Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 284-298.DOI: 10.13745/j.esf.sf.2023.5.33
Previous Articles Next Articles
LIU Chao1,2,3(), FU Xiaofei1,3,*(
), LI Yangcheng4, WANG Haixue1,3, SUN Bing1, HAO Yan1, HU Huiting1, YANG Zicheng1,3, LI Yilin1,3, GU Shefeng4, ZHOU Aihong4, MA Chenglong5
Received:
2023-01-26
Revised:
2023-04-27
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives[J]. Earth Science Frontiers, 2024, 31(2): 284-298.
Fig.1 Metallogenic model of sandstone-hosted uranium deposit characterized by dual uranium sources consisting of supergene altered rocks and uranium-bearing hydrocarbon source rocks
盆地/地区 | 烃源岩层 | 铀含量/10-6 | 文献来源 |
---|---|---|---|
鄂尔多斯盆地铜川地区 | 长7段暗色泥岩 | 5.40~140.00/(51.10) | [ |
鄂尔多斯盆地东胜-准格尔旗 | 直罗组含泥煤岩 | 15.33~30.99/(21.49) | [ |
江西省修水地区 | 观音堂组、王音铺组黑色页岩 | 9.37~202.00/(47.47) | [ |
中国华南地区 | 牛蹄塘组黑色页岩 | 0.84~97.9/(13.10) | [ |
塔里木盆地北部 | 玉尔吐斯组黑色页岩 | 21.10~194.90/(61.90) | [ |
修武盆地 | 下寒武统黑色页岩 | 0.57~48.60/(11.89) | [ |
中国湘西地区 | 上震旦—下寒武统黑色页岩 | 2.29~138.07/38.09) | [ |
松辽盆地钱家店地区 | 姚家组灰色泥岩 | 4.75~5.00/(4.88) | [ |
中国赣北地区 | 震旦系和寒武系碳硅泥岩 | 8.11~61.56/(30.05) | [ |
瑞典 | Upper Alum | 100.00~300.00/(118.00) | [ |
伊利诺斯盆地 | New Albany | 6.79~63.88/(24.20) | [ |
阿巴拉契亚盆地 | Woodford (George) | 8.10~61.80/(29.36) | [ |
阿巴拉契亚盆地 | Cleveland | 1.00~22.60/(9.10) | [ |
威利斯顿盆地 | Upper Bakken | 21.40~70.60/(42.50) | [ |
威利斯顿盆地 | Lower Bakken | 22.20~176.30/(77.50) | [ |
摩洛哥 | Timahdit | (41.00) | [ |
英国谢菲尔德地区 | Parkhouse | 5.00~199.00/(35.75) | [ |
阿巴拉契亚盆地 | Marcellus | 1.90~470/(14.07) | [ |
爱尔兰西部 | 石炭系页岩 | 5.86~158.00/9.52 | [ |
Table 1 A summary of uranium content in source rocks
盆地/地区 | 烃源岩层 | 铀含量/10-6 | 文献来源 |
---|---|---|---|
鄂尔多斯盆地铜川地区 | 长7段暗色泥岩 | 5.40~140.00/(51.10) | [ |
鄂尔多斯盆地东胜-准格尔旗 | 直罗组含泥煤岩 | 15.33~30.99/(21.49) | [ |
江西省修水地区 | 观音堂组、王音铺组黑色页岩 | 9.37~202.00/(47.47) | [ |
中国华南地区 | 牛蹄塘组黑色页岩 | 0.84~97.9/(13.10) | [ |
塔里木盆地北部 | 玉尔吐斯组黑色页岩 | 21.10~194.90/(61.90) | [ |
修武盆地 | 下寒武统黑色页岩 | 0.57~48.60/(11.89) | [ |
中国湘西地区 | 上震旦—下寒武统黑色页岩 | 2.29~138.07/38.09) | [ |
松辽盆地钱家店地区 | 姚家组灰色泥岩 | 4.75~5.00/(4.88) | [ |
中国赣北地区 | 震旦系和寒武系碳硅泥岩 | 8.11~61.56/(30.05) | [ |
瑞典 | Upper Alum | 100.00~300.00/(118.00) | [ |
伊利诺斯盆地 | New Albany | 6.79~63.88/(24.20) | [ |
阿巴拉契亚盆地 | Woodford (George) | 8.10~61.80/(29.36) | [ |
阿巴拉契亚盆地 | Cleveland | 1.00~22.60/(9.10) | [ |
威利斯顿盆地 | Upper Bakken | 21.40~70.60/(42.50) | [ |
威利斯顿盆地 | Lower Bakken | 22.20~176.30/(77.50) | [ |
摩洛哥 | Timahdit | (41.00) | [ |
英国谢菲尔德地区 | Parkhouse | 5.00~199.00/(35.75) | [ |
阿巴拉契亚盆地 | Marcellus | 1.90~470/(14.07) | [ |
爱尔兰西部 | 石炭系页岩 | 5.86~158.00/9.52 | [ |
体系 | 样品 类型 | TOC 含量/% | 有机质 类型 | 铀含量/ 10-6 | 实验条件 (T为温度,p为压力,t为加热时间) | EasyRo/ % | 活化铀 比例或 迁出率/% | 文献 来源 |
---|---|---|---|---|---|---|---|---|
高压釜封闭 体系,搅拌 | 泥岩 粉末 | 16.38 | II2 | 180 | T=200 ℃,p=2、3、4、5 MPa,t=72 h | 0.35 | 59.5~77.8 | [ |
p=2 MPa,T=30、100、150、200 ℃,t=72 h | 0.2~0.35 | 12.5~59.5 | ||||||
煤岩 粉末 | III | 60 | T=260 ℃,p=2、3、4、5 MPa,t=72 h | 0.57 | 79.1~95.5 | |||
p=3 MPa,T=220、260、300、340 ℃,t=72 h | 0.4~1.10 | 90.3~97.7 | ||||||
高压釜+黄金 管封闭体系 | 页岩 粉末 | 18.48 | II | 124.5 | T=350 ℃,p=70 MPa,t=24 h | 0.92 | 0 | [ |
高压釜 半封闭体系 | 人工 样品 | III | 50 | T=120 ℃,p=7 MPa,t=144 h | 0.21 | [ | ||
T=200 ℃,p=7 MPa,t=144 h | 0.34 | |||||||
T=200 ℃,p=28 MPa,t=48 h | 0.31 | |||||||
T=200 ℃,p=28 MPa,t=144 h | 0.34 | |||||||
T=300 ℃,p=28 MPa,t=144 h | 0.68 |
Table 2 A summary of simulation experiments of uranium emitted from source rocks
体系 | 样品 类型 | TOC 含量/% | 有机质 类型 | 铀含量/ 10-6 | 实验条件 (T为温度,p为压力,t为加热时间) | EasyRo/ % | 活化铀 比例或 迁出率/% | 文献 来源 |
---|---|---|---|---|---|---|---|---|
高压釜封闭 体系,搅拌 | 泥岩 粉末 | 16.38 | II2 | 180 | T=200 ℃,p=2、3、4、5 MPa,t=72 h | 0.35 | 59.5~77.8 | [ |
p=2 MPa,T=30、100、150、200 ℃,t=72 h | 0.2~0.35 | 12.5~59.5 | ||||||
煤岩 粉末 | III | 60 | T=260 ℃,p=2、3、4、5 MPa,t=72 h | 0.57 | 79.1~95.5 | |||
p=3 MPa,T=220、260、300、340 ℃,t=72 h | 0.4~1.10 | 90.3~97.7 | ||||||
高压釜+黄金 管封闭体系 | 页岩 粉末 | 18.48 | II | 124.5 | T=350 ℃,p=70 MPa,t=24 h | 0.92 | 0 | [ |
高压釜 半封闭体系 | 人工 样品 | III | 50 | T=120 ℃,p=7 MPa,t=144 h | 0.21 | [ | ||
T=200 ℃,p=7 MPa,t=144 h | 0.34 | |||||||
T=200 ℃,p=28 MPa,t=48 h | 0.31 | |||||||
T=200 ℃,p=28 MPa,t=144 h | 0.34 | |||||||
T=300 ℃,p=28 MPa,t=144 h | 0.68 |
Fig.3 Simulation experiment of hydrocarbon generation and uranium expulsion of uranium-bearing coal under different temperature and pressure. Adapted from [41].
[1] | 欧光习, 纪玉峰, 张敏, 等. 石油-热卤水与砂岩型铀矿化流体的关系[C]. 中国地球物理学会第22届年会, 2006. |
[2] | LESHER E K, HONEYMAN B D, RANVILLE J F. Detection and characterization of uranium-humic complexes during 1D transport studies[J]. Geochimica et Cosmochimica Acta, 2013, 109: 127-142. |
[3] | FUCHS S, SCHUMANN D, WILLIAMS-JONES A E. The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa[J]. Chemical Geology, 2015, 393: 55-66. |
[4] | FUCHS S, WILLIAMS-JONES A E, JACKSON S E. Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: evidence for liquid hydrocarbon ore fluids[J]. Chemical Geology, 2016, 426: 45-59. |
[5] | FUCHS S H, SCHUMANN D, WILLIAMS-JONES A E, et al. Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader Reef, Witwatersrand Supergroup, South Africa[J]. Precambrian Research, 2017, 293: 39-55. |
[6] | RALLAKIS D, MICHELS R, BROUAND M, et al. The role of organic matter on uranium precipitation in Zoovch Ovoo, Mongolia[J]. Minerals, 2019, 9(5): 310. |
[7] | SAINTILAN N J, SPANGENBERG J E, CHIARADIA M, et al. Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization[J]. Scientific Reports, 2019, 9: 8283. |
[8] | 李怀渊, 张守鹏, 李海明. 铀-油相伴性探讨[J]. 地质论评, 2000, 46(4): 355-361. |
[9] | 黄贤芳, 刘德长, 杜乐天, 等. 一种新的砂岩铀矿成矿类型: 构造-油气型[J]. 世界核地质科学, 2005, 22(3): 141-146. |
[10] | 金若时, 黄澎涛, 苗培森, 等. 准噶尔盆地东缘侏罗系砂岩型铀矿成矿条件与找矿方向[J]. 地质通报, 2014, 33(2): 359-369. |
[11] | 宫文杰, 张振强, 于文斌, 等. 松辽盆地地浸砂岩型铀成矿铀源分析[J]. 世界核地质科学, 2010, 27(1): 25-30. |
[12] | 李艳青. 鄂尔多斯盆地深部烃源岩生烃过程的油或气-铀关系实验及地质意义[D]. 西安: 西北大学, 2018. |
[13] | 张龙. 鄂尔多斯盆地北部天然气逸散与铀成矿效应[D]. 西安: 西北大学, 2017. |
[14] | 张万良. 烃源岩=铀源岩: 砂岩铀矿成矿物质来源新思考[J]. 矿产与地质, 2018, 32(1): 1-7. |
[15] | 李建国, 张博, 金若时, 等. 钱家店铀矿床表生含氧含铀流体与深层酸性含烃流体的耦合成矿作用: 来自岩心蚀变矿物填图的证据[J]. 大地构造与成矿学, 2020, 44(4): 576-589. |
[16] | 丁波, 贺锋, 刘红旭, 等. 四川盆地北部砂岩型铀矿成矿作用与成矿模式及对找矿方向的启示[J]. 铀矿地质, 2021, 37(6): 1027-1036. |
[17] | 李子颖, 刘武生, 李伟涛, 等. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用[J]. 中国地质, 2022, 49(4): 1009-1047. |
[18] | 蔡郁文, 王华建, 王晓梅, 等. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208. |
[19] | YANG H, ZHANG W Z, WU K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4): 285-293. |
[20] | 薛伟, 薛春纪, 涂其军, 等. 鄂尔多斯盆地东北缘侏罗系铀矿化与有机质的某些关联[J]. 地质论评, 2009, 55(3): 361-369. |
[21] | 薛玮玮, 凌洪飞, 李达, 等. 修水地区下寒武统富铀地层特征及其铀富集机制研究[J]. 高校地质学报, 2018, 24(2): 210-221. |
[22] | 刘安, 李旭兵, 王传尚, 等. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J]. 沉积学报, 2013, 31(6): 1122-1132. |
[23] | 于炳松, 陈建强, 李兴武, 等. 塔里木盆地下寒武统底部黑色页岩地球化学及其岩石圈演化意义[J]. 中国科学D辑: 地球科学, 2002, 32(5): 374-382. |
[24] | 王运, 胡宝群, 高海东, 等. 修武盆地下寒武统黑色岩系铀矿物赋存特征及富集机理[J]. 铀矿地质, 2014, 30(1): 1-6. |
[25] | 吴朝东, 储著银. 黑色页岩微量元素形态分析及地质意义[J]. 矿物岩石地球化学通报, 2001, 20(1): 14-20. |
[26] | 刘继顺. 华南碳硅泥岩型铀矿床的地质特征分析[J]. 地质找矿论丛, 1992, 7(1): 103-110. |
[27] | LECOMTE A, CATHELINEAU M, MICHELS R, et al. Uranium mineralization in the Alum Shale Formation (Sweden): evolution of a U-rich marine black shale from sedimentation to metamorphism[J]. Ore Geology Reviews, 2017, 88: 71-98. |
[28] | LAZAR O R. Redefinition of the New Albany Shale of the Illinois Basin: an integrated, stratigraphic, sedimentologic, and geochemical study[D]. Bloomington: Indiana University, 2007. |
[29] | ABSHIRE M L, RIEDINGER N, CLYMER J M, et al. Reconstructing the paleoceanographic and redox conditions responsible for variations in uranium content in North American Devonian black shales[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 587: 110763. |
[30] | GALINDO C, MOUGIN L, FAKHI S, et al. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco)[J]. Journal of environmental Radioactivity, 2007, 92(1): 41-54. |
[31] | FISHER Q J, WIGNALL P B. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England[J]. Chemical Geology, 2001, 175(3/4): 605-621 |
[32] | PHAN T T, CAPO R C, STEWART B W, et al. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: uranium, arsenic, barium[J]. Applied Geochemistry, 2015, 60: 89-103. |
[33] | ARMSTRONG J G, PARNELL J, BULLOCK L A, et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in west Ireland[J]. Applied Geochemistry, 2019, 109: 104401. |
[34] | BIAN LB, SCHOVSBO NH, CHAPPAZ A, et al. Molybdenum-uranium-vanadium geochemistry in the lower Paleozoic Alum Shale of Scandinavia: implications for vanadium exploration[J]. International Journal of Coal Geology, 2021, 239: 103730. |
[35] | LEVENTHAL J S. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition[J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 133-137. |
[36] | LIU B, MASTALERZ M, SCHIEBER J, et al. Association of uranium with macerals in marine black shales: insights from the Upper Devonian New Albany Shale, Illinois Basin[J]. International Journal of Coal Geology, 2020, 217: 103351. |
[37] | NXUMALO V, KRAMERS J, MONGWAKETSI N et al. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 404: 114-120. |
[38] | CUMBERLAND S A, ETSCHMANN B, BRUGGER J, et al. Characterization of uranium redox state in organic-rich Eocene sediments[J]. Chemosphere, 2018, 194: 602-613. |
[39] | 秦艳, 张文正, 彭平安, 等. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理[J]. 岩石学报, 2009, 25(10): 2469-2476. |
[40] | JEW A D, BESANÇON C J, ROYCROFT S J, et al. Chemical speciation and stability of uranium in unconventional shales: impact of hydraulic fracture fluid[J]. Environmental Science & Technology, 2020, 54(12): 7320-7329. |
[41] | 修晓茜, 王文全, 张玉燕, 等. 砂岩型铀矿床成矿过程中有机质与铀的运移实验[C]. 中国地球科学联合学术年会, 2016. |
[42] | 刘武生, 赵兴齐, 史清平, 等. 中国北方砂岩型铀矿成矿作用与油气关系研究[J]. 中国地质, 2017, 44(2): 279-287. |
[43] | VAZQUEZ G J, DODGE C J, FRANCIS A J. Interactions of uranium with polyphosphate[J]. Chemosphere, 2007, 70 (2), 263-269. |
[44] | SHVAREVA T Y, MAZEINA L, GORMAN-LEWIS D, et al. Thermodynamic characterization of boltwoodite and uranophane: enthalpy of formation and aqueous solubility[J]. Geochimica et Cosmochimica. Acta, 2011, 75 (18): 5269-5282. |
[45] | ZHAO D L, WANG X B, YANG S T, et al. Impact of water quality parameters on the sorption of U(VI) onto hematite[J]. Journal of Environmental Radioactivity, 2012, 103(1): 20-29. |
[46] | 惠淑君, 杨冰, 郭华明, 等. 不同因素对砂岩含水层介质吸附铀的影响[J]. 地学前缘, 2021, 28(5): 68-78. |
[47] | CUMBERLAND S A, DOUGLAS G, GRICE K, et al. Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159: 160-185. |
[48] | CHOPPIN G R. The role of natural organics in radionuclide migration in natural aquifer systems[J]. Radiochimica Acta, 1992, 58(1): 113-120. |
[49] | YANG Y, SAIERS J E, XU N, et al. Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale[J]. Environmental Science & Technology, 2012, 46: 5391-5398. |
[50] | NOVOTNIK B, CHEN W, EVANS R D, et al. Uranium bearing dissolved organic matter in the porewaters of uranium contaminated lake sediments[J]. Applied Geochemistry, 2018, 91: 36-44. |
[51] | 崔迪, 杨冰, 郭华明, 等. 砂岩含水介质中铀的吸附和迁移行为研究[J]. 地学前缘, 2022, 29(3): 217-226. |
[52] | KŘEPELOVA A, SACHS S, BERNHARD G. Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid[J]. Radiochimica Acta, 2006, 94(12): 825-833. |
[53] | TINNACHER R M, NICO P S, DAVIS J A. et al. Effects of fulvic acid on uranium (VI) sorption kinetics[J]. Environmental Science & Technology, 2013, 47(12): 6214-6222. |
[54] | YU S J, MA J, SHI Y M, et al. Uranium (VI) adsorption on montmorillonite colloid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2): 541-549. |
[55] | ARTINGER R, RABUNG T, KIM J I, et al. Humic colloid-borne migration of uranium in sand columns[J]. Journal of Contaminant Hydrology, 2002, 58(1/2): 1-12. |
[56] | MIBUS J, SACHS S, PFINGSTEN W, et al. Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study[J]. Journal of Contaminant Hydrology, 2007, 89(3/4): 199-217. |
[57] | CRANÇON P, PILI E, CHARLET L. Uranium facilitated transport by water-dispersible colloids in field and soil columns[J]. Science of the Total Environment, 2010, 408(9): 2118-2128. |
[58] | READ D D, ROSS D, SIMS R J. The migration of uranium through Clashach Sandstone: the role of low molecular weight organics in enhancing radionuclide transport[J]. Journal of Contaminant Hydrology, 1998, 35: 235-248. |
[59] | BURGOS W D, SENKO J M, DEMPSEY B A, et al. Soil humic acid decreases biological uranium (VI) reduction by Shewanella putrefaciens CN32[J]. Environmental Engineering Science, 2007, 24(6): 755-761. |
[60] | GU B H, YAN H, ZHOU P, et al. Natural humics impact uranium bioreduction and oxidation[J]. Environmental Science & Technology, 2005, 39(14): 5268-5275. |
[61] | SUZUKI Y, TANAKA K, KOZAI N, et al. Effects of citrate, NTA, and EDTA on the reduction of U (VI) by Shewanella putrefaciens[J]. Geomicrobiology Journal, 2010, 27(3): 245-250. |
[62] | LUO W S, GU B H. Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions[J]. Environmental Science & Technology, 2009, 43(1): 152-156. |
[63] | ALAM M S, CHENG T. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms[J]. Journal of Contaminant Hydrology, 2014, 164: 72-87. |
[64] | BERNIER-LATMANI R, VEERAMANI H, VECCHIA E D, et al. Non-uraninite products of microbial U (VI) reduction[J]. Environmental Science & Technology, 2010, 44(24): 9456-9462. |
[65] | BOYANOV M I, FLETCHER K E, KWON M J, et al. Solution and microbial controls on the formation of reduced U (IV) species[J]. Environmental Science & Technology, 2011, 45(19): 8336-8344. |
[66] | SHARP J O, LEZAMA-PACHECO J S, SCHOFIELD E J, et al. Uranium speciation and stability after reductive immobilization in aquifer sediments[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6497-6510. |
[67] | BONE S E, DYNES J J, CLIFF J, et al. Uranium (IV) adsorption by natural organic matter in anoxic sediments[J]. Proceedings of the National Academy of Sciences, 2017, 114(4): 711-716. |
[68] | NOVIKOV A P, KALMYKOV S N, UTSUNOMIYA S, et al. Colloid transport of plutonium in the far-field of the Mayak production association[J]. Russia Science, 2006, 314(5799): 638-641. |
[69] | WANG Y H, FRUTSCHI M, SUVOROVA E, et al. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland[J]. Nature Communications, 2013, 4(1): 1-9. |
[70] | MEUNIER J D, LANDAIS P, PAGEL M. Experimental evidence of uraninite formation from diagenesis of uranium-rich organic matter[J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 809-817. |
[71] | 许强. 新疆准噶尔盆地西北缘砂岩型铀矿化类型[J]. 地质论评, 2015, 61(增刊1): 569-570. |
[72] | 刘正义, 许强, 刘红旭, 等. 巴什布拉克含铀地沥青铀矿床矿化特征和成矿机理[J]. 西北地质, 2021, 54(1): 109-124. |
[73] | KŘEPELOV'A A, SACHS S, BERNHARD G. Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid[J]. Radiochimica Acta, 2006, 94(12): 825-833. |
[74] | MURPHY E M, ZACHARA J M. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater[J]. Geoderma, 1995, 67(1/2): 103-124. |
[75] | GHOSH S, MASHAYEKHI H, PAN B, et al. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter[J]. Langmuir, 2008, 24(21): 12385-12391. |
[76] | NAKASHIMA S, DISNAR J R, PERRUCHOT A. Precipitation kinetics of uranium by sedimentary organic matter under diagenetic and hydrothermal conditions[J]. Economic Geology, 1999, 94(7): 993-1006. |
[77] | 刘正邦, 焦养泉, 薛春纪, 等. 内蒙古东胜地区侏罗系砂岩铀矿体与煤层某些关联性[J]. 地学前缘, 2013, 10(1): 146-153. |
[78] | 郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75. |
[79] | 吴柏林, 魏安军, 刘池洋, 等. 鄂尔多斯盆地北部延安组白色砂岩形成的稳定同位素示踪及其地质意义[J]. 地学前缘, 2015, 22(3): 205-214 |
[80] | 刘章月, 秦明宽, 蔡根庆, 等. 新疆巴什布拉克地区有机地球化学特征及其对铀成矿的控制[J]. 地学前缘, 2015, 22(4): 212-222. |
[81] | ZHAO L, CAI C F, JIN R S, et al. Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China[J]. Ore Geology Reviews, 2018, 101: 273-292. |
[82] | 蔡义各. 煤、气、 油在铀成矿中作用的成矿过程实验模拟[D]. 西安: 西北大学, 2008. |
[83] | 王苗, 吴柏林, 李艳青, 等. 鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究[J]. 地球科学, 2022, 47(1): 224-239. |
[84] | 孟佑婷, 张丰收, 王平, 等. 细菌还原U(Ⅵ)分子生物学机理的研究进展[J]. 中国环境科学, 2020, 40(1): 422-430. |
[85] | JIANG S H, KIM M G, KIM S J, et al. Bacterial formation of extracellular U(VI) nanowires[J]. Chemical Communications, 2011, 47(28): 8076-8078. |
[86] | BARGAR J R, WILLIAMS K H, CAMPBELL K M, et al. Uranium redox transition pathways in acetate-amended sediments[J]. Proceedings of the National Academy of Sciences, 2013, 110(12): 4506-4511. |
[87] | ALESSI D S, LEZAMA-PACHECO J S, STUBBS J E, et al. The product of microbial uranium reduction includes multiple species with U (IV)-phosphate coordination[J]. Geochimica et Cosmochimica Acta, 2014, 131: 115-127. |
[88] | LONG P E, WILLIAMS K H, DAVIS J A, et al. Bicarbonate impact on U (VI) bioreduction in a shallow alluvial aquifer[J]. Geochimica et Cosmochimica Acta, 2015, 150: 106-124. |
[89] | SAFONOV A, LAVRINOVICH E, EMEL’YANOV A, et al. Risk of colloidal and pseudo-colloidal transport of actinides in nitrate contaminated groundwater near a radioactive waste repository after bioremediation[J] Scientific Report, 2022(12): 4557. |
[90] | 毛光周, 刘池洋, 刘宝泉, 等. 铀对Ⅰ型低熟烃源岩生烃演化的影响[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 172-181. |
[91] | BASTRAKOV E N, JAIRETH S, MERNAGH T P. Solubility of uranium in hydrothermal fluids at 25 to 300 ℃. Implications for the formation of uranium deposits[J]. Geoscience Australia Record, 2010, 29: 1-91. |
[92] | POST V E, VASSOLO S I, TIBERGHIEN C, et al. Weathering and evaporation controls on dissolved uranium concentrations in groundwater: a case study from northern Burundi[J]. Science of the Total Environment, 2017, 607: 281-293. |
[93] | KALINTSEV A, MIGDISOV A, ALCORN C, et al. Uranium carbonate complexes demonstrate drastic decrease in stability at elevated temperatures[J]. Communications Chemistry, 2021, 4(1): 1-8. |
[94] | 张祖还, 赵懿英, 章邦桐. 铀地球化学[M]. 北京: 原子能出版社, 1984. |
[95] | MIGDISOV A A, BOUKHALFA H, TIMOFEEV A, et al. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 ℃[J]. Geochimica et Cosmochimica Acta, 2018, 222: 130-145. |
[96] | TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A E, et al. Uranium transport in acidic brines under reducing conditions[J]. Nature Communications, 2018, 9(1): 1-7. |
[97] | HARTESVELDT N V. Uranium solubility in high temperature, reduced systems[M]. Starkville: Mississippi State University, 2020. |
[98] | GÖTZ C, GEIPEL G, BERNHARD G. The influence of the temperature on the carbonate complexation of uranium (VI): a spectroscopic study[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287(3): 961-969. |
[99] | BAILEY E H, RAGNARSDOTTIR K V. Uranium and thorium solubilities in subduction zone fluids[J]. Earth and Planetary Science Letters, 1994, 124(1/2/3/4): 119-129. |
[100] | 王飞飞. 油气煤铀同盆共存全球特征与中国典型盆地剖析[D]. 西安: 西北大学, 2018. |
[101] | GUILLAUMONT R, FANGHÄNEL T, FUGER J, et al. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium[M]. Amsterdam: Elsevier: 2003: 157-292. |
[102] | 杜乐天, 欧光习. 盆地形成及成矿与地幔流体间的成因联系[J]. 地学前缘, 2007, 14(2): 217-226. |
[103] | 胡瑞忠, 金景福. 上升热液浸取成矿过程中铀的迁移沉淀机制探讨[J]. 地质论评, 1990: 36(4): 317-325. |
[104] | 王鲲, 邓江洪, 郝锡荦. 铀的地球化学性质与成矿: 以华南铀成矿省为例[J]. 岩石学报, 2020, 36(1): 35-43. |
[105] | SULLIVAN A P, KILPATRICK P K. The effects of inorganic solid particles on water and crude oil emulsion stability[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3389-3404. |
[106] | QIU L F, LI X D, LIU W S, et al. Uranium deposits of Erlian Basin (China): role of carbonaceous debris organic matter and hydrocarbon fluids on uranium Mineralization[J]. Minerals, 2021, 11(5): 532. |
[1] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[2] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[3] | LI Huili, GAO Jian, CAO Zicheng, ZHU Xiuxiang, GUO Xiaowen, ZENG Shuai. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 316-328. |
[4] | ZHANG Xiong, PAN Lijuan, LI Liang, FANG Junwei, WEI Zhongjin, YANG Juncheng, ZHOU Fengshan. Mechanism of action and evaluation of chelating agents on barite removal [J]. Earth Science Frontiers, 2023, 30(6): 451-462. |
[5] | LI Yingtao, DENG Shang, ZHANG Jibiao, LIN Huixi, LIU Yuqing, QIU Huabiao, HUANG Cheng, LIU Dawei, YAO Yili. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei [J]. Earth Science Frontiers, 2023, 30(6): 80-94. |
[6] | MU Hansheng, XUE Xinyu, JIANG Zaixing. Shale oil and gas in the Mesozoic Basins, eastern Yanshan Orogenic Belt—exploration status and outlooks [J]. Earth Science Frontiers, 2023, 30(2): 282-295. |
[7] | YANG Yu, WEN Long, CHEN Cong, WANG Hua. Oil and gas exploration potential of the Permian multi-stage platform-margin zone, western Sichuan Basin. [J]. Earth Science Frontiers, 2023, 30(1): 1-10. |
[8] | ZOU Caineng, MA Feng, PAN Songqi, ZHANG Xinshun, WU Songtao, FU Guoyou, WANG Hongjun, YANG Zhi. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China [J]. Earth Science Frontiers, 2023, 30(1): 128-142. |
[9] | LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. In-situ upgrading and transformation of low-maturity shale: Economic feasibility and efficiency enhancement approaches from the perspective of energy consumption ratio [J]. Earth Science Frontiers, 2023, 30(1): 187-198. |
[10] | ZHOU Lu, ZHOU Jianghui, DAI Ruixue, ZHANG Ya, LAN Xuemei, WU Yong, WANG Hongqiu, LIU Shimin. Application of OVT-domain 5-dimensional seismic attributes in fracture prediction in the Qixia Formation of the Shuangyushi area [J]. Earth Science Frontiers, 2023, 30(1): 213-228. |
[11] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[12] | LI Desheng, LI Bohua. Towards a new era of diversified energy development: Innovation in theoretical petroleum geology to meet “dual carbon target” [J]. Earth Science Frontiers, 2022, 29(6): 1-9. |
[13] | YANG Xuewen, WANG Qinghua, LI Yong, LÜ Xiuxiang, XIE Huiwen, WU Chao, WANG Cuili, WANG Xiang, MO Tao, WANG Rui. Formation mechanism of the Bozi-Dabei trillion cubic natural gas field, Kuqa foreland thrust belt [J]. Earth Science Frontiers, 2022, 29(6): 175-187. |
[14] | HE Dengfa. Multi-cycle superimposed sedimentary basins in China: Formation, evolution, geologic framework and hydrocarbon occurrence [J]. Earth Science Frontiers, 2022, 29(6): 24-59. |
[15] | DUAN Wei, TIAN Jinqiang, LI Sanzhong, YU Qiang, CHEN Ruixue, LONG Zulie. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: Source and formation mechanisms [J]. Earth Science Frontiers, 2022, 29(5): 176-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||