaqing1, TANG Ao1, HUANG Xuancai1, WANG Cuicui4
Received:
2024-08-05
Revised:
2025-02-19
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
XIAO Fan, YANG Huaqing, TANG Ao, HUANG Xuancai, WANG Cuicui. Lithological mapping of intermediate-acid intrusive rocks in the Eastern Tianshan Gobi-desert covered area using machine learning for multisource data fusion[J]. Earth Science Frontiers, 2025, 32(4): 199-212.
Fig.1 The tectonic location, structural units, and simplified geological map of the Eastern Tianshan. (a) modified after [16] and (b) adapted from [19].
岩性名称 | 类别编码 | 样本数量 |
---|---|---|
二长花岗岩 | 1 | 1 440 |
花岗闪长岩 | 2 | 417 |
黑云母花岗岩 | 3 | 20 |
闪长岩 | 4 | 243 |
石英斑岩 | 5 | 54 |
英云闪长岩 | 6 | 120 |
石英闪长岩 | 7 | 27 |
正长花岗岩 | 8 | 250 |
花岗斑岩 | 9 | 44 |
石英正长岩 | 10 | 25 |
花岗岩 | 11 | 135 |
石英二长岩 | 12 | 21 |
英安斑岩 | 13 | 10 |
其他岩类 | 14 | 7 455 |
Table 1 Lithological category labeling
岩性名称 | 类别编码 | 样本数量 |
---|---|---|
二长花岗岩 | 1 | 1 440 |
花岗闪长岩 | 2 | 417 |
黑云母花岗岩 | 3 | 20 |
闪长岩 | 4 | 243 |
石英斑岩 | 5 | 54 |
英云闪长岩 | 6 | 120 |
石英闪长岩 | 7 | 27 |
正长花岗岩 | 8 | 250 |
花岗斑岩 | 9 | 44 |
石英正长岩 | 10 | 25 |
花岗岩 | 11 | 135 |
石英二长岩 | 12 | 21 |
英安斑岩 | 13 | 10 |
其他岩类 | 14 | 7 455 |
参数名称 | 表示符号 | 测试值 | 最优值 |
---|---|---|---|
决策树的数量 | EN | 200, 400, 600, ……, 2 600, 2 800, 3 000 | 1 600 |
决策树的最大深度 | Dmax | 50, 100, 150, ……, 400, 450, 500 | 200 |
最大分离特征数 | Fmax | 1, 3, 5, 7 | 7 |
最小分离样本数 | SSmin | 2, 5, 10 | 2 |
最小叶子节点样本数 | SLmin | 1, 2, 4, 8 | 1 |
Table 2 Optimization results of hyperparameters in the random forest
参数名称 | 表示符号 | 测试值 | 最优值 |
---|---|---|---|
决策树的数量 | EN | 200, 400, 600, ……, 2 600, 2 800, 3 000 | 1 600 |
决策树的最大深度 | Dmax | 50, 100, 150, ……, 400, 450, 500 | 200 |
最大分离特征数 | Fmax | 1, 3, 5, 7 | 7 |
最小分离样本数 | SSmin | 2, 5, 10 | 2 |
最小叶子节点样本数 | SLmin | 1, 2, 4, 8 | 1 |
类别 | 准确率/% | 召回率/% | F1得分/% |
---|---|---|---|
1 | 95 | 81 | 88 |
2 | 94 | 93 | 93 |
3 | 100 | 100 | 100 |
4 | 93 | 99 | 96 |
5 | 100 | 100 | 100 |
6 | 96 | 100 | 98 |
7 | 100 | 100 | 100 |
8 | 95 | 94 | 95 |
9 | 98 | 100 | 99 |
10 | 100 | 100 | 100 |
11 | 100 | 100 | 100 |
12 | 100 | 100 | 100 |
13 | 100 | 100 | 100 |
14 | 99 | 100 | 99 |
Table 3 Performance metrics for the prediction result derived by the random forest
类别 | 准确率/% | 召回率/% | F1得分/% |
---|---|---|---|
1 | 95 | 81 | 88 |
2 | 94 | 93 | 93 |
3 | 100 | 100 | 100 |
4 | 93 | 99 | 96 |
5 | 100 | 100 | 100 |
6 | 96 | 100 | 98 |
7 | 100 | 100 | 100 |
8 | 95 | 94 | 95 |
9 | 98 | 100 | 99 |
10 | 100 | 100 | 100 |
11 | 100 | 100 | 100 |
12 | 100 | 100 | 100 |
13 | 100 | 100 | 100 |
14 | 99 | 100 | 99 |
隐藏层数 | 每层测试节点数 | 最优节点数 | 平均准确率/% |
---|---|---|---|
1 | [50, 250, 450,650] | [50] | 88.23 |
2 | [50, 250, 450,650] | [450, 50] | 88.59 |
3 | [50, 250, 450,650] | [450, 650, 650] | 90.39 |
4 | [50, 250, 450,650] | [250, 50, 250, 250] | 89.09 |
Table 4 Optimization results of hyperparameters in the artificial neural network
隐藏层数 | 每层测试节点数 | 最优节点数 | 平均准确率/% |
---|---|---|---|
1 | [50, 250, 450,650] | [50] | 88.23 |
2 | [50, 250, 450,650] | [450, 50] | 88.59 |
3 | [50, 250, 450,650] | [450, 650, 650] | 90.39 |
4 | [50, 250, 450,650] | [250, 50, 250, 250] | 89.09 |
类别 | 准确率/% | 召回率/% | F1得分/% |
---|---|---|---|
1 | 96 | 96 | 96 |
2 | 74 | 41 | 53 |
3 | 98 | 93 | 95 |
4 | 82 | 79 | 80 |
5 | 87 | 95 | 91 |
6 | 93 | 88 | 90 |
7 | 55 | 72 | 62 |
8 | 97 | 100 | 99 |
9 | 80 | 80 | 80 |
10 | 97 | 100 | 99 |
11 | 90 | 96 | 93 |
12 | 97 | 100 | 99 |
13 | 97 | 100 | 98 |
14 | 97 | 98 | 98 |
Table 5 Performance metrics for the prediction result derived by the artificial neural network
类别 | 准确率/% | 召回率/% | F1得分/% |
---|---|---|---|
1 | 96 | 96 | 96 |
2 | 74 | 41 | 53 |
3 | 98 | 93 | 95 |
4 | 82 | 79 | 80 |
5 | 87 | 95 | 91 |
6 | 93 | 88 | 90 |
7 | 55 | 72 | 62 |
8 | 97 | 100 | 99 |
9 | 80 | 80 | 80 |
10 | 97 | 100 | 99 |
11 | 90 | 96 | 93 |
12 | 97 | 100 | 99 |
13 | 97 | 100 | 98 |
14 | 97 | 98 | 98 |
[1] | 陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5): 54-62. |
[2] | 成秋明. 覆盖区矿产综合预测思路与方法[J]. 地球科学: 中国地质大学学报, 2012, 37(6): 1109-1125. |
[3] | GONZÁLEZ-ÁLVAREZ I, BONI M, ANAND R R. Mineral exploration in regolith-dominated terrains: global considerations and challenges[J]. Ore Geology Reviews, 2016, 73: 375-379. |
[4] | 毛先成, 邓浩, 陈进, 等. 金属矿山深部资源三维智能预测理论与方法[J]. 矿产勘查, 2024, 15(8): 1365-1378. |
[5] |
唐利, 张寿庭, 王亮, 等. 浅覆盖区隐伏萤石矿找矿预测: 以内蒙古赤峰俄力木台为例[J]. 地学前缘, 2021, 28(3): 208-220.
DOI |
[6] |
夏庆霖, 赵梦余, 王孝臣, 等. 基于地质异常的内蒙古新达来草原覆盖区钼铜多金属矿产定量预测[J]. 地学前缘, 2021, 28(3): 56-66.
DOI |
[7] | 肖凡. 覆盖区区域矿产资源评价方法研究:以东天山戈壁沙漠区“土屋式” 斑岩铜(钼)矿为例[D]. 武汉: 中国地质大学(武汉), 2013. |
[8] | 肖克炎, 孙莉, 阴江宁, 等. 全国重要矿产预测评价[J]. 地球学报, 2014, 35(5): 543-551. |
[9] | CHEN X J, SHU L S, SANTOSH M, et al. Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: geochemistry, zircon U-Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia[J]. Lithos, 2013, 168: 48-66. |
[10] | 韩春明, 肖文交, 万博, 等. 东天山晚古生代-中生代构造演化和内生金属矿床成矿系列[J]. 岩石学报, 2018, 34(7): 1914-1932. |
[11] | DU L, LONG X P, YUAN C, et al. Tracing the subduction and accretion history of the trench-arc-basin system in the Chinese Eastern Tianshan: insights from Paleozoic magmatic and crustal evolution[J]. Earth-Science Reviews, 2024, 252: 104761. |
[12] | WANG Y F, CHEN H Y, FALLOON T J, et al. The Paleozoic-Mesozoic magmatic evolution of the eastern Tianshan, NW China: constraints from geochronology and geochemistry of the Sanchakou intrusive complex[J]. Gondwana Research, 2022, 103: 1-22. |
[13] | 王中刚, 朱笑青, 毕华, 等. 中国新疆花岗岩[M]. 北京: 地质出版社, 2006. |
[14] | XIAO W J, ZHANG L C, QIN K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. |
[15] | YANG H, XIAO W J, MAO Q G, et al. Two episodes of extension induced by slab rollback and root foundering in the EasternTianshan, southwestern Altaids: insights from granites and intermediate dykes[J]. Lithos, 2024, 476: 107616. |
[16] | XIAO F, WANG K Q, HOU W S, et al. Prospectivity mapping for porphyry Cu-Mo mineralization in the eastern Tianshan, Xinjiang, northwestern China[J]. Natural Resources Research, 2020, 29(1): 89-113. |
[17] | CHENG Q M. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 2012, 122: 55-70. |
[18] | 胡健民, 陈虹, 邱士东, 等. 覆盖区区域地质调查(1∶50000)思路、 原则与方法[J]. 地球科学, 2020, 45(12): 4291-4312. |
[19] | XIAO F, WANG Z H. Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: implications for porphyry Cu-Mo polymetallic deposits exploration[J]. Ore Geology Reviews, 2017, 80: 1042-1055. |
[20] | ZHAO J, WANG W L, DONG L H, et al. Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan, China[J]. Journal of Geochemical Exploration, 2012, 122: 81-89. |
[21] | TEHRANI F S, CALVELLO M, LIU Z Q, et al. Machine learning and landslide studies: recent advances and applications[J]. Natural Hazards, 2022, 114(2): 1197-1245. |
[22] | SUN K, CHEN Y S, GENG G S, et al. A review of mineral prospectivity mapping using deep learning[J]. Minerals, 2024, 14(10): 1021. |
[23] |
MA L, LIU Y, ZHANG X L, et al. Deep learning in remote sensing applications: a meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166-177.
DOI |
[24] | ZHOU W S, LIU C, LIU Y D, et al. Machine learning in reservoir engineering:a review[J]. Processes, 2024, 12(6): 1219. |
[25] | ALI EL-OMAIRI M, EL GAROUANI A. A review on advancements in lithological mapping utilizing machine learning algorithms and remote sensing data[J]. Heliyon, 2023, 9(9): e20168. |
[26] | ADELI A, EMERY X. Geostatistical simulation of rock physical and geochemical properties with spatial filtering and its application to predictive geological mapping[J]. Journal of Geochemical Exploration, 2021, 220: 106661. |
[27] | ASKARI G, POUR A B, PRADHAN B, et al. Band ratios matrix transformation (BRMT):a sedimentary lithology mapping approach using ASTER satellite sensor[J]. Sensors, 2018, 18(10): 3213. |
[28] | GE Y Z, ZHANG Z J, CHENG Q M, et al. Geological mapping of basalt using stream sediment geochemical data: case study of covered areas in Jining, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2022, 232: 106888. |
[29] | CHEN L, ZHANG NN, CHANG J Y, et al. Indicator element selection and lithological mapping using deep learning methods in the Dahongliutan area, NW China[J]. Journal of Geochemical Exploration, 2025, 268: 107611. |
[30] | CRACKNELL M J, READING A M. Geological mapping using remote sensing data:a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J]. Computers and Geosciences, 2014, 63: 22-33. |
[31] | RADFORD D D G, CRACKNELL M J, ROACH M J, et al. Geological mapping in western Tasmania using radar and random forests[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3075-3087. |
[32] | DONG Y N, YANG ZZ, LIU Q W, et al. Fusion of GaoFen-5 and Sentinel-2B data for lithological mapping using vision transformer dynamic graph convolutional network[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 129: 103780. |
[33] | 冀全伟, 王文磊, 刘治博, 等. 一种基于机器学习算法的岩性填图方法[J]. 地质力学学报, 2021, 27(3): 339-349. |
[34] | LI C L, LI F D, LIU C, et al. Deep learning-based geological map generation using geological routes[J]. Remote Sensing of Environment, 2024, 309: 114214. |
[35] | MANAP H S, SAN B T. Data integration for lithological mapping using machine learning algorithms[J]. Earth Science Informatics, 2022, 15(3): 1841-1859. |
[36] | OTHMAN A A, GLOAGUEN R. Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq[J]. Journal of Asian Earth Sciences, 2017, 146: 90-102. |
[37] | WANG S, HUANG X H, HAN W, et al. Lithological mapping of geological remote sensing via adversarial semi-supervised segmentation network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 125: 103536. |
[38] | WANG W L, XUE CC, ZHAO J, et al. Machine learning-based field geological mapping: a new exploration of geological survey data acquisition strategy[J]. Ore Geology Reviews, 2024, 166: 105959. |
[39] | YANG L, SHAMI A. On hyperparameter optimization of machine learning algorithms: theory and practice[J]. Neurocomputing, 2020, 415: 295-316. |
[40] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[41] | CHEN MM, XIAO F. Projection pursuit random forest for mineral prospectivity mapping[J]. Mathematical Geosciences, 2023, 55: 963-987. |
[42] | BONACCORSO G. Machine Learning Algorithms[M]. Birmingham: Packt Publishing, 2018. |
[43] | BRASPENNING P J, THUIJSMAN F, WEIJTERS A J M M. Artificial Neural Networks[M]. Berlin, Heidelberg: Springer, 1995. |
[44] | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. |
[45] | XIAO F, CHEN J G, AGTERBERG F, et al. Element behavior analysis and its implications for geochemical anomaly identification:a case study for porphyry Cu-Mo deposits in Eastern Tianshan, China[J]. Journal of Geochemical Exploration, 2014, 145: 1-11. |
[46] | PANIGRAHI N. Inverse distance weight[M]// DAYA SAGAR B S, CHENGQ M, MCKINLEYJ, et al. Encyclopedia of mathematical geosciences. Cham: Springer International Publishing, 2020: 1-7. |
[47] | GE Y, JIN Y, STEIN A, et al. Principles and methods of scaling geospatial Earth science data[J]. Earth-Science Reviews, 2019, 197: 102897. |
[48] | LU Y, YANG C B, HE R Z. Towards lithology mapping in semi-arid areas using time-series Landsat-8 data[J]. Ore Geology Reviews, 2022, 150: 105163. |
[49] | ZHAO B, WU J J, YANG F, et al. A novel approach for extraction of Gaoshanhe-Group outcrops using Landsat Operational Land Imager (OLI) data in the heavily loess-covered Baoji District, Western China[J]. Ore Geology Reviews, 2019, 108: 88-100. |
[50] | SINGH D, SINGH B. Investigating the impact of data normalization on classification performance[J]. Applied Soft Computing, 2020, 97: 105524. |
[1] | KONG Chunfang, TIAN Qian, LIU Jian, CAI Guorong, ZHAO Jie, XU Kai. Metallogenic prediction based on ensemble learning models and Bayesian Optimization Algorithm [J]. Earth Science Frontiers, 2025, 32(4): 122-139. |
[2] | YE Shuwan, HOU Weisheng, YANG Jie, WANG Haicheng, BAI Yun, WANG Yongzhi. Advance of 3D smart geological modeling [J]. Earth Science Frontiers, 2025, 32(4): 182-198. |
[3] | XIAO Keyan, LI Cheng, TANG Rui, WANG Yao, SUN Li, LIU Bingli, FAN Mingjing. Big data intelligent prediction and evaluation [J]. Earth Science Frontiers, 2025, 32(4): 20-37. |
[4] | ZHANG Yufei, ZHANG Yang, JI Junjie, CHENG Qiuming. Prediction of lithospheric heat flow of the South China Sea Oceanic crust based on machine learning methods [J]. Earth Science Frontiers, 2025, 32(4): 235-249. |
[5] | JIAN Fuyuan, ZHANG Ziming, DONG Yuelin, ZHANG Wenjing, HAO Fengyun, WANG Yiming, WANG Yu, ZHANG Zhenjie. Multifractal analysis and random forest algorithm for mineral prospecting in the Habahe gold deposit, Xinjiang [J]. Earth Science Frontiers, 2025, 32(4): 78-94. |
[6] | LI Jinming, ZHENG Yang, CHENG Qiuming. Spatial distribution prediction of geothermal gradient in North China Craton driven by the combination of machine learning and stratification modeling [J]. Earth Science Frontiers, 2025, 32(4): 291-302. |
[7] | XU Donghui, LI Tao, LIN Yanzhu, CHEN Tianfei. Source apportionment of nitrate in groundwater based on correlation monitoring indicators in Liaodong Bay [J]. Earth Science Frontiers, 2025, 32(4): 376-387. |
[8] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
[9] | ZHANG Bimin, WANG Xueqiu, ZHOU Jian, WANG Wei, LIU Hanliang, LIU Dongsheng, Sounthone LAOLO, Phomsylalai SOUKSAN, XIE Miao, DONG Chunfang, LIU Qingqing, LU Yuexin, WANG Haonan, HE Bin. Copper mineralization pattern and machine learning-based copper prospectivity prediction in Laos [J]. Earth Science Frontiers, 2025, 32(1): 61-77. |
[10] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[11] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[12] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
[13] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[14] | LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales [J]. Earth Science Frontiers, 2024, 31(2): 42-53. |
[15] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||