Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 495-505.DOI: 10.13745/j.esf.sf.2022.2.86
Previous Articles Next Articles
SHI Yao1,2(), ZHANG Lei1,2, QIN Yanwen1,2,*(
), MA Yingqun1,2, YANG Chenchen1,2, LIU Zhichao1,2, ZHU Huailin3
Received:
2022-04-15
Revised:
2022-05-23
Online:
2023-03-25
Published:
2023-01-05
Contact:
QIN Yanwen
CLC Number:
SHI Yao, ZHANG Lei, QIN Yanwen, MA Yingqun, YANG Chenchen, LIU Zhichao, ZHU Huailin. Temporal and spatial distribution characteristics of nitrogen and phosphorous in the water of Qionghai Lake, Sichuan Province and their response to ecological environment[J]. Earth Science Frontiers, 2023, 30(2): 495-505.
编号 | 断面名称 | 经度/(°) | 纬度/(°) |
---|---|---|---|
1 | 海河口 | 102.275 6 | 27.860 7 |
2 | 邛海宾馆 | 102.273 5 | 27.844 4 |
3 | 二水厂取水口 | 102.278 8 | 27.830 8 |
4 | 湖心 | 102.323 7 | 27.818 7 |
5 | 青龙寺 | 102.338 1 | 27.816 8 |
6 | 官坝河入湖口影响区 | 102.320 0 | 27.832 7 |
7 | 鹅掌河入湖口影响区 | 102.315 8 | 27.806 9 |
8 | 小青河入湖口影响区 | 102.337 2 | 27.802 4 |
9 | 小渔村 | 102.287 8 | 27.840 0 |
10 | 高枧湾 | 102.280 0 | 27.857 2 |
11 | 月亮湾 | 102.284 0 | 27.846 0 |
Table 1 Fundamental information of the sampling sites
编号 | 断面名称 | 经度/(°) | 纬度/(°) |
---|---|---|---|
1 | 海河口 | 102.275 6 | 27.860 7 |
2 | 邛海宾馆 | 102.273 5 | 27.844 4 |
3 | 二水厂取水口 | 102.278 8 | 27.830 8 |
4 | 湖心 | 102.323 7 | 27.818 7 |
5 | 青龙寺 | 102.338 1 | 27.816 8 |
6 | 官坝河入湖口影响区 | 102.320 0 | 27.832 7 |
7 | 鹅掌河入湖口影响区 | 102.315 8 | 27.806 9 |
8 | 小青河入湖口影响区 | 102.337 2 | 27.802 4 |
9 | 小渔村 | 102.287 8 | 27.840 0 |
10 | 高枧湾 | 102.280 0 | 27.857 2 |
11 | 月亮湾 | 102.284 0 | 27.846 0 |
相关系数 | Chla | TP | TN | SD | CODMn |
---|---|---|---|---|---|
rij | 1 | 0.84 | 0.82 | -0.83 | 0.83 |
1 | 0.705 6 | 0.672 4 | 0.688 9 | 0.688 9 |
Table 2 Correlations of rij, r i j 2 between some parameters and Chla in Chinese lakes
相关系数 | Chla | TP | TN | SD | CODMn |
---|---|---|---|---|---|
rij | 1 | 0.84 | 0.82 | -0.83 | 0.83 |
1 | 0.705 6 | 0.672 4 | 0.688 9 | 0.688 9 |
湖泊名称 | TN浓度/ (mg·L-1) | (mg·L-1) | TP浓度/ (mg·L-1) | 文献 |
---|---|---|---|---|
洞庭湖 | 1.83 | 0.26 | 0.081 | [ |
太湖 | 1.80 | — | 0.06 | [ |
鄱阳湖 | 1.23 | — | 0.062 | [ |
汉丰湖 | 1.519 | 0.09 | 0.176 | [ |
岱海 | 3.93 | 0.21 | 0.111 | [ |
洱海 | 0.62 | — | 0.03 | [ |
滇池 | 2.37 | 0.38 | 0.29 | [ |
邛海 | 0.399 | 0.098 | 0.023 | 本研究 |
Table 3 Comparison of the average concentrations of TN, NH 4 +-N and TP in different lakes in China
湖泊名称 | TN浓度/ (mg·L-1) | (mg·L-1) | TP浓度/ (mg·L-1) | 文献 |
---|---|---|---|---|
洞庭湖 | 1.83 | 0.26 | 0.081 | [ |
太湖 | 1.80 | — | 0.06 | [ |
鄱阳湖 | 1.23 | — | 0.062 | [ |
汉丰湖 | 1.519 | 0.09 | 0.176 | [ |
岱海 | 3.93 | 0.21 | 0.111 | [ |
洱海 | 0.62 | — | 0.03 | [ |
滇池 | 2.37 | 0.38 | 0.29 | [ |
邛海 | 0.399 | 0.098 | 0.023 | 本研究 |
水期 | 指标 | Chla | TN | TP | |
---|---|---|---|---|---|
枯水期 | Chla | 1 | |||
TN | 0.741** | 1 | |||
0.688* | 0.494 | 1 | |||
TP | 0.960** | 0.700* | 0.634* | 1 | |
丰水期 | Chla | 1 | |||
TN | 0.910** | 1 | |||
0.926** | 0.962** | 1 | |||
TP | 0.988* | 0.955** | 0.955** | 1 |
Table 4 Pearson coefficients between TN, NH 4 +-N, TP and Chla in Qionghai Lake
水期 | 指标 | Chla | TN | TP | |
---|---|---|---|---|---|
枯水期 | Chla | 1 | |||
TN | 0.741** | 1 | |||
0.688* | 0.494 | 1 | |||
TP | 0.960** | 0.700* | 0.634* | 1 | |
丰水期 | Chla | 1 | |||
TN | 0.910** | 1 | |||
0.926** | 0.962** | 1 | |||
TP | 0.988* | 0.955** | 0.955** | 1 |
断面编号 | 营养状态指数值 | 富营养化状态 | 断面编号 | 营养状态指数值 | 富营养化状态 | |
---|---|---|---|---|---|---|
1 | 46.230 | 中营养 | 7 | 36.221 | 中营养 | |
2 | 38.530 | 中营养 | 8 | 34.847 | 中营养 | |
3 | 34.838 | 中营养 | 9 | 36.809 | 中营养 | |
4 | 33.761 | 中营养 | 10 | 49.036 | 中营养 | |
5 | 33.836 | 中营养 | 11 | 37.633 | 中营养 | |
6 | 36.383 | 中营养 |
Table 5 Changes of eutrophication index in Qionghai Lake
断面编号 | 营养状态指数值 | 富营养化状态 | 断面编号 | 营养状态指数值 | 富营养化状态 | |
---|---|---|---|---|---|---|
1 | 46.230 | 中营养 | 7 | 36.221 | 中营养 | |
2 | 38.530 | 中营养 | 8 | 34.847 | 中营养 | |
3 | 34.838 | 中营养 | 9 | 36.809 | 中营养 | |
4 | 33.761 | 中营养 | 10 | 49.036 | 中营养 | |
5 | 33.836 | 中营养 | 11 | 37.633 | 中营养 | |
6 | 36.383 | 中营养 |
[1] |
ZHANG Y, CHENG L, LI K Y, et al. Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes[J]. Limnology and Oceanography, 2019, 64(3): 1047-1058.
DOI URL |
[2] |
ZHANG Y L, LIU X H, QIN B Q, et al. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: implications for lake ecological restoration[J]. Scientific Reports, 2016, 6: 23867.
DOI PMID |
[3] | 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002, 14(3): 193-202. |
[4] | SNDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow[J]. Hydrobiologia, 2003, 506(1/2/3): 135-145. |
[5] | 秦琳, 朱英海, 陈月娇, 等. 邛海水体富营养化评价及成因分析[J]. 清洗世界, 2019, 35(12): 50-52. |
[6] | 王书航, 郑朔方, 蔡青, 等. 南湖及周边水体中氮的时空分布、 影响因素及控制对策[J]. 环境工程技术学报, 2020, 10(6): 920-927. |
[7] | 刘斌. 西昌邛海水质富营养化状态评价研究[J]. 四川水利, 2011, 32(4): 53-55. |
[8] | 郜志云, 赵翠平, 孙运海, 等. 邛海表层沉积物营养盐分布特征及污染评价[J]. 环境污染与防治, 2016, 38(5): 95-99, 104. |
[9] | 辜晓琬, 雷波, 肖杰, 等. 邛海水质变化趋势及保护对策研究[J]. 四川环境, 2013, 32(5): 77-82. |
[10] | 吉日鲁者. 邛海湖泊水环境质量评价及污染防治研究[D]. 成都: 西南交通大学, 2016. |
[11] | 马吉勋. 邛海流域水环境质量现状及影响因素研究[D]. 成都: 四川农业大学, 2008. |
[12] | 国家环境保护总局, 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[13] | 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002, 18(5): 47-49. |
[14] | 金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 北京: 中国环境科学出版社, 1990. |
[15] | 殷守敬, 吴传庆, 王晨, 等. 综合遥感与地面观测的巢湖水体富营养化评价[J]. 中国环境监测, 2018, 34(1): 157-164. |
[16] | 罗固源, 卜发平, 许晓毅, 等. 三峡库区临江河回水区总氮和总磷的动态特征[J]. 土木建筑与环境工程, 2009, 31(5): 106-111. |
[17] | 刘文祥, 卢阳, 张乾柱, 等. 三峡库区汉丰湖水环境演变特征分析[J]. 三峡生态环境监测, 2022, 7(2): 23-31. |
[18] | 童晓霞, 崔远来, 史伟达. 降雨对灌区农业面源污染影响规律的分布式模拟[J]. 中国农村水利水电, 2010(9): 33-35. |
[19] | 张千千, 王效科, 郝丽岭, 等. 重庆市盘溪河水质不同季节日变化规律及水质评价[J]. 环境科学, 2012, 33(7): 2251-2258. |
[20] | 查慧铭, 朱梦圆, 朱广伟, 等. 太湖出入湖河道与湖体水质季节差异分析[J]. 环境科学, 2018, 39(3): 1102-1112. |
[21] |
NASH D M, HALLIWELL D J. Tracing phosphorus transferred from grazing land to water[J]. Water Research, 2000, 34(7): 1975-1985.
DOI URL |
[22] | 李跃飞, 夏永秋, 李晓波, 等. 秦淮河典型河段总氮总磷时空变异特征[J]. 环境科学, 2013, 34(1): 91-97. |
[23] |
AL BAKRI D, RAHMAN S, BOWLING L. Sources and management of urban stormwater pollution in rural catchments, Australia[J]. Journal of Hydrology, 2008, 356(3/4): 299-311.
DOI URL |
[24] |
YAN X, CAI Z, YANG R, et al. Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China[J]. Biogeochemistry, 2011, 106(3): 489-501.
DOI URL |
[25] | 黄代中, 李芬芳, 欧阳美凤, 等. 洞庭湖不同形态氮、 磷和叶绿素a浓度的时空分布特征[J]. 生态环境学报, 2019, 28(8): 1674-1682. |
[26] | 戴秀丽, 钱佩琪, 叶凉, 等. 太湖水体氮、 磷浓度演变趋势(1985—2015年)[J]. 湖泊科学, 2016, 28(5): 935-943. |
[27] | 唐国华, 林玉茹, 胡振鹏, 等. 鄱阳湖区氮磷污染物分布、 转移和削减特征[J]. 长江流域资源与环境, 2017, 26(9): 1436-1445. |
[28] | 付适, 倪九派, 何丙辉, 等. 汉丰湖正式运行年水体营养盐分布特征[J]. 环境科学, 2020, 41(5): 2116-2126. |
[29] | 赵丽, 陈俊伊, 姜霞, 等. 岱海水体氮、 磷时空分布特征及其差异性分析[J]. 环境科学, 2020, 41(4): 1676-1683. |
[30] | 张态. 洱海氮磷时空分布特征及其外源负荷研究[D]. 大理: 大理学院, 2011. |
[31] | 余丽燕, 杨浩, 黄昌春, 等. 夏季滇池和入滇河流氮、 磷污染特征[J]. 湖泊科学, 2016, 28(5): 961-971. |
[32] | 朱俊, 董辉, 王寿兵, 等. 长江三峡库区干流水体主要污染负荷来源及贡献[J]. 水科学进展, 2006, 17(5): 709-713. |
[33] | 孙凌, 金相灿, 钟远, 等. 不同氮磷比条件下浮游藻类群落变化[J]. 应用生态学报, 2006, 17(7): 1218-1223. |
[34] | 张骁栋, 崔丽娟, 王金枝, 等. 氮磷比对固氮和非固氮蓝藻种间关系的影响[J]. 水利水电技术, 2017, 48(9): 29-34, 83. |
[35] |
GUILDFORD S, HECKY R. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship?[J]. Limnology and Oceanography, 2000, 45(6): 1213-1223.
DOI URL |
[36] | 王琼, 卢聪, 范志平, 等. 辽河流域太子河流域N、 P和叶绿素a浓度空间分布及富营养化[J]. 湖泊科学, 2017, 29(2): 297-307. |
[37] | 黄伟, 张钘, 罗晓佼, 等. 三峡库区高阳平湖水体富营养化主要驱动因子研究: 基于主成分分析法[J]. 三峡生态环境监测, 2022, 7(1): 1-7. |
[38] | 吴怡, 郭亚飞, 曹旭, 等. 成都府南河叶绿素a和氮、 磷的分布特征与富营养化研究[J]. 中国环境监测, 2013, 29(4): 43-49. |
[39] | 张晓晶, 李畅游, 张生, 等. 乌梁素海叶绿素a与理化因子的统计分析[J]. 环境化学, 2010, 29(2): 315-319. |
[1] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
[2] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[3] | MENG Kang, SHAO Deyong, ZHANG Liuliu, LI Liwu, ZHANG Yu, LUO Huan, SONG Hui, ZHANG Tongwei. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei—indication for gas-bearing capacity of shale [J]. Earth Science Frontiers, 2023, 30(3): 14-27. |
[4] | HUANG Liuqin, LI Linxin, JIANG Hongchen. Formation and iron oxidation mechanisms of BIFs: Research progress review and outlook [J]. Earth Science Frontiers, 2023, 30(2): 333-346. |
[5] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[6] | ZOU Jianjun, ZONG Xian, ZHU Aimei, DOU Ruxi, LIN Jinhui, FENG Xuguang, DONG Zhi, Sergey A. GORBARENKO, ZHENG Liwei, SHI Xuefa. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: Paleoceanographic implications [J]. Earth Science Frontiers, 2022, 29(4): 123-135. |
[7] | GAO Heng, TAN Hang, REN Yu, ZHU Lecheng, BI Erping. Nitrogen removal during reclaimed water infiltration in soil aquifer treatment: Experimental simulation using soil column [J]. Earth Science Frontiers, 2021, 28(5): 125-135. |
[8] | ZHANG Minghao, ZHAO Tingning, XIAO Huijie. Temporospatial distribution and influencing factor analysis of dust concentration in Wuhai, Inner Mongolia [J]. Earth Science Frontiers, 2021, 28(4): 118-130. |
[9] | WEN Quan, MA Yingqun, SHI Yao, CHI Minghui, QIN Yanwen, LIU Zhichao, YANG Chenchen. Cause and control strategy of total phosphorus pollution in the Minjiang River Basin based on pollution load analysis [J]. Earth Science Frontiers, 2020, 27(4): 332-339. |
[10] | ZHAO Lunshan, CEN Kuang, LIU Xiuli, WU Xuefang, ZHU Xuetao, WEI Junxiao, CHEN Yuan, LUN Zhiying. N-nitrosamine containing underground waters and regional cancer incidence in the Pearl River Delta region [J]. Earth Science Frontiers, 2019, 26(2): 335-349. |
[11] | ZHANG Jie,LEI Huaiyan,YANG Ming,CHEN Yong,KONG Yuan,LU Yi. The interactions of P-S-Fe in sediment from the continental slope of northern South China Sea and their implication for the sulfatemethane transition zone. [J]. Earth Science Frontiers, 2018, 25(3): 285-293. |
[12] | GAO Zhipeng,GUO Huaming,QU Jihong. Numerical simulation of nitrogen transport in river-groundwater system in the Weihe River Basin. [J]. Earth Science Frontiers, 2018, 25(3): 273-284. |
[13] | ZHU Pengfei,CAI Yuqi,GUO Qingyin,LIU Wusheng,LI Jianhong,ZHANG Minglin,QI Fucheng,ZHANG Zilong,JIA Licheng,XU Hao. Metallogenetic and geological characterization and resources potential analysis of uranium resources in China. [J]. Earth Science Frontiers, 2018, 25(3): 148-158. |
[14] | ZHANG Nan,FANG Zhiwei,HAN Xiao,CHEN Chunli,QI Xiaobo. The study on temporal and spatial distribution law and cause of debris flow disaster in China in recent years. [J]. Earth Science Frontiers, 2018, 25(2): 299-308. |
[15] | . Temporal and spatial distribution of tungsten and tin in South China Continent. [J]. Earth Science Frontiers, 2012, 19(3): 70-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||