Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 160-175.DOI: 10.13745/j.esf.sf.2021.8.13
Previous Articles Next Articles
XU Lingang1,2(), FU Xuerui1, YE Huishou3, ZHENG Wei3, CHEN Bo4, FANG Zhenglong4
Received:
2021-04-25
Revised:
2021-06-22
Online:
2022-01-25
Published:
2022-02-22
CLC Number:
XU Lingang, FU Xuerui, YE Huishou, ZHENG Wei, CHEN Bo, FANG Zhenglong. Geochemical composition and paleoceanic environment of the Lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region[J]. Earth Science Frontiers, 2022, 29(1): 160-175.
[1] | 李胜荣, 高振敏. 湘黔寒武系底部黑色岩系贵金属元素来源示踪[J]. 中国科学D辑: 地球科学, 2000, 30(2):169-174. |
[2] | 孙晓明, 王敏, 薛婷, 等. 华南下寒武统黑色岩系铂多金属矿中黄铁矿流体包裹体的He-Ar同位素体系[J]. 高校地质学报, 2003, 9(4):661-666. |
[3] | 王立社. 陕西秦岭黑色岩系及其典型矿床地质地球化学与成矿规律研究[D]. 西安: 西北大学, 2009: 1-165. |
[4] | OCH L M. Biogeochemical cycling through the Neoproterozoic—Cambrian transition in China: an integrated study of redox-sensitive elements[D]. London: University College London, 2011: 1-266. |
[5] |
XU L G, LEHMANN B, MAO J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: a reassessment[J]. Economic Geology, 2011, 106:511-522.
DOI URL |
[6] |
XU L G, LEHMANN B, MAO J W. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element and REE geochemistry[J]. Ore Geology Reviews, 2013, 52:66-84.
DOI URL |
[7] |
XU L G, LEHMANN B, MAO J W, et al. Strontium, sulfur, carbon, and oxygen isotope geochemistry of the Early Cambrian strata-bound barite and witherite deposits of the Qinling-Daba region, northern margin of the Yangtze Craton, China[J]. Economic Geology, 2016, 111(3):695-718.
DOI URL |
[8] |
MAO J W, LEHMANN B, DU A D, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97(5):1051-1061.
DOI URL |
[9] |
JIANG S Y, CHEN Y Q, LING H F, et al. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineralium Deposita, 2006, 41(5):453-467.
DOI URL |
[10] |
JIANG S Y, YANG J H, LING H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2):217-228.
DOI URL |
[11] |
CAO J, HU K, ZHOU J, et al. Organic clots and their differential accumulation of Ni and Mo within Early Cambrian black-shale-hosted polymetallic Ni-Mo deposits, Zunyi, South China[J]. Journal of Asian Earth Sciences, 2013, 62:531-536.
DOI URL |
[12] |
XU J, ZHU S Y, LUO T Y, et al. Uranium mineralization and its radioactive decay-induced carbonization in a black shale-hosted polymetallic sulfide ore layer, Southwest China[J]. Economic Geology, 2015, 110(6):1643-1652.
DOI URL |
[13] | 朱红周, 侯俊富, 王淑利. 南秦岭千家坪钒矿床地质地球化学特征与钒的富集规律[J]. 中国地质, 2010, 37(5):1490-1500. |
[14] | 朱红周, 侯俊富, 原连肖, 等. 南秦岭千家坪钒矿床钒赋存状态研究[J]. 地质与勘探, 2010, 46(4):643-648. |
[15] | 李赛赛. 陕西省商南县—山阳县下寒武统黑色岩系中钒矿田地质构造特征及成因探讨[D]. 西安: 长安大学, 2012: 1-146. |
[16] | 谭兴华, 王瑞廷, 廖俊红, 等. 宁陕县大构园沟钒矿床地质特征及矿床成因探讨[J]. 西北地质, 2014, 47(1):171-178. |
[17] | 李赛赛, 刘战庆. 南秦岭早寒武世黑色岩系钒矿床成因研究进展[J]. 桂林理工大学学报, 2015, 35(4):774-779. |
[18] | 张贵山, 温汉捷, 郑厚义. 千家坪钒矿床形成机制初步探讨[J]. 矿床地质, 2002, 21(增刊):349-352. |
[19] | 郑厚义. 扬子地块北缘黑色岩系的铂族元素富集特征: 以千家坪矿区为例[J]. 矿物学报, 2009, 29(增刊):161-162. |
[20] |
DONG Y P, ZHANG G W, NEUBAUER F, et al. Tectonic evolution of the Qinling orogeny, China: review and synjournal[J]. Journal of Asian Earth Sciences, 2011, 41(3):213-237.
DOI URL |
[21] | 刘家军, 吴胜华, 柳振江, 等. 南秦岭大型钡成矿带中毒重石矿床成因新认识: 来自单个流体包裹体证据[J]. 地学前缘, 2010, 17(2):222-238. |
[22] |
DONG S W, GAO R, YIN A, et al. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China[J]. Geology, 2013, 41(6):671-674.
DOI URL |
[23] | 胡娟, 刘晓春, 陈龙耀, 等. 扬子克拉通北缘约2.5 Ga岩浆事件: 来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据[J]. 科学通报, 2013, 58(34):3579-3588. |
[24] | 查显锋. 南秦岭佛坪隆起的构造过程及成因机制[D]. 西安: 西北大学, 2010: 1-59. |
[25] | 李建华, 张岳桥, 徐先兵, 等. 北大巴山凤凰山岩体锆石U-Pb LA-ICP-MS年龄及其构造意义[J]. 地质论评, 2012, 58(3):581-593. |
[26] | 邹先武, 段其发, 汤朝阳, 等. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J]. 中国地质, 2011, 38(2):282-291. |
[27] | 许光, 王坤明, 王宗起, 等. 北大巴山花栎村镁铁质岩地球化学、 年代学及其构造环境制约[J]. 地质通报, 2018, 37(7):1279-1290. |
[28] |
LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare earth element and yttrium variability in south east Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1):39-72.
DOI URL |
[29] | MCLENNAN S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200. |
[30] |
PIPER D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks[J]. Chemical Geology, 1994, 114(1/2):95-114.
DOI URL |
[31] |
JOHNSON K M, GRIMM K A. Opal and organic carbon in laminated diatomaceous sediments: Saanich Inlet, Santa Barbara Basin and the Miocene Monterey Formation[J]. Marine Geology, 2001, 174(1/2/3/4):159-175.
DOI URL |
[32] |
BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2):37-55.
DOI URL |
[33] |
SCHRÖDER S, GROTZINGER J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, London, 2007, 164(1):175-187.
DOI URL |
[34] | NOZAKI Y. A fresh look at element distribution in the North Pacific[J]. EOS, 1997, 78(21):221. |
[35] |
TOSTEVIN R, SHIELDS G A, TARBUCK G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438:146-162.
DOI URL |
[36] | 侯俊富. 南秦岭下寒武统黑色岩系中金-钒成矿特征及成矿规律[D]. 西安: 西北大学, 2008: 1-87. |
[37] | 张复新, 王立社, 侯俊富. 秦岭造山带黑色岩系与金属矿床类型及成矿系列[J]. 中国地质, 2009, 36(3):694-704. |
[38] |
WEN H J, FAN H F, TIAN S H, et al. The formation conditions of the Early Ediacaran cherts, South China[J]. Chemical Geology, 2016, 430:45-69.
DOI URL |
[39] |
SVERJENSKY D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1):70-78.
DOI URL |
[40] |
TEPE N, BAU M. Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-) particles[J]. Chemical Geology, 2016, 438:134-145.
DOI URL |
[41] |
XU L G, FRANK A B, LEHMANN B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity[J]. Scientific Reports, 2019, 9:15056.
DOI URL |
[42] |
MARCHIG V, GUNDLACH H, MÖLLER P, et al. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 50(3):241-256.
DOI URL |
[43] | BOSTRÖM K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[M]//RONA P A. Hydrothermal processes at seafloor spreading centers. Berlin: Springer, 1983: 473-489. |
[44] |
PETER J M, GOODFELLOW W D. Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick[J]. Canadian Journal of Earth Science, 1996, 33(2):252-283.
DOI URL |
[45] |
YU W C, ALGEO T J, DU Y S, et al. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459:321-337.
DOI URL |
[46] |
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):363-372.
DOI URL |
[47] | HEIN J R, KOSCHINSK A, BAU M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Handbook of marine mineral deposits. Boca Roton: CRC Press, 2000: 239-279. |
[48] | KAMBER B S, WEBB G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history[J]. Geochimica et Cosmochimica Acta, 2001, 63(15):2509-2525. |
[49] |
CABRAL A R, CREASER R A, NÄGLER T, et al. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil[J]. Chemical Geology, 2013, 362:91-104.
DOI URL |
[50] |
SCHIJF J, DE BAAR H J W, WIJBRANS J R, et al. Dissolved rare earth elements in the Black Sea[J]. Deep Sea Research, Part A: Oceanographic Research Papers, 1991, 38:S805-S823.
DOI URL |
[51] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2):12-32.
DOI URL |
[52] |
JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4):111-129.
DOI URL |
[53] |
RIMMER S M. Geochemical paleoredox indicators in Devonian—Mississippian black shales, central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4):373-391.
DOI URL |
[1] | WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests [J]. Earth Science Frontiers, 2024, 31(5): 117-129. |
[2] | WU Qing, HUANG Fen, GUO Yongli, XIAO Qiong, SUN Ping’an, YANG Hui, BAI Bing. Geochemical characteristics of trace elements and their implications in the small karst basin, Southwest China [J]. Earth Science Frontiers, 2024, 31(5): 397-408. |
[3] | ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing. Machine learning-based approach for adakitic rocks tectonic setting determination [J]. Earth Science Frontiers, 2024, 31(4): 417-428. |
[4] | SUN Haoran, DOU Jiale, LI Nan, WU Peng, DU Cong, DUAN Xianzhe. Prediction of volcanic CO2 flux based on random simulation: Taking the Mount Etna, Italy as an example [J]. Earth Science Frontiers, 2024, 31(4): 429-437. |
[5] | LIAO Zhou, LI Mei. Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy [J]. Earth Science Frontiers, 2024, 31(3): 482-497. |
[6] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[7] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[8] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[9] | WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China [J]. Earth Science Frontiers, 2024, 31(2): 64-76. |
[10] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[11] | ZHANG Niannian, FAN Tianlai, HUANG Chunju, ZHANG Mingwang, LI Yuchun, WEI Lu, YU Kefu. Identification of orbital cycles in coral-reef core from well CK-2, Xisha Islands and insights into coral reef evolution in the South China Sea [J]. Earth Science Frontiers, 2023, 30(6): 436-450. |
[12] | SUN Wenbo, LI Huan. Research progress on zircon from pegmatites and insights into rare-metal mineralization—a review [J]. Earth Science Frontiers, 2023, 30(5): 171-184. |
[13] | LIU Jiawen, TIAN Shihong, WANG Ling. Application of magnesium stable isotopes for studying important geological processes—a review [J]. Earth Science Frontiers, 2023, 30(3): 399-424. |
[14] | XUE Tao, BAO Xunshuan, ZHU Xiaodi, HUANG Xiao. Attribute modeling constrained by multi-source data-based 3D geological structural model: A case study in Tongzhou District, Beijing [J]. Earth Science Frontiers, 2023, 30(3): 529-536. |
[15] | CHEN Xin, WANG Hui, MAO Jingwen, YU Miao, QIAO Jianfeng, WANG Zhian. Genesis and geological significance of hydrothermal Pb-Zn orebodies in the Xiarihamu mining area, East Kunlun Mountains, China [J]. Earth Science Frontiers, 2023, 30(2): 347-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||