Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 412-429.DOI: 10.13745/j.esf.sf.2024.5.27
Previous Articles Next Articles
ZHANG Yifan1,2(), LIU Haiyan1,2,*(
), DONG Shu1,2, GUO Huaming3, WANG Zhen1,2, SUN Zhanxue1,2, ZHOU Zhongkui1,2
Received:
2024-01-18
Revised:
2024-04-10
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
ZHANG Yifan, LIU Haiyan, DONG Shu, GUO Huaming, WANG Zhen, SUN Zhanxue, ZHOU Zhongkui. Geochemical characteristics of rare earth elements in acid mine drainage and sediments from the Xiangshan uranium mine tailings area[J]. Earth Science Frontiers, 2025, 32(2): 412-429.
采样点 | 采样位置 | 采样点 | 采样位置 |
---|---|---|---|
S1 | 尾矿库坝底水处理厂内的水体 | K1 | S2水体下的沉积物,上层均为细砂,最下层为粉土 |
S2 | 经水处理厂处理后排出的水体 | K2 | S4水体下的沉积物,前三层为粉土,下两层为黏土 |
S3 | 尾矿库坝底未经水处理厂处理的水体 | K3 | S6水体下的沉积物,粉土 |
S4 | S2、S3混合后的水体 | K4 | S7水体下的沉积物,粉土 |
S5~S9 | S4下游水渠中不同距离的水体 | K5 | S9水体下的沉积物,粉土 |
S10 | 尾矿库坝底渗滤液收集池内的水体 | K6 | 与S10同位于渗滤液收集池内,黏土 |
D1 | 尾矿库内水库的水体 | XS1 | 尾矿库内的沉积物,黏土 |
D2 | 经水处理厂处理后排出的水体 | XS2 | 尾矿库内的沉积物,上层为粉土,下层为黏土 |
H1~H9 | 水渠内不同距离的水体 | XS3 | 尾矿库坝旁边的沉积物,前三层为细砂,下层为粉土 |
H10 | 经H9后排放至农田内的水体 | XS4 | 尾矿库坝底的沉积物,粉土 |
Table 1 Water and sediment samples and their basic characteristics
采样点 | 采样位置 | 采样点 | 采样位置 |
---|---|---|---|
S1 | 尾矿库坝底水处理厂内的水体 | K1 | S2水体下的沉积物,上层均为细砂,最下层为粉土 |
S2 | 经水处理厂处理后排出的水体 | K2 | S4水体下的沉积物,前三层为粉土,下两层为黏土 |
S3 | 尾矿库坝底未经水处理厂处理的水体 | K3 | S6水体下的沉积物,粉土 |
S4 | S2、S3混合后的水体 | K4 | S7水体下的沉积物,粉土 |
S5~S9 | S4下游水渠中不同距离的水体 | K5 | S9水体下的沉积物,粉土 |
S10 | 尾矿库坝底渗滤液收集池内的水体 | K6 | 与S10同位于渗滤液收集池内,黏土 |
D1 | 尾矿库内水库的水体 | XS1 | 尾矿库内的沉积物,黏土 |
D2 | 经水处理厂处理后排出的水体 | XS2 | 尾矿库内的沉积物,上层为粉土,下层为黏土 |
H1~H9 | 水渠内不同距离的水体 | XS3 | 尾矿库坝旁边的沉积物,前三层为细砂,下层为粉土 |
H10 | 经H9后排放至农田内的水体 | XS4 | 尾矿库坝底的沉积物,粉土 |
![]() |
Table 2 Chemical equations and equilibrium constants for REE-anion complexation reactions which were added to the WATEQ4F database in PHREEQCcalculation(IS=0, temperature 25℃)
![]() |
时间 | 统计量 | pH | 离子浓度/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
TDS | K | Ca | Na | Mg | Cl- | SO42- | HCO3- | |||
2022-11 | 最大值 | 4.23 | 1 552 | 26.49 | 470.75 | 63.65 | 18.73 | 7.08 | 474.63 | 32.02 |
最小值 | 3.65 | 1 037 | 18.79 | 356.32 | 45.40 | 10.18 | 4.95 | 225.95 | - | |
平均值 | 3.981 | 1 266.11 | 22.70 | 419.02 | 54.96 | 15.07 | 6.12 | 316.58 | 3.20 | |
2023-06 | 最大值 | 6.90 | 415.00 | 9.02 | 116.57 | 25.86 | 12.60 | 18.02 | 385.81 | 39.30 |
最小值 | 4.24 | 303.00 | 3.46 | 97.45 | 11.08 | 10.41 | 5.53 | 291.45 | 1.46 | |
平均值 | 4.85 | 379.42 | 5.35 | 111.31 | 13.77 | 11.76 | 15.10 | 359.69 | 9.74 |
Table 3 Hydrochemical components of water samples in the study area
时间 | 统计量 | pH | 离子浓度/(mg·L-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
TDS | K | Ca | Na | Mg | Cl- | SO42- | HCO3- | |||
2022-11 | 最大值 | 4.23 | 1 552 | 26.49 | 470.75 | 63.65 | 18.73 | 7.08 | 474.63 | 32.02 |
最小值 | 3.65 | 1 037 | 18.79 | 356.32 | 45.40 | 10.18 | 4.95 | 225.95 | - | |
平均值 | 3.981 | 1 266.11 | 22.70 | 419.02 | 54.96 | 15.07 | 6.12 | 316.58 | 3.20 | |
2023-06 | 最大值 | 6.90 | 415.00 | 9.02 | 116.57 | 25.86 | 12.60 | 18.02 | 385.81 | 39.30 |
最小值 | 4.24 | 303.00 | 3.46 | 97.45 | 11.08 | 10.41 | 5.53 | 291.45 | 1.46 | |
平均值 | 4.85 | 379.42 | 5.35 | 111.31 | 13.77 | 11.76 | 15.10 | 359.69 | 9.74 |
时间 | 统计量 | pH | 离子浓度/(μg·L-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mn | Ni | As | Cd | Pb | |||
2022-11 | 最大值 | 4.23 | 400.91 | 76.39 | 1 294.56 | 2.70 | 2.18 | 0.21 | 0.45 |
最小值 | 3.65 | 31.42 | 2.26 | 86.72 | 0.57 | 0.15 | 0.02 | 0.01 | |
平均值 | 3.98 | 258.04 | 50.75 | 725.25 | 1.34 | 0.96 | 0.09 | 0.18 | |
2023-06 | 最大值 | 6.90 | 5 190.55 | 733.44 | 8 960.11 | 17.10 | 1.36 | 0.92 | 1.15 |
最小值 | 4.24 | 102.14 | 20.00 | 730.73 | 2.38 | 0.63 | 0.09 | 0.09 | |
平均值 | 4.85 | 3 704.66 | 481.49 | 3 910.57 | 12.97 | 0.82 | 0.64 | 0.40 |
Table 4 Statistics of metal element concentrations in water samples from the study area
时间 | 统计量 | pH | 离子浓度/(μg·L-1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Al | Fe | Mn | Ni | As | Cd | Pb | |||
2022-11 | 最大值 | 4.23 | 400.91 | 76.39 | 1 294.56 | 2.70 | 2.18 | 0.21 | 0.45 |
最小值 | 3.65 | 31.42 | 2.26 | 86.72 | 0.57 | 0.15 | 0.02 | 0.01 | |
平均值 | 3.98 | 258.04 | 50.75 | 725.25 | 1.34 | 0.96 | 0.09 | 0.18 | |
2023-06 | 最大值 | 6.90 | 5 190.55 | 733.44 | 8 960.11 | 17.10 | 1.36 | 0.92 | 1.15 |
最小值 | 4.24 | 102.14 | 20.00 | 730.73 | 2.38 | 0.63 | 0.09 | 0.09 | |
平均值 | 4.85 | 3 704.66 | 481.49 | 3 910.57 | 12.97 | 0.82 | 0.64 | 0.40 |
采样时间 | 统计量 | 离子浓度/(μg·L-1) | LREE/HREE | δCe | δEu | (Yb/Nd)UCC | |||
---|---|---|---|---|---|---|---|---|---|
ΣREE | LREE | MREE | HREE | ||||||
2022-03 | 最小值 | 12.11 | 9.12 | 1.98 | 1.00 | 9.08 | 0.16 | 0.96 | 0.83 |
最大值 | 191.23 | 149.08 | 29.08 | 13.07 | 14.41 | 0.33 | 1.02 | 1.37 | |
平均值 | 82.60 | 64.97 | 12.17 | 5.46 | 12.00 | 0.26 | 0.99 | 1.10 | |
2023-06 | 最小值 | 0.41 | 0.32 | 0.08 | 0.02 | 7.82 | 0.19 | 0.48 | 1.52 |
最大值 | 123.19 | 93.59 | 19.37 | 10.24 | 18.58 | 2.07 | 0.98 | 2.00 | |
平均值 | 78.41 | 58.60 | 12.78 | 7.03 | 9.40 | 0.41 | 0.88 | 1.83 |
Table 5 Rare earth elements (REEs) content and fractionation indices of water samples in the study area
采样时间 | 统计量 | 离子浓度/(μg·L-1) | LREE/HREE | δCe | δEu | (Yb/Nd)UCC | |||
---|---|---|---|---|---|---|---|---|---|
ΣREE | LREE | MREE | HREE | ||||||
2022-03 | 最小值 | 12.11 | 9.12 | 1.98 | 1.00 | 9.08 | 0.16 | 0.96 | 0.83 |
最大值 | 191.23 | 149.08 | 29.08 | 13.07 | 14.41 | 0.33 | 1.02 | 1.37 | |
平均值 | 82.60 | 64.97 | 12.17 | 5.46 | 12.00 | 0.26 | 0.99 | 1.10 | |
2023-06 | 最小值 | 0.41 | 0.32 | 0.08 | 0.02 | 7.82 | 0.19 | 0.48 | 1.52 |
最大值 | 123.19 | 93.59 | 19.37 | 10.24 | 18.58 | 2.07 | 0.98 | 2.00 | |
平均值 | 78.41 | 58.60 | 12.78 | 7.03 | 9.40 | 0.41 | 0.88 | 1.83 |
Fig.3 UCC-normalized REE patterns for water samples and results of REE speciation calculations ((a) and (c): the first campaign; (b) and (d): the second campaign)
点位 | 深度/cm | ΣREE | δCe | δEu | 点位 | 深度/cm | ΣREE | δCe | δEu | 点位 | 深度/cm | ΣREE | δCe | δEu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | 0 | 736.95 | 0.63 | 1.01 | K3 | 0 | 662.83 | 0.37 | 0.98 | XS1 | 50 | 275.77 | 0.95 | 0.56 |
30 | 203.72 | 0.88 | 0.95 | K4 | 20 | 492.68 | 0.54 | 0.97 | 100 | 209.45 | 0.96 | 0.47 | ||
60 | 251.56 | 0.86 | 1.00 | 40 | 436.31 | 0.49 | 0.97 | XS2 | 50 | 184.79 | 0.97 | 0.51 | ||
80 | 266.64 | 0.84 | 1.02 | 60 | 379.76 | 0.73 | 0.96 | 100 | 218.37 | 0.96 | 0.51 | |||
90 | 266.21 | 0.92 | 1.01 | 70 | 404.88 | 0.66 | 0.97 | 150 | 298.47 | 0.95 | 0.57 | |||
K2 | 10 | 489.10 | 0.33 | 0.95 | K5 | 0 | 369.78 | 0.41 | 0.98 | XS3 | 50 | 228.78 | 0.99 | 0.94 |
30 | 220.55 | 0.71 | 0.98 | K6 | 0 | 1 259.18 | 0.47 | 1.02 | 75 | 234.26 | 0.79 | 0.97 | ||
60 | 242.61 | 0.76 | 0.98 | 10 | 1 026.56 | 0.39 | 0.99 | 100 | 219.54 | 0.72 | 0.95 | |||
80 | 170.58 | 0.82 | 0.96 | 20 | 661.43 | 0.43 | 1.01 | 200 | 267.76 | 0.95 | 0.56 | |||
90 | 281.86 | 0.85 | 0.98 | 50 | 215.14 | 0.44 | 1.03 | XS4 | 50 | 449.99 | 0.52 | 0.91 | ||
100 | 323.47 | 0.50 | 0.93 |
Table 6 δCe and δEu values at different depths at each sampling point
点位 | 深度/cm | ΣREE | δCe | δEu | 点位 | 深度/cm | ΣREE | δCe | δEu | 点位 | 深度/cm | ΣREE | δCe | δEu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K1 | 0 | 736.95 | 0.63 | 1.01 | K3 | 0 | 662.83 | 0.37 | 0.98 | XS1 | 50 | 275.77 | 0.95 | 0.56 |
30 | 203.72 | 0.88 | 0.95 | K4 | 20 | 492.68 | 0.54 | 0.97 | 100 | 209.45 | 0.96 | 0.47 | ||
60 | 251.56 | 0.86 | 1.00 | 40 | 436.31 | 0.49 | 0.97 | XS2 | 50 | 184.79 | 0.97 | 0.51 | ||
80 | 266.64 | 0.84 | 1.02 | 60 | 379.76 | 0.73 | 0.96 | 100 | 218.37 | 0.96 | 0.51 | |||
90 | 266.21 | 0.92 | 1.01 | 70 | 404.88 | 0.66 | 0.97 | 150 | 298.47 | 0.95 | 0.57 | |||
K2 | 10 | 489.10 | 0.33 | 0.95 | K5 | 0 | 369.78 | 0.41 | 0.98 | XS3 | 50 | 228.78 | 0.99 | 0.94 |
30 | 220.55 | 0.71 | 0.98 | K6 | 0 | 1 259.18 | 0.47 | 1.02 | 75 | 234.26 | 0.79 | 0.97 | ||
60 | 242.61 | 0.76 | 0.98 | 10 | 1 026.56 | 0.39 | 0.99 | 100 | 219.54 | 0.72 | 0.95 | |||
80 | 170.58 | 0.82 | 0.96 | 20 | 661.43 | 0.43 | 1.01 | 200 | 267.76 | 0.95 | 0.56 | |||
90 | 281.86 | 0.85 | 0.98 | 50 | 215.14 | 0.44 | 1.03 | XS4 | 50 | 449.99 | 0.52 | 0.91 | ||
100 | 323.47 | 0.50 | 0.93 |
Fig.5 UCC-normalized REE patterns for sediments in the study area a—K1;b—K2;c—K3~K5;d—K6;e—XS1~XS2;f—XS3~XS4。 ((a) K1; (b) K2; (c) K3~K5; (d) K6; (e) XS1~XS2; (f) XS3~XS4)
位置 | 统计量 | 元素含量/(μg·g-1) | ||||||
---|---|---|---|---|---|---|---|---|
Mn | Fe | Cr | Ni | Cu | Cd | Pb | ||
尾矿库下游 | 最大值 | 177 000.00 | 174 000.00 | 169.00 | 283.00 | 96.50 | 20.50 | 75.10 |
最小值 | 450.00 | 26 300.00 | 37.80 | 32.40 | 24.60 | 0.35 | 23.10 | |
平均值 | 36 156.19 | 64 331.25 | 113.06 | 100.46 | 51.57 | 5.35 | 40.46 | |
尾矿库内 | 最大值 | 14 900.00 | 258 000.00 | 149.00 | 64.50 | 93.60 | 131.00 | 134.00 |
最小值 | 447.00 | 18 700.00 | 22.90 | 9.19 | 13.50 | 0.39 | 18.60 | |
平均值 | 4 272.33 | 76 646.67 | 71.78 | 41.13 | 37.90 | 13.32 | 81.23 | |
江西省表层沉积物背景值 | — | — | 45.90 | 18.90 | 20.30 | 0.11 | 32.30 |
Table 7 Statistics of heavy metal content in sediments in the study area
位置 | 统计量 | 元素含量/(μg·g-1) | ||||||
---|---|---|---|---|---|---|---|---|
Mn | Fe | Cr | Ni | Cu | Cd | Pb | ||
尾矿库下游 | 最大值 | 177 000.00 | 174 000.00 | 169.00 | 283.00 | 96.50 | 20.50 | 75.10 |
最小值 | 450.00 | 26 300.00 | 37.80 | 32.40 | 24.60 | 0.35 | 23.10 | |
平均值 | 36 156.19 | 64 331.25 | 113.06 | 100.46 | 51.57 | 5.35 | 40.46 | |
尾矿库内 | 最大值 | 14 900.00 | 258 000.00 | 149.00 | 64.50 | 93.60 | 131.00 | 134.00 |
最小值 | 447.00 | 18 700.00 | 22.90 | 9.19 | 13.50 | 0.39 | 18.60 | |
平均值 | 4 272.33 | 76 646.67 | 71.78 | 41.13 | 37.90 | 13.32 | 81.23 | |
江西省表层沉积物背景值 | — | — | 45.90 | 18.90 | 20.30 | 0.11 | 32.30 |
Fig.8 The relationship between REE concentrations and pH (a), Fe + Mn + Al (b), and ORP (c) in water samples, and the relationship between REE concentrations and Fe + Mn in sediments (d)
点位 | 统计量 | 酸浸 | 消解 | 浸出率/% | δCe | δEu | 点位 | 统计量 | 酸浸 | 消解 | 浸出率/% | δCe | δEu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K2 | 最大值 | 118.4 | 281.9 | 54.7 | 1.0 | 1.0 | XS2 | 最大值 | 270.6 | 298.5 | 90.7 | 1.0 | 0.6 |
最小值 | 92.1 | 170.6 | 29.1 | 0.3 | 0.9 | 最小值 | 131.7 | 184.8 | 67.3 | 0.6 | 0.5 | ||
平均值 | 99.9 | 228.9 | 45.2 | 0.7 | 0.9 | 平均值 | 183.1 | 233.9 | 76.2 | 0.9 | 0.5 | ||
K6 | 最大值 | 765.3 | 1 259.2 | 68.4 | 0.4 | 1.1 | XS3 | 最大值 | 213.7 | 267.8 | 79.8 | 1.8 | 0.9 |
最小值 | 111.6 | 215.1 | 51.9 | 0.3 | 1.0 | 最小值 | 24.4 | 219.5 | 10.7 | 0.5 | 0.6 | ||
平均值 | 496.9 | 790.6 | 60.7 | 0.4 | 1.0 | 平均值 | 83.0 | 237.6 | 33.1 | 1.0 | 0.8 | ||
XS1 | 最大值 | 98.6 | 275.8 | 47.1 | 1.2 | 0.5 | XS4 | 最大值 | 116.2 | 450.0 | 35.9 | 0.1 | 0.9 |
最小值 | 98.6 | 209.5 | 35.7 | 0.8 | 0.5 | 最小值 | 97.3 | 323.5 | 21.6 | 0.1 | 0.9 | ||
平均值 | 98.6 | 242.6 | 41.4 | 1.0 | 0.5 | 平均值 | 106.7 | 386.7 | 28.8 | 0.1 | 0.9 |
Table 9 Concentrations of REEs and Ce and Eu anomalies in sediment sulfuric acid leaching solutions
点位 | 统计量 | 酸浸 | 消解 | 浸出率/% | δCe | δEu | 点位 | 统计量 | 酸浸 | 消解 | 浸出率/% | δCe | δEu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K2 | 最大值 | 118.4 | 281.9 | 54.7 | 1.0 | 1.0 | XS2 | 最大值 | 270.6 | 298.5 | 90.7 | 1.0 | 0.6 |
最小值 | 92.1 | 170.6 | 29.1 | 0.3 | 0.9 | 最小值 | 131.7 | 184.8 | 67.3 | 0.6 | 0.5 | ||
平均值 | 99.9 | 228.9 | 45.2 | 0.7 | 0.9 | 平均值 | 183.1 | 233.9 | 76.2 | 0.9 | 0.5 | ||
K6 | 最大值 | 765.3 | 1 259.2 | 68.4 | 0.4 | 1.1 | XS3 | 最大值 | 213.7 | 267.8 | 79.8 | 1.8 | 0.9 |
最小值 | 111.6 | 215.1 | 51.9 | 0.3 | 1.0 | 最小值 | 24.4 | 219.5 | 10.7 | 0.5 | 0.6 | ||
平均值 | 496.9 | 790.6 | 60.7 | 0.4 | 1.0 | 平均值 | 83.0 | 237.6 | 33.1 | 1.0 | 0.8 | ||
XS1 | 最大值 | 98.6 | 275.8 | 47.1 | 1.2 | 0.5 | XS4 | 最大值 | 116.2 | 450.0 | 35.9 | 0.1 | 0.9 |
最小值 | 98.6 | 209.5 | 35.7 | 0.8 | 0.5 | 最小值 | 97.3 | 323.5 | 21.6 | 0.1 | 0.9 | ||
平均值 | 98.6 | 242.6 | 41.4 | 1.0 | 0.5 | 平均值 | 106.7 | 386.7 | 28.8 | 0.1 | 0.9 |
[1] | JOHNSON D B, HALLBERG K B. Acid mine drainage remediation options: a review[J]. Science of the Total Environment, 2005, 338(1/2): 3-14. |
[2] | GIMENO SERRANO M J, AUQUÉ SANZ L F, NORDSTROM D K. REE speciation in low-temperature acidic waters and the competitive effects of aluminum[J]. Chemical Geology, 2000, 165(3/4): 167-180. |
[3] | MARMOLEJO-RODRÍGUEZ A J, SÁNCHEZ-MARTÍNEZ M A, MAGALLANES-ORDÓÑEZ V R, et al. Patterns of rare earth elements in sediments as tracers in a fluvial system influenced by a gold mine, el Triunfo, BCS, Mexico[J]. Procedia Earth and Planetary Science, 2013, 7: 558-561. |
[4] | WORRALL F, PEARSON D G. Water-rock interaction in an acidic mine discharge as indicated by rare earth elementpatterns[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3027-3040. |
[5] | BARRETT S D, DHESI S S. The structure of rare-earth metal surfaces[M]. London: Imperial College Press, 2001. |
[6] | VONCKEN J H L. The rare earth elements: an introduction[M]. New York: Springer Briefs in Earth, 2016. |
[7] | TANG J W, JOHANNESSON K H. Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA[J]. Chemical Geology, 2006, 225(1/2): 156-171. |
[8] | WALLRICH I L R, STEWART B W, CAPO R C, et al. Neodymium isotopes track sources of rare earth elements in acidic mine waters[J]. Geochimica et Cosmochimica Acta, 2020, 269: 465-483. |
[9] | PÉREZ-LÓPEZ R, DELGADO J, NIETO J M, et al. Rare earth element geochemistry of sulphide weathering in the São domingos mine area (Iberian pyrite belt): a proxy for fluid-rock interaction and ancient mining pollution[J]. Chemical Geology, 2010, 276(1/2): 29-40. |
[10] |
DELGADO J, PÉREZ-LÓPEZ R, GALVÁN L, et al. Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: a new perspective[J]. Marine Pollution Bulletin, 2012, 64(9): 1799-1808.
DOI PMID |
[11] | 何阳阳, 温春齐, 刘显凡. 西藏多不杂铜矿床脉石矿物稀土元素地球化学示踪[J]. 有色金属工程, 2018, 8(3): 115-119. |
[12] | 曾红, 柴凤梅, 周刚, 等. 东天山雅满苏铁矿床稀土元素地球化学示踪[J]. 新疆地质, 2014, 32(4): 475-480. |
[13] | STEWART B W, CAPO R C, HEDIN B C, et al. Rare earth element resources in coal mine drainage and treatment precipitates in the Appalachian Basin, USA[J]. International Journal of Coal Geology, 2017, 169: 28-39. |
[14] | WORRALL F, PEARSON D G. The development of acidic groundwaters in coal-bearing strata: part I. rare earth element fingerprinting[J]. Applied Geochemistry, 2001, 16(13): 1465-1480. |
[15] | GAMMONS C H, WOOD S A, PEDROZO F, et al. Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina[J]. Chemical Geology, 2005, 222(3/4): 249-267. |
[16] | ZHAO F H, CONG Z Y, SUN H F, et al. The geochemistry of rare earth elements (REE) in acid mine drainage from the Sitai coal mine, Shanxi Province, North China[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 184-192. |
[17] | MEDAS D, CIDU R, DE GIUDICI G, et al. Geochemistry of rare earth elements in water and solid materials at abandoned mines in SW Sardinia (Italy)[J]. Journal of Geochemical Exploration, 2013, 133: 149-159. |
[18] | GAMMONS C H, WOOD S A, JONAS J P, et al. Geochemistry of the rare-earth elements and uranium in the acidic Berkeley Pit lake, Butte, Montana[J]. Chemical Geology, 2003, 198(3/4): 269-288. |
[19] | MIGASZEWSKI Z M, GAŁUSZKA A, MIGASZEWSKI A. The study of rare earth elements in farmer’s well waters of the Podwiśniówka acid mine drainage area (south-central Poland)[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1609-1622. |
[20] | 巫建华, 劳玉军, 谢国发, 等. 江西相山铀矿田火山岩系地层学、年代学特征及地质意义[J]. 中国地质, 2017, 44(5): 974-992. |
[21] | 张万良, 郭福生, 李嘉, 等. 相山铀矿田矿体分布规律研究新进展[J]. 东华理工大学学报(自然科学版), 2022, 45(4): 311-318. |
[22] | 周敏. 钍在铀水冶过程中的迁移行为研究[D]. 抚州: 东华理工大学, 2013. |
[23] | 张展适, 李满根, 杨亚新, 等. 赣、粤、湘地区部分硬岩型铀矿山辐射环境污染及治理现状[J]. 铀矿冶, 2007, 26(4): 191-196. |
[24] | MCLENNAN S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109. |
[25] | KLUNGNESS G D, BYRNE R H. Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength[J]. Polyhedron, 2000, 19(1): 99-107. |
[26] | LEE J H, BYRNE R H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1127-1137. |
[27] | LUO Y R, BYRNE R H. Carbonate complexation of yttrium and the rare earth elements in natural waters[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 691-699. |
[28] | SCHIJF J, BYRNE R H. Determination of SO4 β1 for yttrium and the rare earth elements at I=0.66 m and t=25 ℃: implications for YREE solution speciation in sulfate-rich waters[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2825-2837. |
[29] | MIGDISOV A A, WILLIAMS-JONES A E, WAGNER T. An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 ℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(23): 7087-7109. |
[30] | MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118. |
[31] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[32] |
张军伟, 刘顺, 文雯, 等. 矿山酸性废水治理与综合利用研究进展[J]. 资源环境与工程, 2023, 37(6): 734-740.
DOI |
[33] | ZHOU H Y, GREIG A, TANG J, et al. Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater[J]. Geochimica et Cosmochimica Acta, 2012, 83: 1-18. |
[34] | OGAWA Y, ISHIYAMA D, SHIKAZONO N, et al. Fractionation of rare earth elements (REEs) and actinides (U and Th) originating from acid thermal water during artificial and natural neutralization processes of surface waters[J]. Geochimica et Cosmochimica Acta, 2019, 249: 247-262. |
[35] | 林卓玲, 黄光庆. 土壤稀土元素的迁移-富集机制及其生态效应[J]. 地球环境学报, 2023, 14(5): 521-538. |
[36] |
王玉洁, 刘蓓蓓, 万全, 等. 稀土元素在土壤中的释放与迁移研究进展[J]. 生态环境学报, 2021, 30(3): 644-654.
DOI |
[37] | ÅSTRÖM M. Abundance and fractionation patterns of rare earth elements in streams affected by acid sulphate soils[J]. Chemical Geology, 2001, 175(3/4): 249-258. |
[38] | MIGASZEWSKI Z M, GAŁUSZKA A, DOŁĘGOWSKA S. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, South-central Poland[J]. Environmental Science and Pollution Research, 2016, 23(24): 24943-24959. |
[39] | 蓝先洪, 密蓓蓓, 陈晓辉, 等. 北黄海中部晚第四纪沉积物来源的稀土元素示踪[J]. 中国稀土学报, 2015, 33(2): 241-252. |
[40] | 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 63-66. |
[41] | CHEVIS D A, JOHANNESSON K H, BURDIGE D J, et al. Submarine groundwater discharge of rare earth elements to a tidally-mixed estuary in Southern Rhode Island[J]. Chemical Geology, 2015, 397: 128-142. |
[42] | XU Z F, HAN G L. Rare earth elements (REE) of dissolved and suspended loads in the Xijiang River, South China[J]. Applied Geochemistry, 2009, 24(9): 1803-1816. |
[43] | LIU H Y, GUO H M, XING L N, et al. Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain[J]. Journal of Asian Earth Sciences, 2016, 117: 33-51. |
[44] | BAU M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect[J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. |
[45] | LAVEUF C, CORNU S. A review on the potentiality of rare earth elements to trace pedogenetic processes[J]. Geoderma, 2009, 154(1/2): 1-12. |
[46] | BROOKINS D. Aqueous geochemistry of rare earth elements[J]. Reviews in Mineralogy and Geochemistry, 1989, 21: 201-225. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | LUO Huan, SHAO Deyong, MENG Kang, ZHANG Yu, SONG Hui, YAN Jianping, ZHANG Tongwei. Origin of excess barium in the Cambrian shale of Yichang area, western Hubei, and its implication for organic matter accumulation [J]. Earth Science Frontiers, 2023, 30(3): 66-82. |
[3] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[4] | SHEN Junfeng, YAN Guoying, ZHANG Mengmeng, WANG Zhaojing, XU Kexin, MENG Wenxiang. REE enrichment process in the Bayan Obo Fe-REE-Nb deposit: Genetic and mineralogical evidence [J]. Earth Science Frontiers, 2023, 30(2): 370-383. |
[5] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[6] | WANG Chunguang, LIU Junxing, GENG Hao, JIA Han, YIN Xianyang, CHI Haoxuan. Water quality analysis and pollution evaluation of the main rivers in the Tongling mining area [J]. Earth Science Frontiers, 2021, 28(4): 175-183. |
[7] | REN Jiangbo, DENG Yinan, LAI Peixin, HE Gaowen, WANG Fenlian, YAO Huiqiang, DENG Xiguang, LIU Yonggang. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area [J]. Earth Science Frontiers, 2021, 28(2): 412-425. |
[8] | WANG Xuying, JIANG Zaixing. Provenance characteristics and tectonic setting analysis of the 3rd Member of the Paleogene Funing Formation, Subei Basin [J]. Earth Science Frontiers, 2021, 28(2): 376-390. |
[9] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[10] | SHENG Yizhi,WANG Guangcai,LIU Ying,LI Guanghe. Behavior and fate of Fe in the active bioremediation of acidic coal mine drainage. [J]. Earth Science Frontiers, 2018, 25(4): 299-306. |
[11] | LIU Qingqing,CHI Qinghua,WANG Xueqiu,ZHOU Jian,LIU Hanliang,LIU Dongsheng,GAO Yanfang,ZHAI Daxing. Distribution and influencing factors of rare earth elements in carbonate rocks along three continentalscale transects in eastern China. [J]. Earth Science Frontiers, 2018, 25(4): 99-115. |
[12] | CUI Xiaonan,HUANG Wenhui,AO Weihua,ZHOU Hongpu,LIANG Fei. Study on the geochemistry of rare earth elements in the Permian coal from Xiayukou, Weibei Coalfield [J]. Earth Science Frontiers, 2016, 23(3): 90-96. |
[13] | GUO Jiangfeng,YAO Duoxi,CHEN Jian,CHEN Ping. Geochemistry of the rare earth elements of coals from the Longtan Formation in Chongqing and its geological implication [J]. Earth Science Frontiers, 2016, 23(3): 51-58. |
[14] | YANG Tian, SHU Zhao-Yu, TUN Yi, QIU Shi-Fan, RAO Zhi-Guo, HAN Jiang-Wei. Rare earth elements geochemistry in topsoils from the eastern part of China. [J]. Earth Science Frontiers, 2010, 17(3): 233-241. |
[15] | LI Li-Xin, LI Hou-Min, WANG De-Gong, ZHANG Chang-Jing. Trace element and REE geochemistry and its metallogenic significance for CuZn deposits in the Tongbai area, Henan. [J]. Earth Science Frontiers, 2009, 16(6): 325-336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||