Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 445-455.DOI: 10.13745/j.esf.sf.2024.7.56
Previous Articles Next Articles
CHEN Hongwei1,2,3(), ZHU Zhichao1, LI Zhengzui4, YU Weihou4, ZHOU Hui4, YU Shasha4, PENG Xiangxun1,2,3
Received:
2024-05-30
Revised:
2024-06-19
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
CHEN Hongwei, ZHU Zhichao, LI Zhengzui, YU Weihou, ZHOU Hui, YU Shasha, PENG Xiangxun. Interaction between the river and groundwater in the Dongting Lake during extreme climate: Taking the Zijiang River segment in the Dongting Lake as an example[J]. Earth Science Frontiers, 2025, 32(2): 445-455.
相对敏感度范围 | 敏感度等级 | 敏感性特征 |
---|---|---|
|S|<0.05 | Ⅰ | 不敏感 |
0.05≤|S|<0.20 | Ⅱ | 弱敏感 |
0.20≤|S|<0.50 | Ⅲ | 一般敏感 |
0.50≤|S|<1.00 | Ⅳ | 比较敏感 |
|S|≥1.00 | Ⅴ | 非常敏感 |
Table 1 Relative sensitivity classification
相对敏感度范围 | 敏感度等级 | 敏感性特征 |
---|---|---|
|S|<0.05 | Ⅰ | 不敏感 |
0.05≤|S|<0.20 | Ⅱ | 弱敏感 |
0.20≤|S|<0.50 | Ⅲ | 一般敏感 |
0.50≤|S|<1.00 | Ⅳ | 比较敏感 |
|S|≥1.00 | Ⅴ | 非常敏感 |
类型 | 特征值 | pH值 | TDS含量/ (mg·L-1) | K+含量/ (mg·L-1) | Na+含量/ (mg·L-1) | Ca2+含量/ (mg·L-1) | Mg2+含量/ (mg·L-1) | Cl-含量/ (mg·L-1) | SO42-含量/ (mg·L-1) | HCO3-含量/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
河水 | 最小值 | 7.10 | 116.00 | 0.47 | 0.88 | 35.70 | 4.05 | 4.62 | 22.20 | 85.60 |
最大值 | 8.00 | 136.00 | 3.86 | 2.69 | 36.30 | 4.45 | 6.69 | 24.80 | 93.50 | |
平均值 | 7.59 | 122.69 | 1.63 | 1.79 | 36.03 | 4.30 | 5.90 | 23.20 | 90.00 | |
变异系数/% | 3.01 | 4.01 | 118.03 | 51.02 | 10.01 | 5.02 | 18.96 | 6.04 | 4.02 | |
地下水 | 最小值 | 6.20 | 130.00 | 1.83 | 9.60 | 6.02 | 31.60 | 9.02 | 13.80 | 98.00 |
最大值 | 6.70 | 267.00 | 3.61 | 17.70 | 16.60 | 73.60 | 31.00 | 70.90 | 234.00 | |
平均值 | 6.32 | 193.00 | 2.70 | 16.40 | 11.50 | 48.73 | 16.02 | 34.70 | 160.33 | |
变异系数/% | 3.00 | 28.01 | 26.11 | 31.04 | 30.07 | 33.97 | 47.98 | 63.01 | 28.03 |
Table 2 Statistics of hydrochemistry of the river and groundwater in the study segment in January
类型 | 特征值 | pH值 | TDS含量/ (mg·L-1) | K+含量/ (mg·L-1) | Na+含量/ (mg·L-1) | Ca2+含量/ (mg·L-1) | Mg2+含量/ (mg·L-1) | Cl-含量/ (mg·L-1) | SO42-含量/ (mg·L-1) | HCO3-含量/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
河水 | 最小值 | 7.10 | 116.00 | 0.47 | 0.88 | 35.70 | 4.05 | 4.62 | 22.20 | 85.60 |
最大值 | 8.00 | 136.00 | 3.86 | 2.69 | 36.30 | 4.45 | 6.69 | 24.80 | 93.50 | |
平均值 | 7.59 | 122.69 | 1.63 | 1.79 | 36.03 | 4.30 | 5.90 | 23.20 | 90.00 | |
变异系数/% | 3.01 | 4.01 | 118.03 | 51.02 | 10.01 | 5.02 | 18.96 | 6.04 | 4.02 | |
地下水 | 最小值 | 6.20 | 130.00 | 1.83 | 9.60 | 6.02 | 31.60 | 9.02 | 13.80 | 98.00 |
最大值 | 6.70 | 267.00 | 3.61 | 17.70 | 16.60 | 73.60 | 31.00 | 70.90 | 234.00 | |
平均值 | 6.32 | 193.00 | 2.70 | 16.40 | 11.50 | 48.73 | 16.02 | 34.70 | 160.33 | |
变异系数/% | 3.00 | 28.01 | 26.11 | 31.04 | 30.07 | 33.97 | 47.98 | 63.01 | 28.03 |
类型 | 特征值 | pH值 | TDS含量/ (mg·L-1) | K+含量/ (mg·L-1) | Na+含量/ (mg·L-1) | Ca2+含量/ (mg·L-1) | Mg2+含量/ (mg·L-1) | Cl-含量/ (mg·L-1) | SO42-含量/ (mg·L-1) | HCO3-含量/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
河水 | 最小值 | 6.90 | 93.70 | 2.04 | 3.35 | 31.40 | 3.52 | 5.54 | 17.70 | 81.50 |
最大值 | 7.90 | 106.00 | 3.25 | 4.35 | 38.30 | 5.62 | 6.52 | 21.40 | 116.00 | |
平均值 | 7.37 | 98.11 | 2.30 | 3.73 | 35.89 | 3.87 | 5.96 | 19.03 | 94.41 | |
变异系数/% | 4.02 | 3.03 | 19.05 | 9.98 | 5.97 | 19.86 | 8.06 | 6.03 | 12.95 | |
地下水 | 最小值 | 6.40 | 86.00 | 1.07 | 4.19 | 4.66 | 23.80 | 6.22 | 3.94 | 87.20 |
最大值 | 7.20 | 265.00 | 5.86 | 17.40 | 17.40 | 76.40 | 31.30 | 94.80 | 126.00 | |
平均值 | 6.90 | 190.30 | 2.58 | 10.08 | 11.17 | 53.29 | 21.10 | 52.81 | 101.06 | |
变异系数/% | 3.01 | 33.04 | 54.96 | 36.03 | 35.95 | 33.04 | 39.89 | 58.88 | 13.03 |
Table 3 Statistics of hydrochemistry of the river and groundwater in the study segment in August
类型 | 特征值 | pH值 | TDS含量/ (mg·L-1) | K+含量/ (mg·L-1) | Na+含量/ (mg·L-1) | Ca2+含量/ (mg·L-1) | Mg2+含量/ (mg·L-1) | Cl-含量/ (mg·L-1) | SO42-含量/ (mg·L-1) | HCO3-含量/ (mg·L-1) |
---|---|---|---|---|---|---|---|---|---|---|
河水 | 最小值 | 6.90 | 93.70 | 2.04 | 3.35 | 31.40 | 3.52 | 5.54 | 17.70 | 81.50 |
最大值 | 7.90 | 106.00 | 3.25 | 4.35 | 38.30 | 5.62 | 6.52 | 21.40 | 116.00 | |
平均值 | 7.37 | 98.11 | 2.30 | 3.73 | 35.89 | 3.87 | 5.96 | 19.03 | 94.41 | |
变异系数/% | 4.02 | 3.03 | 19.05 | 9.98 | 5.97 | 19.86 | 8.06 | 6.03 | 12.95 | |
地下水 | 最小值 | 6.40 | 86.00 | 1.07 | 4.19 | 4.66 | 23.80 | 6.22 | 3.94 | 87.20 |
最大值 | 7.20 | 265.00 | 5.86 | 17.40 | 17.40 | 76.40 | 31.30 | 94.80 | 126.00 | |
平均值 | 6.90 | 190.30 | 2.58 | 10.08 | 11.17 | 53.29 | 21.10 | 52.81 | 101.06 | |
变异系数/% | 3.01 | 33.04 | 54.96 | 36.03 | 35.95 | 33.04 | 39.89 | 58.88 | 13.03 |
月份 | 类型 | 最小值/(Bq·m-3) | 最大值/(Bq·m-3) | 平均值/(Bq·m-3) | 变异系数/% |
---|---|---|---|---|---|
1月 | 河水 | 414.47 | 1 197.94 | 748.27 | 32.20 |
地下水 | 9 477.72 | 25 759.18 | 16 128.55 | 35.77 | |
8月 | 河水 | 56.52 | 399.24 | 209.62 | 45.53 |
地下水 | 830.53 | 11 312.84 | 4 913.25 | 78.18 |
Table 4 Statistics of the 222Rn in river and groundwater along the study river segment
月份 | 类型 | 最小值/(Bq·m-3) | 最大值/(Bq·m-3) | 平均值/(Bq·m-3) | 变异系数/% |
---|---|---|---|---|---|
1月 | 河水 | 414.47 | 1 197.94 | 748.27 | 32.20 |
地下水 | 9 477.72 | 25 759.18 | 16 128.55 | 35.77 | |
8月 | 河水 | 56.52 | 399.24 | 209.62 | 45.53 |
地下水 | 830.53 | 11 312.84 | 4 913.25 | 78.18 |
月份 | Cu/ (Bq·m-3) | Qu/ (m3·s-1) | Cd/ (Bq·m-3) | Qd/ (m3·s-1) | Cg/ (Bq·m-3) | L/km | α/10-4 | Qg/ (m3·s-1·m-1) | Fg/ (m3·s-1) |
---|---|---|---|---|---|---|---|---|---|
1月 | 451.18 | 1 169.71 | 512.04 | 824.00 | 16 128.50 | 31.80 | 0.84 | 0.39×10-4 | 1.24 |
8月 | 65.52 | 307.76 | 175.20 | 392.38 | 4 913.25 | 31.80 | 0.16 | 0.44×10-4 | 1.39 |
Table 5 Calculation of 222Rn mass balance
月份 | Cu/ (Bq·m-3) | Qu/ (m3·s-1) | Cd/ (Bq·m-3) | Qd/ (m3·s-1) | Cg/ (Bq·m-3) | L/km | α/10-4 | Qg/ (m3·s-1·m-1) | Fg/ (m3·s-1) |
---|---|---|---|---|---|---|---|---|---|
1月 | 451.18 | 1 169.71 | 512.04 | 824.00 | 16 128.50 | 31.80 | 0.84 | 0.39×10-4 | 1.24 |
8月 | 65.52 | 307.76 | 175.20 | 392.38 | 4 913.25 | 31.80 | 0.16 | 0.44×10-4 | 1.39 |
参数 | 相对敏感度 | 敏感性分级 | 敏感性特征 |
---|---|---|---|
上游222Rn浓度(Cu) | 2.52 | Ⅴ | 非常敏感 |
下游222Rn浓度(Cd) | 2.37 | Ⅴ | 非常敏感 |
河水深度(h) | 1.66 | Ⅴ | 非常敏感 |
下游流量(Qd) | 0.80 | Ⅳ | 较敏感 |
河水流速(v) | 0.72 | Ⅳ | 较敏感 |
上游流量(Qu) | 0.59 | Ⅳ | 较敏感 |
河段长度(L) | 0.19 | Ⅱ | 弱敏感 |
温度(T) | 0.16 | Ⅱ | 弱敏感 |
Table 6 Sensitivity analysis of the model parameter
参数 | 相对敏感度 | 敏感性分级 | 敏感性特征 |
---|---|---|---|
上游222Rn浓度(Cu) | 2.52 | Ⅴ | 非常敏感 |
下游222Rn浓度(Cd) | 2.37 | Ⅴ | 非常敏感 |
河水深度(h) | 1.66 | Ⅴ | 非常敏感 |
下游流量(Qd) | 0.80 | Ⅳ | 较敏感 |
河水流速(v) | 0.72 | Ⅳ | 较敏感 |
上游流量(Qu) | 0.59 | Ⅳ | 较敏感 |
河段长度(L) | 0.19 | Ⅱ | 弱敏感 |
温度(T) | 0.16 | Ⅱ | 弱敏感 |
[1] | 张登成, 王中敏, 李亚俊, 等. 河流岸线生态服务功能评价指标体系与评价方法研究[J]. 环境工程技术学报, 2024, 14(1): 289-297. |
[2] | 王战. 玛纳斯河流域河流-地下水相互作用对河岸带植被生态的影响[D]. 西安: 长安大学, 2021. |
[3] | 周湘婷, 黄佳颖, 易敏. 基于大型底栖动物完整性指数的湘江干流水生态状况评价[J]. 湿地科学, 2024, 22(3): 367-375. |
[4] | 黄莹芸, 沈俊豪, 朱子超, 等. 河水-地下水交互带铁循环的微生物指示物: FMN还原酶基因[J/OL]. 地球科学, 2024: 1-12. DOI: 10.3799/dqkx.2024.033. |
[5] | 严广寒, 殷雪妍, 汪星, 等. 三峡工程运行背景下洞庭湖近25年来水生态环境的动态研究[J]. 三峡生态环境监测, 2024, 9(2): 78-86. |
[6] | 朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017, 37(8): 3002-3010. |
[7] | TADESSE E, AZAGEGN T, ALEMAYEHU T. Characterizing groundwater and surface water interaction using geological, environmental tracers (222Rn, EC, δ18O, and δ2H) and baseflow index methods for part of the Upper Awash and the adjacent Blue Nile Basin, Ethiopia[J]. Journal of African Earth Sciences, 2023, 205: 104992. |
[8] | 刘文彬, 杨涛, 杜牧野, 等. 三峡水库运行对长江中下游典型水文站水文机制的影响[J]. 三峡生态环境监测, 2018, 3(3): 8-15. |
[9] | 盛连喜, 马良, 何春光, 等. 年降雨特征对泥炭沼泽湿地水文情势的影响[J]. 三峡生态环境监测, 2018, 3(2): 1-8. |
[10] | 朱永华. 变化环境下半干旱区农牧交错带水-植被相互作用关系及地下水反演模拟研究: 以西辽河流域通辽平原区为例[D]. 呼和浩特: 内蒙古农业大学, 2019. |
[11] | 卢小慧, 王梦瑶, 龚绪龙, 等. 基于氢氧同位素的平原湖荡地表水与地下水转化研究[J]. 水利学报, 2024, 55(4): 416-427. |
[12] | 马耀东, 高宇, 戴长雷, 等. 国内近年河流与地下水交换量研究进展[J]. 陕西水利, 2022, 4: 1-3, 7. |
[13] | 姜文瑜, 刘波, 邓月萍, 等. 考虑水体面积变化的鄱阳湖平原区地表-地下水相互作用模拟[J]. 水文地质工程地质, 2023, 50(4): 95-104. |
[14] | 何炳毅, 杨英魁, 孔凡翠, 等. 青海湖布哈河流域枯水期氢氧同位素和氡同位素分布特征及其意义[J]. 地质学报, 2023, 97(6): 2042-2053. |
[15] |
谌宏伟, 杨瑶, 黄荷, 等. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究[J]. 地学前缘, 2024, 31(2): 423-434.
DOI |
[16] | 张敏, 平建华, 禹言, 等. 同位素技术解析安阳河与地下水相互作用[J]. 水文地质工程地质, 2019, 46(6): 31-39. |
[17] |
廖福, 罗新, 谢月清, 等. 氡(222Rn)在地下水-地表水相互作用中的应用研究进展[J]. 地学前缘, 2022, 29(3): 76-87.
DOI |
[18] | 袁建飞, 徐芬, 刘慧中, 等. 基于水化学和同位素的典型岩溶水系统溶质演化过程: 以西昌市仙人洞为例[J]. 科学技术与工程, 2019, 19(17): 76-83. |
[19] | 郭丝雨. 晋陕峡谷黄河水与地下水的相互作用[D]. 太原: 山西大学, 2023. |
[20] | 翟婧雅, 金彦香, 金鑫. 巴音河流域水化学与氢氧同位素特征研究[J]. 灌溉排水学报, 2022, 41(11): 101-106. |
[21] | 王广昊, 张莹, 徐亮亮, 等. 衢江流域地表水与地下水的转化关系[J]. 科学技术与工程, 2021, 21(15): 6165-6174. |
[22] |
杨帆, 欧坚港, 段宁, 等. 1990—2020年洞庭湖流域水网格局演变与经济驱动分析[J]. 经济地理, 2022, 42(6): 188-197.
DOI |
[23] | 武显仓. 东洞庭湖地下水-湖水交互带中铁-磷相互作用机制[D]. 武汉: 中国地质大学, 2022. |
[24] | 李致远. 2022年湖南年平均气温近百年来第二, 年高温日数再创新高[N]. 潇湘都市报, 2023-2-23(1). |
[25] | 许建伟, 彭保发, 郭蓉芳, 等. 1960—2018年洞庭湖生态经济区极端气温和降水事件的变化规律[J]. 气象科技进展, 2020, 10(3): 89-95, 98. |
[26] | WU Y, WEN X, ZHANG Y. Analysis of the exchange of groundwater and river water by using Radon-222 in the middle Heihe Basin of Northwestern China[J]. Environmental Geology, 2004, 45(5): 647-653. |
[27] | SU X S, XU W, YANG F T, et al. Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer 222Rn in data poor regions: a case study in Northwest China[J]. Hydrological Processes, 2015, 29(6): 979-990. |
[28] | PENG T H, TAKAHASHI T, BROECKER W S. Surface radon measurements in the North Pacific Ocean Station Papa[J]. Journal of Geophysical Research, 1974, 79(12): 1772-1780. |
[29] | O’CONNORD J, DOBBINS W E. Mechanism of reaeration in natural streams[J]. Transactions of the American Society of Civil Engineers, 1958, 123(1): 641-666. |
[30] | 李燕, 李兆富, 席庆. HSPF径流模拟参数敏感性分析与模型适用性研究[J]. 环境科学, 2013, 34(6): 2139-2145. |
[31] | 景丽彬. 辽阳市太子河干流地表水化学成分特征及变化趋势分析[J]. 地下水, 2024, 46(1): 102-104. |
[32] | 徐邑荣, 谷洪彪, 王贺, 等. 乌苏里江流域左岸地下水水化学特征成因解析[J]. 安全与环境工程, 2021, 28(3): 34-41. |
[33] | 韩双宝, 周殷竹, 郑焰, 等. 银川平原地下水化学成因机制与组分来源解析[J]. 环境科学, 2024, 45(8): 4577-4588. |
[34] | 曹阳. 洞庭湖平原区浅层地下水动态特征研究[D]. 长沙: 长沙理工大学, 2022. |
[35] | 陆帅帅, 周念清, 蔡奕, 等. 洞庭湖湿地潜流带地下水中氮磷迁移转化过程及驱动机制分析[J]. 水资源保护, 2024, 40(5): 122-130. |
[36] | PEEL M, KIPFER R, HUNKELER D, et al. Variable 222Rn emanation rates in an alluvial aquifer: limits on using 222Rn as a tracer of surface water-Groundwater interactions[J]. Chemical Geology, 2022, 599: 120829. |
[1] | HUANG Yi, DONG Xuan, MA Zhiyuan, TIAN Xizhao, ZHU Shuai, ZHU Yun. Rapid detection and risk assessment of endocrine disrupting chemicals in typical urban waters in northern cities of China [J]. Earth Science Frontiers, 2025, 32(4): 353-362. |
[2] | XU Donghui, LI Tao, LIN Yanzhu, CHEN Tianfei. Source apportionment of nitrate in groundwater based on correlation monitoring indicators in Liaodong Bay [J]. Earth Science Frontiers, 2025, 32(4): 376-387. |
[3] | HUANG Shiwen, XIA Qiwen, HE Jiangtao, HE Baonan, CHEN Cuibai, SUN Jichao. Study on zoning characteristics and genesis of iodine in shallow groundwater in North China Plain [J]. Earth Science Frontiers, 2025, 32(4): 510-522. |
[4] | ZHANG Xuehang, HE Baonan, HE Jiangtao, MA Shuo, LIU Fei, YANG Shanshan, SHI Yuanyuan, HE Wei, YANG Baiju. Study on groundwater pollution risk evolution in Yongding River recharge area [J]. Earth Science Frontiers, 2025, 32(4): 523-536. |
[5] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[6] | ZHU Jialei, DONG Jianzhi, ZHANG Yonggen, SUN Shaobo, JIANG Zhe, ZHOU Haoran, ZHAO Xi, LI Pan, CHEN Wei, WANG Lichun, LI Xin, Liu Cong-Qiang. Progress and scientific frontiers in numerical simulation of the Earth system [J]. Earth Science Frontiers, 2025, 32(3): 118-136. |
[7] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[8] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[9] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
[10] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
[11] | WANG Wei, CHENG Xing, GAO Xubo, TIAN Zhenhuan, LIU Chunhua, WU Zhanhui, LI Chengcheng, KONG Shuqiong. The genesis of groundwater chemistry in Yellow River Delta: A case study of Gudao Town, Dongying City, Shandong Province [J]. Earth Science Frontiers, 2025, 32(2): 469-483. |
[12] | OUYANG Kaigao, JIANG Xiaowei, DU Yanan, ZHANG Zhiyuan, HAN Pengfei, WU Yenan, WANG Xusheng. Mechanism of groundwater recharge at different depths during the “23·7” heavy rainfall event in North China: A case study of Xiong’an New Area [J]. Earth Science Frontiers, 2025, 32(1): 432-439. |
[13] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[14] | ZHAO Zengfeng, WANG Chuyou, QIU Xiaocong, ZHOU Ruijuan, YANG Qiangqiang, ZHAO Ruizhi. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia [J]. Earth Science Frontiers, 2024, 31(6): 462-473. |
[15] | ZHANG Chunlai, YANG Hui, HUANG Fen, QIU Cheng, ZHU Tongbin. Hydrochemical characteristics and karst carbon sink effect of border polje river in subtropical monsoon region: A case study of the Qingbo River in Mashan County, Guangxi [J]. Earth Science Frontiers, 2024, 31(5): 377-386. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||