Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 173-182.DOI: 10.13745/j.esf.sf.2023.8.24
Previous Articles Next Articles
LEI Ming(), ZHOU Yimin, HUANG Darui, HUANG Yayuan, WANG Xinqi, LI Bingyu, DU Huihui, LIU Xiaoli, TIE Boqing
Received:
2023-05-16
Revised:
2023-06-22
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LEI Ming, ZHOU Yimin, HUANG Darui, HUANG Yayuan, WANG Xinqi, LI Bingyu, DU Huihui, LIU Xiaoli, TIE Boqing. Prevention and control of heavy metal contamination in cropland and in commercial rice in Hunan Province: Current status and practical considerations[J]. Earth Science Frontiers, 2024, 31(2): 173-182.
修复技术 | 作用机制 | 优点 | 缺点 | 适用范围 | 参考文献 |
---|---|---|---|---|---|
石灰调节 | 提高土壤pH,促使重金属阳离子发生共沉淀 | 成本低,操作简便,效果好 | 连年施用易破环土壤团粒结构,导致土壤板结 | 酸性Cd污染土壤,不适合As污染土壤 | [ |
品种调整 | 品种间对重金属的积累存在较大差异 | 重金属在可食部位积累量少,生长、产量不受影响 | 品种筛选时间长,品种有特点适宜生长区 | 适宜相应品种生长地区 | [ |
水分调控 | 淹水提高土壤pH值,降低土壤氧化还原电位,降低重金属活性 | 成本低,效果好 | 对水质要求高,易受天气和田间管理人员干扰 | 酸性Cd污染土壤,不适合As污染土壤 | [ |
叶面调控 | 抑制作物根系向可食部位转运重金属 | 满足作物微量有益元素需要,操作简便 | 易受天气和田间管理人员干扰 | 适用Cd、As污染稻田 | [ |
原位钝化 | 在污染土壤中添加化学改良剂,通过吸附、共沉淀、离子交换和络合等方式固定重金属 | 成本低,可大量使用,可增加土壤养分和有机质含量 | 不能完全去除土壤中的重金属,引起二次污染,影响土壤理化性质 | 一般重金属污染农田 | [ |
微生物修复 | 利用微生物通过吸收、沉淀、氧化和还原反应来改变土壤中的金属流动性和生物有效性 | 成本低、效果好、环保 | 修复周期长,修复效果不稳定 | 一般重金属污染农田 | [ |
“VIP”联合 修复技术 | 在低Cd积累品种(V)、淹水灌溉(I)、施用石灰等调节土壤酸碱度(P)的基础上增施土壤调理剂、叶面肥(n)等技术 | 效率高,实现“边生产、边修复” | 酸性Cd污染稻田 | [ |
Table 1 Safety utilization and remediation technology of light and moderate heavy metal contaminated cultivated land
修复技术 | 作用机制 | 优点 | 缺点 | 适用范围 | 参考文献 |
---|---|---|---|---|---|
石灰调节 | 提高土壤pH,促使重金属阳离子发生共沉淀 | 成本低,操作简便,效果好 | 连年施用易破环土壤团粒结构,导致土壤板结 | 酸性Cd污染土壤,不适合As污染土壤 | [ |
品种调整 | 品种间对重金属的积累存在较大差异 | 重金属在可食部位积累量少,生长、产量不受影响 | 品种筛选时间长,品种有特点适宜生长区 | 适宜相应品种生长地区 | [ |
水分调控 | 淹水提高土壤pH值,降低土壤氧化还原电位,降低重金属活性 | 成本低,效果好 | 对水质要求高,易受天气和田间管理人员干扰 | 酸性Cd污染土壤,不适合As污染土壤 | [ |
叶面调控 | 抑制作物根系向可食部位转运重金属 | 满足作物微量有益元素需要,操作简便 | 易受天气和田间管理人员干扰 | 适用Cd、As污染稻田 | [ |
原位钝化 | 在污染土壤中添加化学改良剂,通过吸附、共沉淀、离子交换和络合等方式固定重金属 | 成本低,可大量使用,可增加土壤养分和有机质含量 | 不能完全去除土壤中的重金属,引起二次污染,影响土壤理化性质 | 一般重金属污染农田 | [ |
微生物修复 | 利用微生物通过吸收、沉淀、氧化和还原反应来改变土壤中的金属流动性和生物有效性 | 成本低、效果好、环保 | 修复周期长,修复效果不稳定 | 一般重金属污染农田 | [ |
“VIP”联合 修复技术 | 在低Cd积累品种(V)、淹水灌溉(I)、施用石灰等调节土壤酸碱度(P)的基础上增施土壤调理剂、叶面肥(n)等技术 | 效率高,实现“边生产、边修复” | 酸性Cd污染稻田 | [ |
修复技术 | 土壤修复成本/(元·hm-2) |
---|---|
钝化 | 6 000~18 000 |
叶面阻控 | 1 800~6 000 |
植物修复 | 1 500~7 500 |
微生物修复 | 4 500~15 000 |
Table 2 The cost and some technologies of remediation cultivated land soils by heavy metals. Adapted from [64].
修复技术 | 土壤修复成本/(元·hm-2) |
---|---|
钝化 | 6 000~18 000 |
叶面阻控 | 1 800~6 000 |
植物修复 | 1 500~7 500 |
微生物修复 | 4 500~15 000 |
[1] | 湖南省统计局,国家统计局湖南调查总队. 湖南省统计年鉴2023[EB/OL]. (2023-05-30)[2023-06-15]. http://222.240.193.190/2023tjnj/indexch.htm. |
[2] | ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467. |
[3] | 黄道友, 朱奇宏, 朱捍华, 等. 重金属污染耕地农业安全利用研究进展与展望[J]. 农业现代化研究, 2018, 39(6): 1030-1043. |
[4] | 陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41. |
[5] | WANG P, CHEN H P, KOPITTKE P M, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. |
[6] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759. |
[7] | ZOU M M, ZHOU S L, ZHOU Y J, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: a review[J]. Environmental Pollution, 2021, 280: 116965. |
[8] | 雷鸣, 秦普丰, 铁柏清. 湖南湘江流域重金属污染的现状与分析[J]. 农业环境与发展, 2010, 27(2): 62-65. |
[9] | 雷鸣, 曾敏, 郑袁明, 等. 湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价[J]. 环境科学学报, 2008, 28(6): 1212-1220. |
[10] | LI B Y, WEI D N, LI Z Q, et al. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: adsorption and redox transformation[J]. Journal of Hazardous Materials, 2020, 389: 122091. |
[11] | 穆虹宇, 庄重, 李彦明, 等. 我国畜禽粪便重金属含量特征及土壤累积风险分析[J]. 环境科学, 2020, 41(2): 986-996. |
[12] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 5-87. |
[13] | CHEN B, STEIN A F, CASTELL N, et al. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter[J]. Science of the Total Environment, 2016, 539: 17-25. |
[14] | GELLY R, FEKIACOVA Z, GUIHOU A, et al. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago[J]. Science of the Total Environment, 2019, 665: 502-512. |
[15] | QIU K Y, XING W Q, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1): 170-179. |
[16] | 刘耀驰, 高栗, 李志光, 等. 湘江重金属污染现状、污染原因分析与对策探讨[J]. 环境保护科学, 2010, 36(4): 26-29. |
[17] | 樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736. |
[18] | 师荣光, 郑向群, 龚琼, 等. 农产品产地土壤重金属外源污染来源解析及防控策略研究[J]. 环境监测管理与技术, 2017, 29(4): 9-13. |
[19] | CHEN H P, YANG X P, WANG P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China[J]. Science of the Total Environment, 2018, 639: 271-277. |
[20] | ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. |
[21] | WILLIAMS P N, LEI M, SUN G X, et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China[J]. Environmental Science and Technology, 2009, 43(3): 637-642. |
[22] | TANG L, DENG S H, TAN D, et al. Heavy metal distribution, translocation, and human health risk assessment in the soil-rice system around Dongting Lake Area, China[J]. Environmental Science and Pollution Research, 2019, 26(17): 17655-17665. |
[23] | 龙九妹. 耐锑菌的筛选及其对水稻吸收与积累锑的影响研究[D]. 长沙: 湖南农业大学, 2019. |
[24] | 谭迪. 锑砷复合污染土壤的风险评价及萃取研究[D]. 长沙: 湖南农业大学, 2019. |
[25] | 杜辉辉, 刘新, 李杨, 等. 土壤中钨的环境行为与潜在风险: 研究进展与展望[J]. 土壤学报, 2022, 59(3): 655-666. |
[26] | 钟松雄, 尹光彩, 陈志良, 等. Eh、pH和铁对水稻土砷释放的影响机制[J]. 环境科学, 2017, 38(6): 2530-2537. |
[27] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[28] | WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science and Technology, 2019, 53(5): 2500-2508. |
[29] | DUAN G L, SHAO G S, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9. |
[30] | 贺慧, 陈灿, 郑华斌, 等. 不同基因型水稻镉吸收差异及镉对水稻的影响研究进展[J]. 作物研究, 2014, 28(2): 211-215. |
[31] | ALLOWAY B J. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability[M]. 3rd ed. Dordrecht: Springer, 2013. |
[32] | 周一敏, 黄雅媛, 刘凯, 等. 典型铁、锰矿物对稻田土壤砷形态与酶活性的影响[J]. 环境科学, 2022, 43(5): 2732-2740. |
[33] | 彭鸥, 铁柏清, 叶长城, 等. 稻米镉关键积累时期研究[J]. 农业资源与环境学报, 2017, 34(3): 272-279. |
[34] | 农业农村部办公厅. 轻中度污染耕地安全利用与治理修复推荐技术名录(2019年版本)[EB/OL]. (2019-03-25)[2023-05-10]. https://www.sinosite.com.cn/xinwenfenleisi/464.html. |
[35] | XU D M, FU R B, LIU H Q, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: a critical review[J]. Journal of Cleaner Production, 2021, 286: 124989. |
[36] | CHEN H P, ZHANG W W, YANG X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707. |
[37] | HUANG Y, SHENG H, ZHOU P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109903. |
[38] | 黄道友, 陈惠萍, 龚高堂, 等. 湖南省主要类型水稻土镉污染改良利用研究[J]. 农业现代化研究, 2000, 21(6): 364-370. |
[39] | LI N, FENG A X, LIU N, et al. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice[J]. Environmental Science and Pollution Research, 2020, 27(16): 20370-20379. |
[40] | 周一敏, 黄雅媛, 刘晓月, 等. 叶面喷施纳米MnO2对水稻富集镉的影响机制[J]. 环境科学, 2021, 42(2): 932-940. |
[41] | LI N J, ZHANG X H, WANG D Q, et al. Contribution characteristics of the in situ extracellular polymeric substances (EPS) in Phanerochaete chrysosporium to Pb immobilization[J]. Bioprocess and Biosystems Engineering, 2017, 40(10): 1447-1452. |
[42] | TANG Y T, DENG T H B, WU Q H, et al. Designing cropping systems for metal-contaminated sites: a review[J]. Pedosphere, 2012, 22(4): 470-488. |
[43] | ABDELHAFEZ A A, LI J H, ABBAS M H H. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil[J]. Chemosphere, 2014, 117: 66-71. |
[44] | LI B Y, ZHOU S, WEI D N, et al. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2: pot experiment and field application[J]. Science of the Total Environment, 2019, 650: 546-556. |
[45] | CAO Z Z, PAN J Y, YANG Y J, et al. Water management affects arsenic uptake and translocation by regulating arsenic bioavailability, transporter expression and thiol metabolism in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111208. |
[46] | LIN Z J, WANG X, WU X, et al. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 2018, 243: 1015-1025. |
[47] | 薛毅, 尹泽润, 盛浩, 等. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887. |
[48] | 龙思斯, 宋正国, 雷鸣, 等. 不同外源镉对水稻生长和富集镉的影响研究[J]. 农业环境科学学报, 2016, 35(3): 419-424. |
[49] | WANG X Q, DENG S H, ZHOU Y M, et al. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation[J]. Environmental Science and Pollution Research, 2021, 28(7): 7828-7839. |
[50] | QIAN X Y, FANG C L, HUANG M S, et al. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. Journal of Cleaner Production, 2017, 164: 198-208. |
[51] | 沈欣, 朱奇宏, 朱捍华, 等. 农艺调控措施对水稻镉积累的影响及其机理研究[J]. 农业环境科学学报, 2015, 34(8): 1449-1454. |
[52] | SUN W M, XIAO E Z, XIAO T F, et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science and Technology, 2017, 51(16): 9165-9175. |
[53] | BJELKOVÁ M, GENČUROVÁ V, GRIGA M. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils[J]. Industrial Crops and Products, 2011, 33(3): 761-774. |
[54] | MA X F, ZHENG C S, LI W, et al. Potential use of cotton for remediating heavy metal-polluted soils in Southern China[J]. Journal of Soils and Sediments, 2017, 17(12): 2866-2872. |
[55] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692. |
[56] | BALDANTONI D, MORRA L, ZACCARDELLI M, et al. Cadmium accumulation in leaves of leafy vegetables[J]. Ecotoxicology and Environmental Safety, 2016, 123: 89-94. |
[57] | JINADASA K B P N, MILHAM P J, HAWKINS C A, et al. Survey of cadmium levels in vegetables and soils of greater Sydney, Australia[J]. Journal of Environmental Quality, 1997, 26 (4): 924-933. |
[58] | AWASTHI A K, ZENG X L, LI J H. Environmental pollution of electronic waste recycling in India: a critical review[J]. Environmental Pollution, 2016, 211: 259-270. |
[59] | ZHOU Y M, LONG S S, LI B Y, et al. Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources[J]. Environmental Science and Pollution Research, 2020, 27(35): 44249-44256. |
[60] | LI H, DAI M W, DAI S L, et al. Current status and environment impact of direct straw return in China’s cropland: a review[J]. Ecotoxicology and Environmental Safety, 2018, 159: 293-300. |
[61] | ZHANG Q G, ZOU D S, ZENG X Y, et al. Effect of the direct use of biomass in agricultural soil on heavy metals: activation or immobilization?[J]. Environmental Pollution, 2021, 272: 115989. |
[62] | WANG S, HUANG D Y, ZHU Q H, et al. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw[J]. Environmental Science and Pollution Research, 2015, 22(4): 2679-2686. |
[63] | 熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918. |
[64] | 段海燕. 康达集团土壤生态修复的战略研究[D]. 成都: 电子科技大学, 2015. |
[1] | YANG Zheng, PENG Min, ZHAO Chuandong, YANG Ke, LIU Fei, LI Kuo, ZHOU Yalong, TANG Shiqi, MA Honghong, ZHANG Qing, CHENG Hangxin. The study of geochemical background and baseline for 54 chemical indicators in Chinese soil [J]. Earth Science Frontiers, 2024, 31(4): 380-402. |
[2] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[3] | TU Chunlin, HE Chengzhong, MA Yiqi, YIN Linhu, TAO Lanchu, YANG Minghua. Pollution Characteristics, Ecological risk and source apportionment of heavy metals in sediments of the Pearl River Basin [J]. Earth Science Frontiers, 2024, 31(3): 410-419. |
[4] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[5] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[6] | ZHENG Jiarui, LENG Wenpeng, WANG Jiajia, ZHI Liqin, WANG Shuo, LI Jiabin, GUO Peng, WEI Wenxia, SONG Yun. Bioremediation technologies for cleaning up chlorinated-hydrocarbon contaminated sites—a review [J]. Earth Science Frontiers, 2024, 31(2): 157-172. |
[7] | LIU Yongbing, SU Junjie, GUO Wei, WANG Yingnan, YIN Yaqiu. Comparative study on soil remediation of slope-alluvial contaminated arable land in granite areas, northern Hebei Province [J]. Earth Science Frontiers, 2024, 31(2): 196-203. |
[8] | DING Xiang, YUAN Bei, DU Ping, LIU Hupeng, ZHANG Yunhui, CHEN Juan. Heavy metal accumulation in soils of a typical mining community: Driving factors and probabilistic health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 31-41. |
[9] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[10] | GUO Xuehui, HUANG Renliang, WAN Jianhua. Heavy metal pollution in agricultural land around a tailings pond, northern Hubei and ecological and human health risk assessment [J]. Earth Science Frontiers, 2024, 31(2): 77-92. |
[11] | DONG Hailiang, ZENG Qiang, LIU Deng, SHENG Yizhi, LIU Xiaolei, LIU Yuan, HU Jinglong, LI Yang, XIA Qingyin, LI Runjie, HU Dafu, ZHANG Donglei, ZHANG Wenhui, GUO Dongyi, ZHANG Xiaowen. Interactions between clay minerals and microbes: Mechanisms and applications in environmental remediation [J]. Earth Science Frontiers, 2024, 31(1): 467-485. |
[12] | WEI Hongbin, LUO Ming, ZHANG Shiwen, ZHOU Pengfei. Effects of different remediation treatments on heavy metals and microorganisms in mining wasteland [J]. Earth Science Frontiers, 2023, 30(5): 541-552. |
[13] | NING Wenjing, XIE Xianming, YAN Liping. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results [J]. Earth Science Frontiers, 2023, 30(4): 470-484. |
[14] | XIAO Xuewei, CHEN Honghan, LIU Xiuyan, PENG Zhongqin, LI Peijun, WANG Baozhong. Fluid inclusion evidence on the shale gas formation process in the Lower Cambrian Niutitang Formation in Jishou slope zone, western Hunan Province—a case study of well XJD 1 [J]. Earth Science Frontiers, 2023, 30(3): 181-194. |
[15] | HAN Runsheng, ZHAO Dong. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits—a preliminary study [J]. Earth Science Frontiers, 2022, 29(5): 420-437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||