Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 123-135.DOI: 10.13745/j.esf.sf.2022.1.6
Previous Articles Next Articles
ZOU Jianjun1,2(), ZONG Xian1, ZHU Aimei1, DOU Ruxi1, LIN Jinhui1, FENG Xuguang1, DONG Zhi1, Sergey A. GORBARENKO3, ZHENG Liwei4, SHI Xuefa1,2,*()
Received:
2021-09-30
Revised:
2021-11-10
Online:
2022-07-25
Published:
2022-07-28
Contact:
SHI Xuefa
CLC Number:
ZOU Jianjun, ZONG Xian, ZHU Aimei, DOU Ruxi, LIN Jinhui, FENG Xuguang, DONG Zhi, Sergey A. GORBARENKO, ZHENG Liwei, SHI Xuefa. Stable carbon and nitrogen isotope variations in sedimentary organic matter in the Sea of Japan since 37 ka: Paleoceanographic implications[J]. Earth Science Frontiers, 2022, 29(4): 123-135.
层位 /cm | 测试材料和地层标志层 | AMS 14C 年龄/a | 日历年 龄/ka | 沉积速率 /(cm·ka-1) |
---|---|---|---|---|
31 | TL1 | 11.40 | ||
40 | N.pachyderma+G.bulloides | 12 000±50 | 13.32 | 4.69 |
60 | N.pachyderma s.+G.bulloides | 15 200±45 | 17.58 | 4.69 |
80 | N.pachyderma sin | 19 100±85 | 22.18 | 4.35 |
110 | N.pachyderma sin | 23 500±140 | 26.91 | 6.34 |
128-131 | A-Tn | 29.40 | 7.24 | |
158 | N.pachyderma+G.bulloides | 29 300±270 | 32.80 | 7.94 |
208 | N.pachyderma+G.bulloides | 34 200±200 | 38.33 | 9.04 |
Table 1 Age control points of core LV53-23-1
层位 /cm | 测试材料和地层标志层 | AMS 14C 年龄/a | 日历年 龄/ka | 沉积速率 /(cm·ka-1) |
---|---|---|---|---|
31 | TL1 | 11.40 | ||
40 | N.pachyderma+G.bulloides | 12 000±50 | 13.32 | 4.69 |
60 | N.pachyderma s.+G.bulloides | 15 200±45 | 17.58 | 4.69 |
80 | N.pachyderma sin | 19 100±85 | 22.18 | 4.35 |
110 | N.pachyderma sin | 23 500±140 | 26.91 | 6.34 |
128-131 | A-Tn | 29.40 | 7.24 | |
158 | N.pachyderma+G.bulloides | 29 300±270 | 32.80 | 7.94 |
208 | N.pachyderma+G.bulloides | 34 200±200 | 38.33 | 9.04 |
Fig.5 Comparisons of temporal profiles between sedimentary organic matter δ13C, δ15N in core LV53-23-1 and in (a) sediment trap (adapted from [51-52]) or (b) in other cores (adapted from [7,8,39])
[1] | FARRELL J W, PEDERSEN T F, CALVERT S E, et al. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean[J]. Nature, 1995, 377(6549): 514-517. |
[2] | PELTO B M, CAISSIE B E, PETSCH S T, et al. Oceanographic and climatic change in the Bering Sea, Last Glacial Maximum to Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 93-111. |
[3] | ZHENG L W, HSIAO S S Y, DING X D, et al. Isotopic composition and speciation of sedimentary nitrogen and carbon in the Okinawa Trough over the past 30 ka[J]. Paleoceanography and Paleoclimatology, 2015, 30(10): 1233-1244. |
[4] | JENNERJAHN T C, ITTEKKOT V, ARZ H W, et al. Asynchronous terrestrial and marine signals of climate change during Heinrich events[J]. Science, 2004, 306(5705): 2236-2239. |
[5] | SHEMESH A, MACKO S A, CHARLES C D, et al. Isotopic evidence for reduced productivity in the glacial southern ocean[J]. Science, 1993, 262(5132): 407-410. |
[6] | ISHIWATARI R, HIRAKAWA Y, UZAKI M, et al. Organic geochemistry of the Japan Sea sediments: 1. Bulk organic matter and hydrocarbon analyses of core KH-79-3, C-3 from the Oki Ridge for paleoenvironment assessments[J]. Journal of Oceanography, 1994, 50(2): 179-195. |
[7] | KHIM B K, BAHK J J, HYUN S, et al. Late Pleistocene dark laminated mud layers from the Korea Plateau, western East Sea/Japan Sea, and their paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 74-87. |
[8] | KHIM B K, IKEHARA K, BAHK J J, et al. Increased negative anomalies of sedimentary organic matter δ13C and δ15N values in the East Sea (Sea of Japan) during the full glaciation of the Late Quaternary[J]. Quaternary International, 2008, 176: 25-35. |
[9] | KAO S J, LIU K K, HSU S C, et al. North Pacific-wide spreading of isotopically heavy nitrogen during the last deglaciation: evidence from the western Pacific[J]. Biogeosciences, 2008, 5(6): 1641-1650. |
[10] | LAMB A L, WILSON G P, LENG M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1): 29-57. |
[11] | HAYES J M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence[J]. Marine Geology, 1993, 113(1): 111-125. |
[12] | GALBRAITH E D, SIGMAN D M, ROBINSON R S, et al. Nitrogen in past marine environments[M]//CAPONE D G, BRONK D A, MULHOLLAND M R, et al. Nitrogen in the marine environment (Second Edition). San Diego: Academic Press, 2008: 1497-1535. |
[13] | MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3): 289-302. |
[14] | ALTABET M A, FRANCOIS R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization[J]. Global Biogeochemical Cycles, 1994, 8(1): 103-116. |
[15] | MEYERS P A, ISHIWATARI R. Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7): 867-900. |
[16] |
ROBINSON R S, KIENAST M, LUIZA ALBUQUERQUE A, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography, 2012, 27(4): PA4203, doi: 4210.1029/2012PA002321.
DOI URL |
[17] | OBA T, KATO M, KITAZATO H, et al. Paleoenvironmental changes in the Japan Sea during the last 85 000 years[J]. Paleoceanography, 1991, 6(4): 499-518. |
[18] | TADA R. Paleoceanographic evolution of the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 487-508. |
[19] | WANG P X. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features[J]. Marine Geology, 1999, 156(1-4): 5-39. |
[20] | LIU Y, SHA L, SHI X, et al. Depositional environment in the southern Ulleung Basin, East Sea (Sea of Japan), during the last 48 000 years[J]. Acta Oceanologica Sinica, 2010, 29(5): 52-64. |
[21] | ZOU J, SHI X, ZHU A, et al. Paleoenvironmental implications of Sr and Nd isotopes variability over the past 48 ka from the southern Sea of Japan[J]. Marine Geology, 2021, 432: 106393, https://doi.org/106310.101016/j.margeo.102020.106393. |
[22] | ZOU J, SHI X, LIU Y, et al. Reconstruction of environmental changes using a multi-proxy approach in the Ulleung Basin (Sea of Japan) over the last 48 ka[J]. Journal of Quaternary Science, 2012, 27(9): 891-900. |
[23] | WU Y, SHI X, GONG X, et al. Evolution of the upper ocean stratification in the Japan Sea since the last glacial[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088255. |
[24] | LIU Y, CHEN J, CHEN J, et al. Variations of alkenone temperature in the Sea of Japan during the last 170 ka and its paleoceanographic implications[J]. Chinese Science Bulletin, 2014: 1-12. |
[25] | GORBARENKO S, SHI X, RYBIAKOVA Y, et al. Fine structure of dark layers in the central Japan Sea and their relationship with the abrupt climate and sea level changes over the last 75 ka inferred from lithophysical, geochemical and pollen results[J]. Journal of Asian Earth Sciences, 2015, 114: 476-487. |
[26] |
GORBARENKO S, SHI X, BOSIN A, et al. Timing and mechanisms of the formation of the dark layers in the Sea of Japan during the last 40 kyr[J]. Frontiers in Earth Science, 2021, 9(410), doi: 10. 3389/feart.2021.647495.
DOI URL |
[27] | GE S, SHI X, LIU Y, et al. Turbidite and bottom-current evolution revealed by anisotropy of magnetic susceptibility of redox sediments in the Ulleung Basin, Sea of Japan[J]. Chinese Science Bulletin, 2012, 57(6): 660-672. |
[28] |
DOU R, ZOU J, SHI X, et al. Geochemical and isotopic evidence for provenance of the western Sea of Japan over the last 30 000 years[J]. Frontiers in Earth Science, 2021, 9(198), doi: 10.3389/feart.2021.638178.
DOI URL |
[29] | DONG Z, SHI X, ZOU J, et al. Paleoceanographic insights on meridional ventilation variations in the Japan Sea since the Last Glacial Maximum: a radiolarian assemblage perspective[J]. Global and Planetary Change, 2021, 200: 103456, https://doi.org/103410.101016/j.gloplacha.102021.103456. |
[30] | DONG Z, SHI X, ZOU J, et al. Drastic hydrographic changes inferred from radiolarian assemblages in the central Japan Sea since the Last Glacial Maximum[J]. Marine Geology, 2020, 429: 106295, https://doi.org/106210.101016/j.margeo.102020.106295. |
[31] | CHEN J, LIU Y, SHI X, et al. Climate and environmental changes for the past 44 ka clarified by pollen and algae composition in the Ulleung Basin, East Sea (Japan Sea)[J]. Quaternary International, 2017, 441, Part A: 162-173. |
[32] | STAX R, STEIN R. Quaternary organic-carbon cycles in the Japan Sea (Odp-Site 798) and their paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 509-521. |
[33] | KIDO Y, MINAMI I, TADA R, et al. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 32-49. |
[34] | YAMADA K, ISHIWATARI R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments: implications for paleoenvironmental changes over the past 85 kyr[J]. Organic Geochemistry, 1999, 30(5): 367-377. |
[35] | XING L, ZHANG R, LIU Y, et al. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr[J]. Quaternary Science Reviews, 2011, 30(19/20): 2666-2675. |
[36] | ZHAO M X, ZHANG R P, XING L, et al. The changes of phytoplanktonic productivity and community structure in the Japan Sea since the Last Glacial Maximum[J]. Journal of Ocean University of China, 2009, 39(5): 1093-1099. |
[37] | GORBARENKO S A, NAM S I, RYBIAKOVA Y V, et al. High resolution climate and environmental changes of the northern Japan (East) Sea for the last 40 kyr inferred from sedimentary geochemical and pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414(0): 260-272. |
[38] | KHIM B K, IKEHARA K, IRINO T. Orbital-and millennial-scale paleoceanographic changes in the north-eastern Japan Basin, East Sea/Japan Sea during the Late Quaternary[J]. Journal of Quaternary Science, 2012, 27(3): 328-335. |
[39] | KIM J H, KONG G S, RYU J S, et al. Revisiting the origin of organic matter and depositional environment of sediment in the central Ulleung Basin, East Sea since the Late Quaternary[J]. Quaternary International, 2014, 344: 181-191. |
[40] | TALLEY L D, MIN D H, LOBANOV V B, et al. Japan/East Sea water masses and their relation to the sea’s circulation[J]. Oceanography, 2006, 19(3): 32-49. |
[41] | GAMO T, NAKAYAMA N, TAKAHATA N, et al. The Sea of Japan and its unique chemistry revealed by time-series observations over the last 30 years[J]. Monographs on Environment, Earth and Planets, 2014, 2(1): 1-22. |
[42] | GAMO T, NOZAKI Y, SAKAI H, et al. Spacial and temporal variations of water characteristics in the Japan Sea bottom layer[J]. Journal of Marine Research, 1986, 44(4): 781-793. |
[43] |
NAGASHIMA K, TADA R, TANI A, et al. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(2): 13, doi: 10.1029/2006gc001364.
DOI URL |
[44] | TADA R. Onset and evolution of millennial-scale variability in the Asian monsoon and its impact on paleoceanography of the Japan Sea[M]//CLIFT P, KUHNT W, WANG P, et al. Continent-Ocean Interactions within East Asian marginal seas. Washington DC: American Geophysical Union, 2004, 149: 283-298. |
[45] | XIAO J, AN Z. Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and Late Cenozoic deposits in Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 179-189. |
[46] | OBA T, PEDERSEN T F. Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum[J]. Paleoceanography, 1999, 14(1): 34-41. |
[47] | 董智, 石学法, 葛晨东, 等. 日本海中部60 ka以来的风尘沉积对西风环流演化的指示[J]. 科学通报, 2017(11): 1172-1184. |
[48] | 石学法, 邹建军, 姚政权, 等. 日本海末次冰期以来沉积作用和环境演化及其控制要素[J]. 海洋地质与第四纪地质, 2019, 39(3): 1-11. |
[49] | STUIVER M, REIMER P J, REIMER R W. CALIB 8.2[CP]. [2021-08-16]. http://calib.org. |
[50] | REDFIELD A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46: 205-221. |
[51] | KWAK J H, HAN E, HWANG J, et al. Flux and stable C and N isotope composition of sinking particles in the Ulleung Basin of the East/Japan Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 143: 62-72. |
[52] | NAKANISHI T, MINAGAWA M. Stable carbon and nitrogen isotopic compositions of sinking particles in the northeast Japan Sea[J]. Geochemical Journal, 2003, 37(2): 261-275. |
[53] | MINOURA K, HOSHINO K, NAKAMURA T, et al. Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: sea-level control on δ13C and δ15N records of sediment organic material[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 135(1-4): 41-50. |
[54] | HU B, LI J, ZHAO J, et al. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: implications for monsoon and upwelling[J]. Marine Chemistry, 2014, 162: 60-70. |
[55] | RIETHDORF J R, THIBODEAU B, IKEHARA M, et al. Surface nitrate utilization in the Bering sea since 180 ka BP: insight from sedimentary nitrogen isotopes[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 163-176. |
[56] | LEHMANN M F, BERNASCONI S M, BARBIERI A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3573-3584. |
[57] | FREUDENTHAL T, WAGNER T, WENZHÖFER F, et al. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2001, 65(11): 1795-1808. |
[58] | SIGMAN D M, FRIPIAT F, Nitrogen Isotopes in the Ocean[M]//COCHRAN J K, BOKUNIEWICZ H J, YAGER P L. Encyclopedia of Ocean Sciences (Third Edition). Oxford: Academic Press, 2019: 263-278. |
[59] | DUBOIS N, KIENAST M, KIENAST S, et al. Millennial-scale variations in hydrography and biogeochemistry in the Eastern Equatorial Pacific over the last 100 kyr[J]. Quaternary Science Reviews, 2011, 30(1): 210-223. |
[60] | QUAN T M, WRIGHT J D, FALKOWSKI P G. Co-variation of nitrogen isotopes and redox states through glacial-interglacial cycles in the Black Sea[J]. Geochimica et Cosmochimica Acta, 2013, 112: 305-320. |
[61] | ALTABET M A, FRANCOIS R, MURRAY D W, et al. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios[J]. Nature, 1995, 373(6514): 506-509. |
[62] | SOHM J A, WEBB E A, CAPONE D G. Emerging patterns of marine nitrogen fixation[J]. Nature Reviews Microbiology, 2011, 9(7): 499-508. |
[63] | TANITA I, SHIOZAKI T, KODAMA T, et al. Regionally variable responses of nitrogen fixation to iron and phosphorus enrichment in the Pacific Ocean[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(9): e2021JG006542, https://doi.org/006510.001029/002021JG006542. |
[64] |
SOMES C J, SCHMITTNER A, ALTABET M A. Nitrogen isotope simulations show the importance of atmospheric iron deposition for nitrogen fixation across the Pacific Ocean[J]. Geophysical Research Letters, 2010, 37: L23605, doi: 23610.21029/22010GL044537.
DOI URL |
[65] |
ZEHR J P, CAPONE D G. Changing perspectives in marine nitrogen fixation[J]. Science, 2020, 368(6492): eaay9514, DOI: 9510.1126/science.aay9514.
DOI URL |
[66] | IRINO T, TADA R. High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka[J]. Global and Planetary Change, 2003, 35(1/2): 143-156. |
[67] | NAGASHIMA K. Last glacial to Holocene variations of the westerly jet path based on aeolian dust in Japan Sea sediments and SG 06 core from Lake Suigetsu[J]. Quaternary International, 2012, 279-280: 346-361. |
[68] | SPRATT R M, LISIECKI L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079-1092. |
[69] | CHENG H, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640 000 years and ice age terminations[J]. Nature, 2016, 534: 640-646. |
[70] | CRUSIUS J, PEDERSEN T F, CALVERT S E, et al. A 36 kyr geochemical record from the Sea of Japan of organic matter flux variations and changes in intermediate water oxygen concentrations[J]. Paleoceanography, 1999, 14(2): 248-259. |
[71] | DOMITSU H, ODA M. Linkages between surface and deep circulations in the southern Japan Sea during the last 27 000 years: evidence from planktic foraminiferal assemblages and stable isotope records[J]. Marine Micropaleontology, 2006, 61(4): 155-170. |
[72] | LEE E, NAM S. Low sea surface salinity in the East Sea during the Last Glacial Maximum: review on freshwater supply[J]. Geosciences Journal, 2004, 8(1): 43-49. |
[73] | SUN Y, CLEMENS S C, MORRILL C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2011, 5: 46-49. |
[74] | NAGASHIMA K, TADA R, MATSUI H, et al. Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1/2): 144-161. |
[75] | DENTON G H, ANDERSON R F, TOGGWEILER J R, et al. The Last Glacial Termination[J]. Science, 2010, 328(5986): 1652-1656. |
[76] | WANG Y J, CHENG H, EDWARDS R L, et al. A High-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294: 2345-2348. |
[77] | CHIANG J C H, FUNG I Y, WU C-H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108: 111-129. |
[78] | CLARK P U, DYKE A S, SHAKUN J D, et al. The Last Glacial Maximum[J]. Science, 2009, 325: 710-714. |
[79] | ZOU J, CHANG Y P, ZHU A, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current[J]. Quaternary Science Reviews, 2021, 265: 107051, https://doi.org/107010.101016/j.quascirev.102021.107051. |
[80] | SHI X, WU Y, ZOU J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian monsoon since marine isotope stage 5.1 (-88 ka)[J]. Climate of the Past, 2014, 10(5): 1735-1750. |
[81] | TALLEY L D. Distribution formation of North Pacific intermediate water[J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. |
[82] |
ITOU M, ONO T, NORIKI S. Provenance of intermediate waters in the western North Pacific deduced from thermodynamic imprint on δ13C of DIC[J]. Journal of Geophysical Research, 2003, 108(C11): 3347, DOI: 3310.1029/2002jc001746.
DOI URL |
[83] | OKAZAKI Y, TIMMERMANN A, MENVIEL L, et al. Deepwater formation in the North Pacific during the Last Glacial Termination[J]. Science, 2010, 329(5988): 200-204. |
[84] | ZOU J, SHI X, ZHU A, et al. Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate[J]. Climate of the Past, 2020, 16(1): 387-407. |
[1] | JIA Yonggang, RUAN Wenfeng, HU Naili, QIAO Yue, LI Zhenghui, HU Cong. Hydrate dissociation on the northern slope of the South China Sea: Potential effects from climate warming in the current warm period [J]. Earth Science Frontiers, 2022, 29(4): 191-201. |
[2] | XI Dangpeng, TANG Zihua, WANG Xuejiao, QIN Zuohuan, CAO Wenxin, JIANG Tian, WU Baoxu, LI Yuanhao, ZHANG Yingyue, JIANG Wenbin, KAMRAN Muhammad, FANG Xiaomin, WAN Xiaoqiao. The Cretaceous-Paleogene marine stratigraphic framework that records significant geological events in the western Tarim Basin [J]. Earth Science Frontiers, 2020, 27(6): 165-198. |
[3] | ZHANG Zhen,CHENG Rihui,XU Zhongjie,LI Shuanglin. Sequence stratigraphy of the carbonate platform of the Upper Carboniferous Chuanshan Formation and relative sea level change control in the Lower Yangtze region: an example from outcrops in Jurong City, Jiangsu Province. [J]. Earth Science Frontiers, 2018, 25(2): 232-245. |
[4] | WU Siqin,YAN Jiaxin,LIU Ke,YAN Yajuan. Response of early Permian silisiclastic depositional system to the advance of Gondwana glaciation in Southwestern Guizhou. [J]. Earth Science Frontiers, 2016, 23(6): 299-311. |
[5] | ZHU Dong-E, JIN Zhi-Jun, ZHANG Rong-Qiang, ZHANG Dian-Wei, HE Zhi-Liang, LI Shuang-Jian. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karst [J]. Earth Science Frontiers, 2014, 21(6): 335-345. |
[6] | LI Tie-Gang, CHANG Feng-Ming, XU Xin-Ke. Younger Dryas Event and formation of peat layers in the northern Yellow Sea. [J]. Earth Science Frontiers, 2010, 17(1): 322-330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||