Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 390-411.DOI: 10.13745/j.esf.sf.2024.11.80
Previous Articles Next Articles
LIU Meiyu1,2(), SU Shangguo2,*(
), LIU Xinran1, GUO Xudong1, LI Yiming2
Received:
2024-09-13
Revised:
2024-12-02
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
LIU Meiyu, SU Shangguo, LIU Xinran, GUO Xudong, LI Yiming. Magmatic conduit metallogenic system of Jinchuan Cu-Ni (PGE) sulfide deposit: Evidence from mineralogy[J]. Earth Science Frontiers, 2025, 32(2): 390-411.
样品 | 类别 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | Cr2O3 | SrO | BaO | P2O5 | CO2 | Total | |||
050712-9-1 | 矿石 | 0.04 | 0.03 | — | 0.02 | 0.70 | 0.09 | 56.60 | — | — | 0.06 | — | 0.16 | — | 43.54 | 101.23 | |
050712-9-2 | — | — | 0.01 | — | 0.60 | 0.04 | 56.61 | — | — | 0.09 | — | 0.17 | — | 43.56 | 101.08 | ||
050712-9-3 | 0.01 | 0.07 | 0.04 | — | 0.83 | 0.06 | 56.74 | — | — | — | 0.03 | 0.14 | — | 43.48 | 101.39 | ||
050712-9-4 | — | — | — | 0.04 | 0.88 | 0.08 | 56.36 | — | — | 0.06 | — | 0.17 | — | 43.53 | 101.11 | ||
050712-9-5 | — | — | 0.02 | — | 0.53 | 0.06 | 56.72 | — | — | — | 0.02 | 0.13 | 0.01 | 43.59 | 101.06 | ||
050712-9-6 | — | — | 0.06 | — | 1.10 | 0.10 | 55.91 | — | — | — | — | 0.04 | — | 43.64 | 100.86 | ||
050712-9-7 | — | — | — | — | 0.74 | 0.08 | 56.37 | — | — | — | 0.02 | 0.05 | — | 43.64 | 100.89 | ||
050712-9-8 | — | — | 0.03 | 0.02 | 0.57 | 0.04 | 55.89 | — | — | — | 0.02 | 0.07 | 0.01 | 43.79 | 100.43 | ||
050712-9-9 | 0.04 | — | 0.01 | 0.09 | 1.53 | 0.28 | 55.94 | — | — | 0.02 | 0.01 | 0.07 | — | 43.45 | 101.44 | ||
050712-9-10 | — | — | 0.01 | 0.04 | 0.79 | 0.04 | 56.77 | — | — | — | 0.02 | 0.04 | — | 43.53 | 101.23 | ||
050712-9-11 | — | — | 0.01 | — | 0.75 | 0.08 | 56.06 | — | — | — | 0.02 | — | — | 43.72 | 100.64 | ||
050712-9-12 | 0.02 | — | — | — | 0.81 | 0.06 | 56.60 | — | — | — | — | 0.04 | — | 43.58 | 101.11 | ||
050712-9-13 | — | — | 0.01 | 0.02 | 0.84 | 0.11 | 56.50 | — | — | — | 0.02 | 0.09 | — | 43.55 | 101.14 | ||
050712-9-14 | 0.01 | 0.01 | 0.02 | — | 0.79 | 0.09 | 56.77 | — | — | — | — | — | 0.01 | 43.56 | 101.24 | ||
050712-9-15 | — | 0.07 | — | — | 0.95 | 0.07 | 55.66 | — | — | — | 0.01 | 0.19 | — | 43.67 | 100.62 | ||
050713-5-1 | 0.03 | — | 0.03 | 0.01 | 0.59 | 0.06 | 55.58 | — | — | 0.02 | — | — | — | 43.88 | 100.20 | ||
050713-5-10 | — | — | — | 0.02 | 0.70 | 0.25 | 55.73 | — | — | — | 0.01 | — | 0.01 | 43.79 | 100.51 | ||
050713-5-11 | 0.02 | 0.03 | 0.02 | 0.08 | 0.64 | 0.22 | 56.35 | — | — | 0.02 | 0.01 | — | 0.01 | 43.65 | 101.05 | ||
050713-5-12 | — | — | 0.01 | 0.07 | 0.75 | 0.21 | 57.00 | — | — | 0.03 | — | 0.08 | — | 43.45 | 101.60 | ||
050713-5-13 | 0.02 | — | 0.01 | 0.10 | 0.59 | 0.11 | 56.42 | — | — | 0.02 | 0.01 | — | — | 43.66 | 100.93 | ||
050713-5-14 | 0.01 | — | 0.03 | 0.08 | 0.71 | 0.21 | 56.4 | — | — | — | 0.02 | 0.10 | 0.01 | 43.58 | 101.15 | ||
050713-5-15 | — | 0.01 | — | 0.10 | 0.72 | 0.22 | 56.39 | — | — | 0.02 | 0.02 | 0.01 | 0.01 | 43.61 | 101.10 | ||
050713-5-16 | 0.02 | 0.01 | 0.03 | 0.03 | 0.64 | 0.19 | 56.98 | — | — | — | — | — | — | 43.54 | 101.44 | ||
050713-5-17 | — | — | 0.03 | 0.08 | 0.63 | 0.19 | 56.35 | — | — | 0.02 | 0.01 | — | — | 43.66 | 100.97 | ||
050713-5-18 | — | 0.03 | 0.03 | 0.09 | 0.78 | 0.20 | 56.51 | — | — | 0.02 | 0.01 | — | — | 43.57 | 101.23 | ||
050713-5-2 | 0.02 | — | 0.01 | 0.10 | 0.59 | 0.20 | 55.99 | — | — | 0.01 | — | 0.05 | — | 43.73 | 100.69 | ||
050713-5-3 | — | — | 0.02 | 0.07 | 0.75 | 0.19 | 56.44 | — | — | — | — | 0.01 | — | 43.61 | 101.08 | ||
050713-5-4 | 0.02 | — | 0.05 | 0.16 | 0.66 | 0.17 | 56.85 | — | — | 0.02 | — | — | — | 43.52 | 101.44 | ||
050713-5-5 | 0.03 | — | — | 0.10 | 0.65 | 0.16 | 56.17 | — | — | — | — | — | — | 43.70 | 100.80 | ||
050713-5-6 | 0.01 | 0.02 | 0.03 | 0.04 | 0.72 | 0.24 | 56.17 | — | — | — | — | — | — | 43.69 | 100.92 | ||
050713-5-7 | — | — | 0.03 | 0.09 | 0.59 | 0.23 | 56.04 | — | — | — | 0.01 | — | — | 43.74 | 100.71 | ||
050713-5-8 | — | — | 0.02 | 0.11 | 0.70 | 0.15 | 56.72 | — | — | — | — | — | 0.01 | 43.56 | 101.27 | ||
050713-5-9 | — | — | 0.02 | 0.05 | 0.59 | 0.19 | 56.77 | — | — | — | 0.03 | — | 0.01 | 43.58 | 101.23 | ||
150905-10 | 围岩 | 0.07 | — | 0.01 | — | 0.03 | 1.71 | 54.58 | 0.73 | 0.12 | — | 0.02 | 0.03 | — | 43.88 | 101.16 | |
150905-10 | 0.1 | 0.02 | 0.01 | 0.07 | 0.03 | 1.74 | 55.58 | 0.05 | — | — | 0.05 | — | — | 43.84 | 101.49 | ||
150905-10 | 0.03 | 0.02 | 0.01 | 0.03 | — | 1.27 | 54.90 | 0.01 | — | — | — | — | — | 44.09 | 100.37 | ||
150905-10 | 0.08 | — | 0.03 | 0.12 | 0.02 | 2.06 | 54.21 | — | — | — | 0.03 | — | — | 44.14 | 100.67 | ||
150905-7 | — | 0.01 | — | 0.13 | 0.08 | 2.09 | 55.39 | 0.13 | 0.01 | — | 0.03 | — | — | 43.81 | 101.66 | ||
150905-7 | 0.01 | 0.02 | — | 0.06 | 0.08 | 0.94 | 59.71 | 0.04 | — | — | 0.01 | 0.01 | — | 43.02 | 103.89 | ||
150905-7 | 0.01 | — | — | 0.03 | 0.04 | 1.56 | 60.03 | 0.04 | — | — | — | — | — | 42.93 | 104.64 | ||
150905-7 | — | — | — | 0.12 | 0.05 | 1.49 | 61.08 | 0.03 | — | — | 0.02 | 0.01 | — | 42.68 | 105.48 | ||
B160909-1-1 | 0.01 | — | — | 0.08 | 0.01 | 1.94 | 61.00 | — | — | — | 0.04 | — | — | 42.69 | 105.76 | ||
B160909-1-1 | 0.01 | — | — | 0.07 | 0.03 | 2.03 | 60.37 | 0.01 | 0.02 | — | 0.04 | 0.03 | — | 42.78 | 105.40 | ||
B160909-1-1 | 0.01 | — | — | — | 0.02 | 1.76 | 61.86 | 0.05 | — | — | — | — | — | 42.55 | 106.25 | ||
B160909-1-1 | 0.04 | 0.01 | — | 0.06 | 0.01 | 1.93 | 54.48 | 0.02 | 0.01 | — | — | — | — | 44.11 | 100.66 | ||
B160909-1-1 | 0.02 | 0.01 | 0.01 | 0.03 | — | 0.88 | 55.13 | 0.01 | 0.01 | — | 0.06 | — | — | 44.05 | 100.20 | ||
B160909-1-1 | — | — | — | 0.07 | — | 1.25 | 55.61 | 0.02 | 0.01 | — | 0.08 | 0.01 | — | 43.88 | 100.93 | ||
B160909-1-1 | 0.09 | — | — | 0.07 | 0.03 | 1.65 | 51.65 | 0.09 | 0.02 | — | — | 0.07 | — | 44.74 | 98.42 |
Table 3 EMPA data for calcite
样品 | 类别 | wB/% | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | Cr2O3 | SrO | BaO | P2O5 | CO2 | Total | |||
050712-9-1 | 矿石 | 0.04 | 0.03 | — | 0.02 | 0.70 | 0.09 | 56.60 | — | — | 0.06 | — | 0.16 | — | 43.54 | 101.23 | |
050712-9-2 | — | — | 0.01 | — | 0.60 | 0.04 | 56.61 | — | — | 0.09 | — | 0.17 | — | 43.56 | 101.08 | ||
050712-9-3 | 0.01 | 0.07 | 0.04 | — | 0.83 | 0.06 | 56.74 | — | — | — | 0.03 | 0.14 | — | 43.48 | 101.39 | ||
050712-9-4 | — | — | — | 0.04 | 0.88 | 0.08 | 56.36 | — | — | 0.06 | — | 0.17 | — | 43.53 | 101.11 | ||
050712-9-5 | — | — | 0.02 | — | 0.53 | 0.06 | 56.72 | — | — | — | 0.02 | 0.13 | 0.01 | 43.59 | 101.06 | ||
050712-9-6 | — | — | 0.06 | — | 1.10 | 0.10 | 55.91 | — | — | — | — | 0.04 | — | 43.64 | 100.86 | ||
050712-9-7 | — | — | — | — | 0.74 | 0.08 | 56.37 | — | — | — | 0.02 | 0.05 | — | 43.64 | 100.89 | ||
050712-9-8 | — | — | 0.03 | 0.02 | 0.57 | 0.04 | 55.89 | — | — | — | 0.02 | 0.07 | 0.01 | 43.79 | 100.43 | ||
050712-9-9 | 0.04 | — | 0.01 | 0.09 | 1.53 | 0.28 | 55.94 | — | — | 0.02 | 0.01 | 0.07 | — | 43.45 | 101.44 | ||
050712-9-10 | — | — | 0.01 | 0.04 | 0.79 | 0.04 | 56.77 | — | — | — | 0.02 | 0.04 | — | 43.53 | 101.23 | ||
050712-9-11 | — | — | 0.01 | — | 0.75 | 0.08 | 56.06 | — | — | — | 0.02 | — | — | 43.72 | 100.64 | ||
050712-9-12 | 0.02 | — | — | — | 0.81 | 0.06 | 56.60 | — | — | — | — | 0.04 | — | 43.58 | 101.11 | ||
050712-9-13 | — | — | 0.01 | 0.02 | 0.84 | 0.11 | 56.50 | — | — | — | 0.02 | 0.09 | — | 43.55 | 101.14 | ||
050712-9-14 | 0.01 | 0.01 | 0.02 | — | 0.79 | 0.09 | 56.77 | — | — | — | — | — | 0.01 | 43.56 | 101.24 | ||
050712-9-15 | — | 0.07 | — | — | 0.95 | 0.07 | 55.66 | — | — | — | 0.01 | 0.19 | — | 43.67 | 100.62 | ||
050713-5-1 | 0.03 | — | 0.03 | 0.01 | 0.59 | 0.06 | 55.58 | — | — | 0.02 | — | — | — | 43.88 | 100.20 | ||
050713-5-10 | — | — | — | 0.02 | 0.70 | 0.25 | 55.73 | — | — | — | 0.01 | — | 0.01 | 43.79 | 100.51 | ||
050713-5-11 | 0.02 | 0.03 | 0.02 | 0.08 | 0.64 | 0.22 | 56.35 | — | — | 0.02 | 0.01 | — | 0.01 | 43.65 | 101.05 | ||
050713-5-12 | — | — | 0.01 | 0.07 | 0.75 | 0.21 | 57.00 | — | — | 0.03 | — | 0.08 | — | 43.45 | 101.60 | ||
050713-5-13 | 0.02 | — | 0.01 | 0.10 | 0.59 | 0.11 | 56.42 | — | — | 0.02 | 0.01 | — | — | 43.66 | 100.93 | ||
050713-5-14 | 0.01 | — | 0.03 | 0.08 | 0.71 | 0.21 | 56.4 | — | — | — | 0.02 | 0.10 | 0.01 | 43.58 | 101.15 | ||
050713-5-15 | — | 0.01 | — | 0.10 | 0.72 | 0.22 | 56.39 | — | — | 0.02 | 0.02 | 0.01 | 0.01 | 43.61 | 101.10 | ||
050713-5-16 | 0.02 | 0.01 | 0.03 | 0.03 | 0.64 | 0.19 | 56.98 | — | — | — | — | — | — | 43.54 | 101.44 | ||
050713-5-17 | — | — | 0.03 | 0.08 | 0.63 | 0.19 | 56.35 | — | — | 0.02 | 0.01 | — | — | 43.66 | 100.97 | ||
050713-5-18 | — | 0.03 | 0.03 | 0.09 | 0.78 | 0.20 | 56.51 | — | — | 0.02 | 0.01 | — | — | 43.57 | 101.23 | ||
050713-5-2 | 0.02 | — | 0.01 | 0.10 | 0.59 | 0.20 | 55.99 | — | — | 0.01 | — | 0.05 | — | 43.73 | 100.69 | ||
050713-5-3 | — | — | 0.02 | 0.07 | 0.75 | 0.19 | 56.44 | — | — | — | — | 0.01 | — | 43.61 | 101.08 | ||
050713-5-4 | 0.02 | — | 0.05 | 0.16 | 0.66 | 0.17 | 56.85 | — | — | 0.02 | — | — | — | 43.52 | 101.44 | ||
050713-5-5 | 0.03 | — | — | 0.10 | 0.65 | 0.16 | 56.17 | — | — | — | — | — | — | 43.70 | 100.80 | ||
050713-5-6 | 0.01 | 0.02 | 0.03 | 0.04 | 0.72 | 0.24 | 56.17 | — | — | — | — | — | — | 43.69 | 100.92 | ||
050713-5-7 | — | — | 0.03 | 0.09 | 0.59 | 0.23 | 56.04 | — | — | — | 0.01 | — | — | 43.74 | 100.71 | ||
050713-5-8 | — | — | 0.02 | 0.11 | 0.70 | 0.15 | 56.72 | — | — | — | — | — | 0.01 | 43.56 | 101.27 | ||
050713-5-9 | — | — | 0.02 | 0.05 | 0.59 | 0.19 | 56.77 | — | — | — | 0.03 | — | 0.01 | 43.58 | 101.23 | ||
150905-10 | 围岩 | 0.07 | — | 0.01 | — | 0.03 | 1.71 | 54.58 | 0.73 | 0.12 | — | 0.02 | 0.03 | — | 43.88 | 101.16 | |
150905-10 | 0.1 | 0.02 | 0.01 | 0.07 | 0.03 | 1.74 | 55.58 | 0.05 | — | — | 0.05 | — | — | 43.84 | 101.49 | ||
150905-10 | 0.03 | 0.02 | 0.01 | 0.03 | — | 1.27 | 54.90 | 0.01 | — | — | — | — | — | 44.09 | 100.37 | ||
150905-10 | 0.08 | — | 0.03 | 0.12 | 0.02 | 2.06 | 54.21 | — | — | — | 0.03 | — | — | 44.14 | 100.67 | ||
150905-7 | — | 0.01 | — | 0.13 | 0.08 | 2.09 | 55.39 | 0.13 | 0.01 | — | 0.03 | — | — | 43.81 | 101.66 | ||
150905-7 | 0.01 | 0.02 | — | 0.06 | 0.08 | 0.94 | 59.71 | 0.04 | — | — | 0.01 | 0.01 | — | 43.02 | 103.89 | ||
150905-7 | 0.01 | — | — | 0.03 | 0.04 | 1.56 | 60.03 | 0.04 | — | — | — | — | — | 42.93 | 104.64 | ||
150905-7 | — | — | — | 0.12 | 0.05 | 1.49 | 61.08 | 0.03 | — | — | 0.02 | 0.01 | — | 42.68 | 105.48 | ||
B160909-1-1 | 0.01 | — | — | 0.08 | 0.01 | 1.94 | 61.00 | — | — | — | 0.04 | — | — | 42.69 | 105.76 | ||
B160909-1-1 | 0.01 | — | — | 0.07 | 0.03 | 2.03 | 60.37 | 0.01 | 0.02 | — | 0.04 | 0.03 | — | 42.78 | 105.40 | ||
B160909-1-1 | 0.01 | — | — | — | 0.02 | 1.76 | 61.86 | 0.05 | — | — | — | — | — | 42.55 | 106.25 | ||
B160909-1-1 | 0.04 | 0.01 | — | 0.06 | 0.01 | 1.93 | 54.48 | 0.02 | 0.01 | — | — | — | — | 44.11 | 100.66 | ||
B160909-1-1 | 0.02 | 0.01 | 0.01 | 0.03 | — | 0.88 | 55.13 | 0.01 | 0.01 | — | 0.06 | — | — | 44.05 | 100.20 | ||
B160909-1-1 | — | — | — | 0.07 | — | 1.25 | 55.61 | 0.02 | 0.01 | — | 0.08 | 0.01 | — | 43.88 | 100.93 | ||
B160909-1-1 | 0.09 | — | — | 0.07 | 0.03 | 1.65 | 51.65 | 0.09 | 0.02 | — | — | 0.07 | — | 44.74 | 98.42 |
[1] | 汤中立, 钱壮志, 姜常义, 等. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社, 2006. |
[2] | VOYTEKHOVSKY Y, NERADOVSKY Y N. The Cu-Ni-PGE and Cr deposits of the monchegorsk area, the Kola Peninsula, Russia[C/OL]. 33th International Geological Congress, 2008. [2025-2-22]. https://opac.geologie.ac.at/ais312/dokumente/Field_Guide_48.pdf. |
[3] | LESHER C M, CAMPBELL I H. Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia[J]. Economic Geology, 1993, 88(4): 804-816. |
[4] | NALDRETT A J. World-class Ni-Cu-PGE deposits: key factors in their genesis[J]. Mineralium Deposita, 1999, 34(3): 227-240. |
[5] | LIGHTFOOT P C, KEAYS R R, EVANS-LAMSWOOD D, et al. S saturation history of Nain Plutonic Suite mafic intrusions: origin of the Voisey’s Bay Ni-Cu-Co sulfide deposit, Labrador, Canada[J]. Mineralium Deposita, 2012, 47(1/2): 23-50. |
[6] | LI C S, NALDRETT A J, RIPLEY E M. Critical factors for the formation of a nickel-copper deposit in an evolved magma system: lessons from a comparison of the Pants Lake and Voisey’s Bay sulfide occurrences in Labrador, Canada[J]. Mineralium Deposita, 2001, 36(1): 85-92. |
[7] | MAIER W D, LI C, DE WAAL S A. Why are there no major Ni Cu sulfide deposits in large layered mafic-ultramafic intrusions?[J]. The Canadian Mineralogist, 2001, 39(2): 547-556. |
[8] | 宋谢炎, 肖家飞, 朱丹, 等. 岩浆通道系统与岩浆硫化物成矿研究新进展[J]. 地学前缘, 2010, 17(1): 153-163. |
[9] | RIPLEY E M, LI C S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1): 45-58. |
[10] | 苏尚国, 汤中立. 岩浆通道成矿系统的理论与实践[J]. 矿床地质, 2010, 29(增刊1): 885-886. |
[11] | 苏尚国, 汤中立, 罗照华, 等. 岩浆通道成矿系统[J]. 岩石学报, 2014, 30(11): 3120-3130. |
[12] | MUNGALL J E, BRENAN J M, GODEL B, et al. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles[J]. Nature Geoscience, 2015, 8(3): 216-219. |
[13] | 张铭杰, 汤庆艳, 李文渊, 等. 岩浆镍铜铂族矿床成矿过程中流体的作用: 对小岩体超大型矿床的启示[J]. 中国工程科学, 2015, 17(2): 40-49, 84. |
[14] | BOUDREAU A E. The Stillwater complex, Montana: overview and the significance of volatiles[J]. Mineralogical Magazine, 2016, 80(4): 585-637. |
[15] | BOUDREAU A. Hydromagmatic processes and platinum-group element deposits in layered intrusions[M]. New York: Cambridge University Press, 2019. |
[16] | BARNES S J, LE VAILLANT M, GODEL B, et al. Droplets and bubbles: solidification of sulphide-rich vapour-saturated orthocumulates in the Norilsk-Talnakh Ni-Cu-PGE ore-bearing intrusions[J]. Journal of Petrology, 2019, 60(2): 269-300. |
[17] | LIU M Y, ZHOU M F, SU S G, et al. Contrasting geochemistry of apatite from peridotites and sulfide ores of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Economic Geology, 2021, 116(5): 1073-1092. |
[18] | YAO Z S, MUNGALL J E. Flotation mechanism of sulphide melt on vapour bubbles in partially molten magmatic systems[J]. Earth and Planetary Science Letters, 2020, 542: 116298. |
[19] | 王俊. 岩浆通道成矿系统中铜镍硫化物矿浆上升机制[D]. 北京: 中国地质大学(北京), 2013. |
[20] | GUALDA G A R, GHIORSO M S. Magnetite scavenging and the buoyancy of bubbles in magmas. Part 2: energetics of crystal-bubble attachment in magmas[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 479-490. |
[21] | PETFORD N. Rheology of granitic magmas during ascent and emplacement[J]. Annual Review of Earth and Planetary Sciences, 2003, 31: 399-427. |
[22] | CARICCHI L, BURLINI L, ULMER P, et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics[J]. Earth and Planetary Science Letters, 2007, 264(3/4): 402-419. |
[23] | BACHMANN O, BERGANTZ G W. Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies[J]. Journal of Volcanology and Geothermal Research, 2005, 149(1): 85-102. |
[24] | BLACK L P, KAMO S L, ALLEN C M, et al. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1/2): 155-170. |
[25] | CHARLIER B L A, BACHMANN O, DAVIDSON J P, et al. The upper crustal evolution of a large silicic magma body: evidence from crystal-scale Rb-Sr isotopic heterogeneities in the Fish Canyon magmatic system, Colorado[J]. Journal of Petrology, 2007, 48(10): 1875-1894. |
[26] | SHINOHARA H. Excess degassing from volcanoes and its role on eruptive and intrusive activity[J]. Reviews of Geophysics, 2008, 46(4): RG4005. |
[27] | ALLAN A S R, MORGAN D J, WILSON C J N, et al. From mush to eruption in centuries: assembly of the Super-sized Oruanui magma body[J]. Contributions to Mineralogy and Petrology, 2013, 166(1): 143-164. |
[28] | BURGISSER A, BERGANTZ G W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies[J]. Nature, 2011, 471(7337): 212-215. |
[29] | HUBER C, BACHMANN O, DUFEK J. Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 443-454. |
[30] | HUBER C, BACHMANN O, VIGNERESSE J L, et al. A physical model for metal extraction and transport in shallow magmatic systems[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(8): 1-18. |
[31] | DEGRUYTER W, HUBER C. A model for eruption frequency of upper crustal silicic magma chambers[J]. Earth and Planetary Science Letters, 2014, 403: 117-130. |
[32] | PARMIGIANI A, HUBER C, BACHMANN O. Mush microphysics and the reactivation of crystal-rich magma reservoirs[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6308-6322. |
[33] | 刘璐璐, 苏尚国, 侯建光, 等. 河北武安坦岭多斑斜长斑岩的成因: 冻结岩浆房活化机制[J]. 岩石学报, 2017, 33(1): 204-220. |
[34] | WANG M X, WANG C Y. Crystal size distributions and trace element compositions of the fluorapatite from the Bijigou Fe-Ti oxide-bearing layered intrusion, central China: insights for the expulsion processes of interstitial liquid from crystal mush[J]. Journal of Petrology, 2020, 61(7): egaa069. |
[35] | 苏尚国, 崔晓亮, 罗照华, 等. 流体晶、流体晶矿物组合、流体岩及其研究意义[J]. 地学前缘, 2018, 25(6): 283-289. |
[36] | 蒋荆荆, 苏尚国, 杨林林. 内蒙古固阳县文圪乞基性-超基性岩中角闪石特征及成因[J]. 西部资源, 2019(5): 44-45. |
[37] | SONG X Y, DANYUSHEVSKY L V, KEAYS R R, et al. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 2012, 47(3): 277-297. |
[38] | 甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984. |
[39] | LI C, XU Z, DE WAAL S A, et al. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: implications for ore genesis[J]. Mineralium Deposita, 2004, 39: 159-172. |
[40] | TANG Z L. Genetic model of the Jinchuan nickel copper deposit[J]. Geological Association of Canada, Special Paper, 1993, 40: 389-401. |
[41] | TONNELIER N J. Geology and genesis of the Jinchuan Ni-Cu-(PGE) deposit, China[D]. Sudbury: Laurentian University, 2010. |
[42] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[43] | FOSTER M D. Layer charge relations in the dioctahedral and trioctahedral micas[J]. American Mineralogist, 1960, 45: 383-398. |
[44] | WEBSTER J D, PICCOLI P M. Magmatic apatite: a powerful, yet deceptive, mineral[J]. Elements, 2015, 11(3): 177-182. |
[45] | XING C M, WANG C Y. Cathodoluminescence images and trace element compositions of fluorapatite from the Hongge layered intrusion in SW China: a record of prolonged crystallization and overprinted fluid metasomatism[J]. American Mineralogist, 2017, 102(7): 1390-1401. |
[46] | HARLOV D E, FÖRSTER H J, NIJLAND T G. Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite[J]. American Mineralogist, 2002, 87(2/3): 245-261. |
[47] | HARLOV D E, WIRTH R, FÖRSTER H J. An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite[J]. Contributions to Mineralogy and Petrology, 2005, 150(3): 268-286. |
[48] | HARLOV D E, FÖRSTER H J. Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite[J]. American Mineralogist, 2004, 88(8/9): 1209-1229. |
[49] | BOUDREAU A E, MCCALLUM I S. Investigations of the stillwater complex. Part V. Apatites as indicators of evolving fluid composition[J]. Contributions to Mineralogy and Petrology, 1989, 102(2): 138-153. |
[50] | BOUDREAU A E, KRUGER F J. Variation in the composition of apatite through the Merensky cyclic unit in the western Bushveld Complex[J]. Economic Geology, 1990, 85(4): 737-745. |
[51] | BOUDREAU A E, MATHEZ E A, MCCALLUM I S. Halogen geochemistry of the stillwater and bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids[J]. Journal of Petrology, 1986, 27(4): 967-986. |
[52] | WEBSTER J D. Fluid-melt interactions involving Cl-rich granites: experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta, 1992, 56(2): 659-678. |
[53] | BREHLER B, FUGE R. Chlorine[M]//WEDEPOHL K H. Handbook of geochemistry. Berlin: Springer-Verlag, 1974, 2: 17B-17O. |
[54] | O’NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51(12): 5547-5558. |
[55] | RIPLEY E M, SARKAR A, LI C. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China[J]. Economic Geology, 2005, 100(7): 1349-1361. |
[56] | BAU M, DULSKI P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3): 213-223. |
[57] | RIDOLFI F, RENZULLI A, PUERINI M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 2010, 160(1): 45-66. |
[58] | RIDOLFI F, RENZULLI A. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1 130 ℃ and 2.2 GPa[J]. Contributions to Mineralogy and Petrology, 2012, 163(5): 877-895. |
[59] | 姜常义, 安三元. 论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J]. 矿物岩石, 1984, 4(3): 1-9. |
[60] | 薛君治, 白学让, 陈武. 成因矿物学[M]. 武汉: 中国地质大学出版社, 1986. |
[61] | 刘劲鸿. 角闪石成因矿物族及其应用[J]. 长春地质学院学报, 1986, 16(1): 41-48, 124. |
[62] | 周作侠. 中国花岗岩类球粒陨石标准化稀土型式及其地质背景研究[J]. 科学通报, 1986, 31(23): 1806-1810. |
[63] | 周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, 1988, 4(3): 63-73. |
[64] | DONG S H, BI X W, HU R Z, et al. Characteristics of ore-forming fluid in Yaogangxian quartz-vein wolframite deposit, Hunan Province(Article)[J]. Kuangwu Yanshi/Journal of Mineralogy and Petrology, 2011, 31(2): 54-60. |
[65] | SU S G, LU X, SANTOSH M, et al. Geochemical and Fe-isotope characteristics of the largest Mesozoic skarn deposit in China: implications for the mechanism of Fe skarn formation[J]. Ore Geology Reviews, 2021, 138: 104400. |
[66] | 陈学根, 苏尚国, 施南, 等. 金川岩浆铜镍(铂)硫化物矿床铂族金属富集过程及富集机制[J]. 地质学报, 2023, 97(11): 3715-3736. |
[67] | ZHU C, SVERJENSKY D A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1837-1858. |
[68] | KUSEBAUCH C, JOHN T, WHITEHOUSE M J, et al. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes[J]. Geochimica et Cosmochimica Acta, 2015, 170: 225-246. |
[69] | SALVI S, WILLIAMS-JONES A E. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada[J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1917-1932. |
[70] | MIGDISOV A A, WILLIAMS-JONES A E, WAGNER T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300℃[J]. Geochimica et Cosmochimica Acta, 2009, 73(23): 7087-7109. |
[71] | KONZETT J, RHEDE D, FROST D J. The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle[J]. Contributions to Mineralogy and Petrology, 2012, 163(2): 277-296. |
[72] | BARNES S J, CAMPBELL I H. Role of late magmatic fluids in Merensky-type platinum deposits: a discussion[J]. Geology, 1988, 16(6): 488. |
[73] | BRIMHALL G H, CRERAR D A. Ore fluids: magmatic to supergene[M]//Thermodynamic modeling of geologic materials. Berlin: De Gruyter, 1987: 235-322. |
[74] | CANDELA P A, HOLLAND H D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids[J]. Geochimica et Cosmochimica Acta, 1984, 48(2): 373-380. |
[75] | HOLLAND H D. Granites, solutions, and base metal deposits[J]. Economic Geology, 1972, 67(3): 281-301. |
[76] | HOLLOWAY J R. Volatile interactions in magmas[M]//Thermodynamics of minerals and melts. New York: Springer, 1981: 273-293. |
[77] | BALLHAUS C G, STUMPFL E F. Sulfide and platinum mineralization in the merensky reef: evidence from hydrous silicates and fluid inclusions[J]. Contributions to Mineralogy and Petrology, 1986, 94(2): 193-204. |
[78] | HUMPHREYS M C S, EDMONDS M, CHRISTOPHER T, et al. Chlorine variations in the magma of Soufrière Hills Volcano, Montserrat: insights from Cl in hornblende and melt inclusions[J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5693-5708. |
[79] | HUBER C, BACHMANN O, MANGA M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting[J]. Journal of Petrology, 2010, 51(4): 847-867. |
[80] | CASHMAN K, BLUNDY J. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth[J]. Contributions to Mineralogy and Petrology, 2013, 166(3): 703-729. |
[81] | EDMONDS M, BRETT A, HERD R A, et al. Magnetite-bubble aggregates at mixing interfaces in andesite magma bodies[J]. Geological Society, London, Special Publications, 2015, 410(1): 95-121. |
[82] | KNIPPING J L, BILENKER L D, SIMON A C, et al. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions[J]. Geology, 2015, 43(7): 591-594. |
[83] | KNIPPING J L, BILENKER L D, SIMON A C, et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 2015, 171: 15-38. |
[84] |
KNIPPING J L, WEBSTER J D, SIMON A C, et al. Accumulation of magnetite by flotation on bubbles during decompression of silicate magma[J]. Scientific Reports, 2019, 9: 3852.
DOI PMID |
[85] | MUNGALL J E, SU S G. Interfacial tension between magmatic sulfide and silicate liquids: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks[J]. Earth and Planetary Science Letters, 2005, 234(1/2): 135-149. |
[86] | BOUDREAU A E. Volatile fluid overpressure in layered intrusions and the formation of potholes[J]. Australian Journal of Earth Sciences, 1992, 39(3): 277-287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||