Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 462-473.DOI: 10.13745/j.esf.sf.2023.12.36
Previous Articles Next Articles
ZHAO Zengfeng1(), WANG Chuyou1, QIU Xiaocong2,*(
), ZHOU Ruijuan3, YANG Qiangqiang1, ZHAO Ruizhi1
Received:
2023-07-25
Revised:
2023-12-18
Online:
2024-11-25
Published:
2024-11-25
Contact:
QIU Xiaocong
CLC Number:
ZHAO Zengfeng, WANG Chuyou, QIU Xiaocong, ZHOU Ruijuan, YANG Qiangqiang, ZHAO Ruizhi. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia[J]. Earth Science Frontiers, 2024, 31(6): 462-473.
水期 | 数值 类型 | pH | EC/ (mS·cm-1) | 质量浓度/(g·L-1) | 质量浓度/(mg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Cl- | Ca2+ | Mg2+ | Na+ | K+ | F- | TP | ||||||
平水期 | Max | 9.76 | 38.50 | 21.43 | 12.53 | 8.79 | 0.24 | 0.20 | 0.43 | 5.50 | 86.00 | 2.75 | 0.19 |
Min | 7.70 | 0.51 | 0.30 | 0.05 | 0.09 | 0.01 | 0.01 | 0.03 | 0.03 | 2.00 | 0.31 | 0.03 | |
Ave | 8.06 | 8.04 | 4.73 | 0.80 | 3.26 | 0.10 | 0.10 | 0.14 | 0.81 | 8.55 | 1.12 | 0.07 | |
SD | 0.42 | 7.24 | 4.11 | 2.26 | 2.23 | 0.05 | 0.05 | 0.11 | 1.00 | 14.99 | 0.54 | 0.03 | |
CV | 0.05 | 0.90 | 0.87 | 2.83 | 0.68 | 0.50 | 0.50 | 0.79 | 1.23 | 1.75 | 0.48 | 0.43 | |
丰水期 | Max | 8.20 | 18.23 | 9.82 | 23.15 | 6.28 | 0.29 | 0.54 | 0.97 | 3.58 | 36.18 | 2.66 | 0.08 |
Min | 7.50 | 0.66 | 0.36 | 0.02 | 0.17 | 0.08 | 0.03 | 0.04 | 0.04 | 4.01 | 0.52 | 0.01 | |
Ave | 7.79 | 6.61 | 3.54 | 1.41 | 2.40 | 0.18 | 0.24 | 0.25 | 1.26 | 15.24 | 1.26 | 0.03 | |
SD | 0.16 | 4.22 | 2.32 | 4.14 | 1.53 | 0.06 | 0.16 | 0.21 | 0.89 | 7.83 | 0.44 | 0.02 | |
CV | 0.02 | 0.64 | 0.66 | 2.94 | 0.64 | 0.33 | 0.67 | 0.84 | 0.71 | 0.51 | 0.35 | 0.67 | |
枯水期 | Max | 7.94 | 30.90 | 36.90 | 12.44 | 15.83 | 1.08 | 0.65 | 0.54 | 1.77 | 153.43 | 4.22 | 0.14 |
Min | 7.17 | 0.46 | 0.39 | 0.05 | 0.15 | 0.17 | 0.05 | 0.02 | 0.02 | 1.82 | 0.40 | 0.02 | |
Ave | 7.48 | 4.85 | 4.91 | 0.73 | 3.32 | 0.30 | 0.20 | 0.13 | 0.41 | 10.40 | 1.37 | 0.05 | |
SD | 0.18 | 5.72 | 6.74 | 2.24 | 3.21 | 0.16 | 0.14 | 0.14 | 0.38 | 27.24 | 0.88 | 0.03 | |
CV | 0.02 | 1.18 | 1.37 | 3.07 | 0.97 | 0.53 | 0.70 | 1.08 | 0.93 | 2.62 | 0.64 | 0.60 |
Table 1 Statistical analysis of hydrochemical parameters of surface water in different water periods
水期 | 数值 类型 | pH | EC/ (mS·cm-1) | 质量浓度/(g·L-1) | 质量浓度/(mg·L-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Cl- | Ca2+ | Mg2+ | Na+ | K+ | F- | TP | ||||||
平水期 | Max | 9.76 | 38.50 | 21.43 | 12.53 | 8.79 | 0.24 | 0.20 | 0.43 | 5.50 | 86.00 | 2.75 | 0.19 |
Min | 7.70 | 0.51 | 0.30 | 0.05 | 0.09 | 0.01 | 0.01 | 0.03 | 0.03 | 2.00 | 0.31 | 0.03 | |
Ave | 8.06 | 8.04 | 4.73 | 0.80 | 3.26 | 0.10 | 0.10 | 0.14 | 0.81 | 8.55 | 1.12 | 0.07 | |
SD | 0.42 | 7.24 | 4.11 | 2.26 | 2.23 | 0.05 | 0.05 | 0.11 | 1.00 | 14.99 | 0.54 | 0.03 | |
CV | 0.05 | 0.90 | 0.87 | 2.83 | 0.68 | 0.50 | 0.50 | 0.79 | 1.23 | 1.75 | 0.48 | 0.43 | |
丰水期 | Max | 8.20 | 18.23 | 9.82 | 23.15 | 6.28 | 0.29 | 0.54 | 0.97 | 3.58 | 36.18 | 2.66 | 0.08 |
Min | 7.50 | 0.66 | 0.36 | 0.02 | 0.17 | 0.08 | 0.03 | 0.04 | 0.04 | 4.01 | 0.52 | 0.01 | |
Ave | 7.79 | 6.61 | 3.54 | 1.41 | 2.40 | 0.18 | 0.24 | 0.25 | 1.26 | 15.24 | 1.26 | 0.03 | |
SD | 0.16 | 4.22 | 2.32 | 4.14 | 1.53 | 0.06 | 0.16 | 0.21 | 0.89 | 7.83 | 0.44 | 0.02 | |
CV | 0.02 | 0.64 | 0.66 | 2.94 | 0.64 | 0.33 | 0.67 | 0.84 | 0.71 | 0.51 | 0.35 | 0.67 | |
枯水期 | Max | 7.94 | 30.90 | 36.90 | 12.44 | 15.83 | 1.08 | 0.65 | 0.54 | 1.77 | 153.43 | 4.22 | 0.14 |
Min | 7.17 | 0.46 | 0.39 | 0.05 | 0.15 | 0.17 | 0.05 | 0.02 | 0.02 | 1.82 | 0.40 | 0.02 | |
Ave | 7.48 | 4.85 | 4.91 | 0.73 | 3.32 | 0.30 | 0.20 | 0.13 | 0.41 | 10.40 | 1.37 | 0.05 | |
SD | 0.18 | 5.72 | 6.74 | 2.24 | 3.21 | 0.16 | 0.14 | 0.14 | 0.38 | 27.24 | 0.88 | 0.03 | |
CV | 0.02 | 1.18 | 1.37 | 3.07 | 0.97 | 0.53 | 0.70 | 1.08 | 0.93 | 2.62 | 0.64 | 0.60 |
类型 | 水化学 参数 | 各水化学参数间相关系数 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ | Na+ | Cl- | TDS | pH | EC | TP | ||||
平水期 | F- | 0.29 | -0.09 | 0.56* | 0.57** | 0.55** | 0.50** | -0.05 | 0.54** | 0.02 | 0.60** | -0.25 |
丰水期 | 0.03 | 0.29 | 0.23 | 0.55** | 0.33 | 0.58** | -0.22 | 0.53** | 0.14 | 0.50** | 0.07 | |
枯水期 | 0.41* | 0.20 | 0.64** | 0.33 | 0.65** | 0.81** | 0.58** | 0.75** | -0.05 | 0.75** | 0.11 | |
干流 | 0.39** | 0.36* | 0.18 | 0.51** | 0.20 | 0.58** | -0.16 | 0.67** | -0.30* | 059** | 0.08 | |
支流 | 0.38 | -0.08 | 0.74** | 0.18 | 0.44* | 0.72** | 0.64** | 0.70** | 0.16 | 058** | -0.16 | |
水库 | 0.01 | 0.17 | 0.28 | 0.42** | 0.20 | 0.65** | 0.30 | 0.59** | -0.21 | 0.43* | -0.11 | |
全年 | 0.27** | 0.14 | 0.57** | 0.34** | 0.43** | 0.68** | 0.39** | 0.66** | -0.10 | 0.56** | -0.07 | |
Ca2+ | 1 | 0.47** | 0.46** | 0.38** | 0.18 | 0.48** | 0.29** | 0.45** | -0.31** | 0.38** | -0.18 | |
Mg2+ | 1 | 0.33** | 0.64** | 0.15 | 0.44** | -0.07 | 0.45** | 0.06 | 0.56** | -0.02 | ||
K+ | 1 | 0.44** | 0.65** | 0.63** | 0.54** | 0.83** | 0.07 | 0.73** | -0.07 | |||
Na+ | 1 | 0.38** | 0.45** | -0.21* | 0.46** | 0.12 | 0.74** | -0.12 | ||||
Cl- | 1 | 0.41** | 0.23* | 0.53** | 0.15 | 0.53** | -0.08 | |||||
1 | 0.29** | 0.91** | -0.08 | 0.84** | 0.16 | |||||||
1 | 0.43** | -0.39** | 0.08 | -0.16 | ||||||||
TDS | 1 | 0.00 | 0.89** | 0.09 | ||||||||
pH | 1 | 0.18 | 0.17 | |||||||||
EC | 1 | 0.06 | ||||||||||
TP | 1 |
Table 2 Correlation analysis between F- and hydrochemical parameter person in different water stages and water system types
类型 | 水化学 参数 | 各水化学参数间相关系数 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | K+ | Na+ | Cl- | TDS | pH | EC | TP | ||||
平水期 | F- | 0.29 | -0.09 | 0.56* | 0.57** | 0.55** | 0.50** | -0.05 | 0.54** | 0.02 | 0.60** | -0.25 |
丰水期 | 0.03 | 0.29 | 0.23 | 0.55** | 0.33 | 0.58** | -0.22 | 0.53** | 0.14 | 0.50** | 0.07 | |
枯水期 | 0.41* | 0.20 | 0.64** | 0.33 | 0.65** | 0.81** | 0.58** | 0.75** | -0.05 | 0.75** | 0.11 | |
干流 | 0.39** | 0.36* | 0.18 | 0.51** | 0.20 | 0.58** | -0.16 | 0.67** | -0.30* | 059** | 0.08 | |
支流 | 0.38 | -0.08 | 0.74** | 0.18 | 0.44* | 0.72** | 0.64** | 0.70** | 0.16 | 058** | -0.16 | |
水库 | 0.01 | 0.17 | 0.28 | 0.42** | 0.20 | 0.65** | 0.30 | 0.59** | -0.21 | 0.43* | -0.11 | |
全年 | 0.27** | 0.14 | 0.57** | 0.34** | 0.43** | 0.68** | 0.39** | 0.66** | -0.10 | 0.56** | -0.07 | |
Ca2+ | 1 | 0.47** | 0.46** | 0.38** | 0.18 | 0.48** | 0.29** | 0.45** | -0.31** | 0.38** | -0.18 | |
Mg2+ | 1 | 0.33** | 0.64** | 0.15 | 0.44** | -0.07 | 0.45** | 0.06 | 0.56** | -0.02 | ||
K+ | 1 | 0.44** | 0.65** | 0.63** | 0.54** | 0.83** | 0.07 | 0.73** | -0.07 | |||
Na+ | 1 | 0.38** | 0.45** | -0.21* | 0.46** | 0.12 | 0.74** | -0.12 | ||||
Cl- | 1 | 0.41** | 0.23* | 0.53** | 0.15 | 0.53** | -0.08 | |||||
1 | 0.29** | 0.91** | -0.08 | 0.84** | 0.16 | |||||||
1 | 0.43** | -0.39** | 0.08 | -0.16 | ||||||||
TDS | 1 | 0.00 | 0.89** | 0.09 | ||||||||
pH | 1 | 0.18 | 0.17 | |||||||||
EC | 1 | 0.06 | ||||||||||
TP | 1 |
项目 | 各因子中不同项目的载荷 | ||||
---|---|---|---|---|---|
APCS1 | APCS2 | APCS3 | APCS4 | APCS5 | |
TDS | 0.69 | 0.41 | 0.42 | 0.25 | 0.19 |
Cl- | 0.22 | 0.05 | 0.93 | 0.04 | -0.05 |
0.78 | 0.43 | 0.21 | 0.14 | 0.23 | |
0.26 | -0.02 | 0.18 | 0.89 | -0.11 | |
Ca2+ | 0.18 | 0.77 | 0.01 | 0.38 | -0.16 |
Mg2+ | 0.11 | 0.87 | 0.11 | -0.18 | 0.06 |
K+ | 0.44 | 0.34 | 0.66 | 0.38 | -0.01 |
Na+ | 0.32 | 0.63 | 0.36 | -0.48 | -0.16 |
F- | 0.92 | 0.01 | 0.20 | 0.10 | -0.14 |
TP | 0.04 | -0.06 | -0.04 | -0.08 | 0.97 |
特征值 | 2.39 | 2.21 | 1.73 | 1.43 | 1.11 |
贡献率/% | 23.85 | 22.13 | 17.26 | 14.32 | 11.14 |
累计贡献率/% | 23.85 | 45.98 | 63.24 | 77.56 | 88.70 |
Table 3 Rotation composition matrix of surface water in Qingshui River Basin
项目 | 各因子中不同项目的载荷 | ||||
---|---|---|---|---|---|
APCS1 | APCS2 | APCS3 | APCS4 | APCS5 | |
TDS | 0.69 | 0.41 | 0.42 | 0.25 | 0.19 |
Cl- | 0.22 | 0.05 | 0.93 | 0.04 | -0.05 |
0.78 | 0.43 | 0.21 | 0.14 | 0.23 | |
0.26 | -0.02 | 0.18 | 0.89 | -0.11 | |
Ca2+ | 0.18 | 0.77 | 0.01 | 0.38 | -0.16 |
Mg2+ | 0.11 | 0.87 | 0.11 | -0.18 | 0.06 |
K+ | 0.44 | 0.34 | 0.66 | 0.38 | -0.01 |
Na+ | 0.32 | 0.63 | 0.36 | -0.48 | -0.16 |
F- | 0.92 | 0.01 | 0.20 | 0.10 | -0.14 |
TP | 0.04 | -0.06 | -0.04 | -0.08 | 0.97 |
特征值 | 2.39 | 2.21 | 1.73 | 1.43 | 1.11 |
贡献率/% | 23.85 | 22.13 | 17.26 | 14.32 | 11.14 |
累计贡献率/% | 23.85 | 45.98 | 63.24 | 77.56 | 88.70 |
[1] | 陶兰初, 寸得欣, 涂春霖, 等. 珠江源块泽河流域地表水水化学特征及控制因素[J]. 环境科学, 2023, 44(11): 6025-6037. |
[2] | 付凯, 张秋英, 李兆, 等. 城市化进程中长江经济带长江干流水化学演变特征及影响因素[J]. 环境科学学报, 2022, 42(11): 160-171. |
[3] | 张杰, 周金龙, 曾妍妍, 等. 新疆叶尔羌河流域地表水水化学特征及控制因素[J]. 环境科学, 2021, 42(4): 1706-1713. |
[4] | 王渊钊. 黄河流域宁夏段生态环境保护与高质量发展耦合协调度研究[D]. 兰州: 西北民族大学, 2022. |
[5] | 裴森森, 段利民, 苗平, 等. 黄河流域内蒙古段水化学同位素特征及水体转化关系[J]. 环境科学, 2023, 44(9): 4863-4873. |
[6] | 孙龙, 王莉莉, 曹文庚. 黄河下游影响带(河南段)水化学演化规律研究[J]. 人民黄河, 2021, 43(12): 91-99. |
[7] | 张旺, 王殿武, 雷坤, 等. 黄河中下游丰水期水化学特征及影响因素[J]. 水土保持研究, 2020, 27(1): 380-386, 393. |
[8] | 寇永朝, 华琨, 李洲, 等. 泾河支流地表水地下水的水化学特征及其控制因素[J]. 环境科学, 2018, 39(7): 3142-3149. |
[9] | 贾慧. 渭河关中平原段水化学演化机制及流域化学风化研究[D]. 西安: 长安大学, 2022. |
[10] | 赵春红, 申豪勇, 王志恒, 等. 汾河流域地表水水化学同位素特征及其影响因素[J]. 环境科学, 2022, 43(10): 4440-4448. |
[11] | 赵增锋, 付永亮, 邱小琮, 等. 黄河流域宁夏段地表水氟污染特征与风险评价[J]. 中国环境科学, 2023, 43(11): 5800-5811. |
[12] | ZHAO Z F, ZHAO R Z, QIU X C, et al. Structural diversity of bacterial communities and its relation to environmental factors in the surface sediments from main stream of Qingshui River[J]. Water, 2022, 14(21): 3356. |
[13] | 陈秀端, 卢新卫. 基于受体模型与地统计的城市居民区土壤重金属污染源解析[J]. 环境科学, 2017, 38(6): 2513-2521. |
[14] | 刘白薇. 半干旱区水文地球化学演化规律及成因研究: 以土默川平原为例[D]. 武汉: 中国地质大学(武汉), 2019. |
[15] | 鲁涵, 曾妍妍, 周金龙, 等. 巴楚县浅层地下水中氟的分布特征及影响因素分析[J]. 环境化学, 2021, 40(11): 3455-3463. |
[16] | 李冬丽, 贺海波, 张雪程, 等. 柴达木盆地东北部巴音河小流域水化学特征及来源[J]. 地球科学与环境学报, 2023, 45(3): 749-759. |
[17] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[18] | 吴玺, 安永会, 魏世博, 等. 黑河下游鼎新谷地浅层地下水水化学特征及演化规律[J]. 干旱区资源与环境, 2021, 35(9): 103-109. |
[19] | 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 2020, 41(9): 4003-4010. |
[20] | LIU Q L, LI Y Y, LI W C, et al. Effect of the release of gravel elements on soil nutrients and jujube fruit yield under wet-and-dry cycles[J]. Agronomy, 2022, 12(11): 2881. |
[21] | 开晓莉. 清水河重金属与有机氯农药的环境行为及健康风险研究[D]. 银川: 宁夏大学, 2021. |
[22] | 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 2012. |
[23] | 陈履安, 张世从. 贵州和我国北方高氟地下水氟—钙相关特征比较及其形成机理[J]. 贵州地质, 1992, 9(4): 377-382. |
[24] | 李麟, 曾妍妍, 栾风娇, 等. 新疆喀什噶尔河流域高氟地下水富集因素分析[J]. 地下水, 2020, 42(3): 1-3. |
[25] |
王国华, 张妍, 缑倩倩, 等. 黑河流域中游绿洲边缘地表水和地下水水化学特征分析[J]. 地理科学, 2022, 42(10): 1818-1828.
DOI |
[26] | XU Y, HE Y, TANG X J, et al. Reconstruction of microbial community structures as evidences for soil redox coupled reductive dechlorination of PCP in a mangrove soil[J]. Science of the Total Environment, 2017, 596: 147-157. |
[27] | 刘佳晨, 刘金辉, 徐玲玲, 等. 生物浸矿微生物群落结构研究进展[J]. 稀有金属, 2021, 45(10): 1258-1268. |
[28] | 聂立, 税刘杨, 王建英. 包头泉山金矿浸矿酸性微生物群落优势度变化的比较研究[J]. 微生物学通报, 2014, 41(1): 43-49. |
[29] | 余润兰, 石丽娟, 周丹, 等. 生物浸出过程中微生物协同作用机制的研究进展[J]. 中国有色金属学报, 2013, 23(10): 3006-3014. |
[30] | 李想, 温建康, 莫晓兰, 等. 浸矿微生物氟抑制机理及铁的竞争络合作用[J]. 工程科学学报, 2018, 40(10): 1223-1230. |
[31] | ZHOU J P, WANG H M, CRAVOTTA C A III, et al. Dissolution of fluorapatite by pseudomonas fluorescens P35 resulting in fluorine release[J]. Geomicrobiology Journal, 2016, 34(5): 421-433. |
[32] | 张鑫. 硫酸盐还原菌还原分解硫酸盐矿物的机制及环境意义[D]. 合肥: 合肥工业大学, 2015. |
[33] | 徐沛翔. 微生物分解磷石膏同步去除可溶性污染物的研究[D]. 武汉: 武汉工程大学, 2022. |
[34] | 刘海龙. 细菌成矿作用机制及相关生物矿物有机质解析[D]. 南京: 南京师范大学, 2021. |
[35] | 孙彬. 微生物作用下镁离子影响矿化产物机制研究[D]. 青岛: 山东科技大学, 2020. |
[36] | 张玉贤, 甘义群, 周肖瑜, 等. 微生物参与下高氟区沉积物中氟的迁移行为[J]. 地质科技通报, 2022, 41(3): 228-235. |
[37] | 朱翔, 徐志鹏, 罗一单, 等. 不同上覆水氟浓度对湖泊沉积物氟释放与微生物群落的影响[J]. 湖泊科学, 2022, 34(3): 843-854. |
[38] | 乌兰图亚, 牛迪, 代钢. 微生物对土壤氟形态分布的影响研究初探[J]. 内蒙古师范大学学报(自然科学汉文版), 2020, 49(6): 552-557. |
[39] | 刘海风, 邓斌, 古艳艳. 豫东平原扶沟等地高氟地下水成因和富集条件探讨[J]. 水资源保护, 2015, 31(4): 27-31, 66. |
[40] | 刘春华, 王威, 杨丽芝, 等. 山东省地下水氟富集规律及其驱动机制[J]. 地质学报, 2021, 95(6): 1962-1972. |
[41] |
MUKHERJEE I, SINGH U K. Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context[J]. Environmental Geochemistry and Health, 2018, 40(6): 2259-2301.
DOI PMID |
[42] | GUO Q H, WANG Y X, MA T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, northern China[J]. Journal of Geochemical Exploration, 2007, 93(1): 1-12. |
[43] |
RASOOL A, FAROOQI A, XIAO T F, et al. A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation[J]. Environmental Geochemistry and Health, 2018, 40(4): 1265-1281.
DOI PMID |
[44] | 曹小虎. 涑水盆地高氟地下水的分布及成因分析[J]. 中国水运(下半月), 2011, 11(8): 190-191. |
[45] | 邵琳琳, 杨胜科, 王文科, 等. 奎屯河流域水土中氟的分布规律[J]. 地球科学与环境学报, 2006, 28(4): 64-68. |
[46] | 穆敏, 李王成, 王洁, 等. 宁夏中部干旱带粗颗粒土裂化过程研究[J]. 东北农业大学学报, 2022, 53(6): 88-96. |
[47] | 嵇晓燕, 李波, 杨凯, 等. 中国地表水氟化物时空分布特征初步研究[J]. 地球与环境, 2022, 50(6): 787-796. |
[48] | 王连方, 孙幸之, 杨成忠, 等. 新疆奎屯—乌苏山前倾斜平原地方性氟中毒的地理分布规律[J]. 中国地方病学杂志, 1982, 1(4): 35-39. |
[49] | 汤洁, 卞建民, 李昭阳, 等. 松嫩平原氟中毒区地下水氟分布规律和成因研究[J]. 中国地质, 2010, 37(3): 614-620. |
[50] | 王雨山, 程旭学. 清水河平原上游承压地下水氟空间变异和形成机理[J]. 干旱区资源与环境, 2015, 29(12): 170-176. |
[51] |
吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.
DOI |
[1] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[2] | ZENG Zhaoyang, NING Shuzheng, WANG Ziguo. Strategic mineral resources in coal: A case study on gallium and germanium [J]. Earth Science Frontiers, 2024, 31(6): 331-349. |
[3] | XU Tianwu, ZHANG Hong’an. Analysis of oil and gas distribution and exploration potential in oil-rich depression: Taking Dongpu Depression as an example [J]. Earth Science Frontiers, 2024, 31(6): 368-380. |
[4] | XU Changgui, GAO Yangdong, LIU Jun, PENG Guangrong, CHEN Zhaoming, LI Hongbo, CAI Junjie, MA Qingyou. Discovery of “detachment-core complex type” basins offshore the northern South China Sea and their oil and gas geological conditions:A case study of the Kaiping sag in the northern South China Sea [J]. Earth Science Frontiers, 2024, 31(6): 381-404. |
[5] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[6] | KANG Fengxin, ZHENG Tingting, SHI Meng, SUI Haibo, XU Meng, JIANG Haiyang, ZHONG Zhennan, QIN Peng, ZHANG Baojian, ZHAO Jichu, MA Zhemin, CUI Yang, LI Jialong, DUAN Xiaofei, BAI Tong, ZHANG Pingping, YAO Song, LIU Xiao, SHI Qipeng, WANG Xuepeng, YANG Haitao, CHEN Jingpeng, LIU Beibei. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province [J]. Earth Science Frontiers, 2024, 31(6): 67-94. |
[7] | SUN Yaxiong, LIANG Bing, QIU Xuming, DUAN Hongliang, FU Qian, ZHOU Jinfeng, LIU Shili, QIU Yongfeng, HU Huiting, GONG Lei. Characteristics of natural fractures and its influence on shale oil enrichment and preservation in Member 2 of Funing Formation in Gaoyou sag, Subei Basin [J]. Earth Science Frontiers, 2024, 31(5): 61-74. |
[8] | ZHANG Chunlai, YANG Hui, HUANG Fen, QIU Cheng, ZHU Tongbin. Hydrochemical characteristics and karst carbon sink effect of border polje river in subtropical monsoon region: A case study of the Qingbo River in Mashan County, Guangxi [J]. Earth Science Frontiers, 2024, 31(5): 377-386. |
[9] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[10] | ZHANG Qidao, LI Dezong, LI Zhiwei, WANG Donghui, YU Yifan, ZHU Xingqiang, CAI Quanyu, LI Ming. Geochemical characteristics and genesis of lithium rich clay rocks in the Pudi area of northwestern Guizhou [J]. Earth Science Frontiers, 2024, 31(4): 258-280. |
[11] | CAO Shengtao, HU Ruizhong, ZHOU Yongzhang, LIU Jianzhong, TAN Qinping, GAO Wei, ZHENG Lulin, ZHENG Lujing, SONG Weifang. Element enrichment pattern and prospecting method for Carlin-type gold deposits based on big data association rule algorithm [J]. Earth Science Frontiers, 2024, 31(4): 58-72. |
[12] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[13] | ZHANG Jiazhi, JIANG Zaixing, XU Jie, WEI Siyuan, SONG Lizhou, LIU Tong, SHEN Zhihan, JIANG Xiaolong, LI Yongfei, ZHANG Xi. Volcanic sedimentation of Cretaceous Jiufotang Formation in the Chaoyang Basin and its impact on organic matter enrichment [J]. Earth Science Frontiers, 2024, 31(3): 284-297. |
[14] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[15] | YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States [J]. Earth Science Frontiers, 2024, 31(1): 327-339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||