Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 150-161.DOI: 10.13745/j.esf.sf.2023.2.12
Previous Articles Next Articles
CHEN Jianfa1,2,3(), XU Jin1,2,*(
), WANG Jie1,2, LIU Peng1,2, CHEN Feiran4, LI Maowen1,2
Received:
2023-01-06
Revised:
2023-02-07
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
CHEN Jianfa, XU Jin, WANG Jie, LIU Peng, CHEN Feiran, LI Maowen. Paleo-environmental variation and its control on organic enrichment in the black rock series, Cambrian Yuertusi Formation in northwestern Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 150-161.
Fig.1 Location of the northwestern margin of the Tarim Basin and the stratigraphic distribution. a and b. tectonic units of the Tarim Basin and its northwestern margin; c. geological setting of the Akes area of the NW Tarim Basin; d. Cambrian lithologic columns in NW Tarim Basin. Modified after [18-19].
Fig.2 Location of the northwestern margin of the Tarim Basin and the stratigraphic distribution. a and b. tectonic units of the Tarim Basin and its northwestern margin; c. geological setting of the Akes area of the NW Tarim Basin; d. Cambrian lithofacies in NW Tarim Basin
Fig.5 Profiles of ∑REEs, LREE/HREE, Ce/Ce* and Eu/Eu* from the Cambrian Yuertusi Formation black rock series of Kungaikuotan section in NW Tarim Basin
Fig.7 Plots TOC versus redox index and hydrothermal tracing parameters showing organic matter enrichment of black rock series in Cambrian Yuertusi Formation, NW Tarim Basin
Fig.8 Schematic diagram showing Early Cambrian marine redox variation, distribution of organic-rich rock, hydrothermal activities and spatial variation of TOC in NW Tarim Basin
[1] |
WINGATE M T D, CAMPBELL I H, COMPSTON W, et al. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia[J]. Precambrian Research, 1998, 87(3/4): 135-159.
DOI URL |
[2] |
LI Z X, EVANS D A D, HALVERSON G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294: 219-232.
DOI URL |
[3] |
ZHANG Z Y, ZHU W B, SHU L S, et al. Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia[J]. Geological Magazine, 2009, 146(1): 150-154.
DOI URL |
[4] |
POWELL C M, LI Z X, MCELHINNY M W, et al. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.
DOI URL |
[5] |
CAWOOD P A, STRACHAN R A, PISAREVSKY S A, et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 2016, 449: 118-126.
DOI URL |
[6] |
MEERT J G, VOO R V D. The assembly of Gondwana 800-550 Ma[J]. Journal of Geodynamics, 1997, 23(3/4): 223-235.
DOI URL |
[7] |
MEERT J G. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 2003, 362(1/2/3/4): 1-40.
DOI URL |
[8] |
POWELL C M, PISAREVSKY S A. Late neoproterozoic assembly of East Gondwana[J]. Geology, 2002, 30(1): 3-6.
DOI URL |
[9] |
SCHRÖDER S, GROTZINGER J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, 2007, 164(1): 175-187.
DOI URL |
[10] |
GOLDBERG T, POULTON S W, STRAUSS H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: diagenetic constraints and seawater evolution[J]. Precambrian Research, 2005, 137(3/4): 223-241.
DOI URL |
[11] |
WANG J G, CHEN D Z, YAN D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306/307: 129-138.
DOI URL |
[12] | FIKE D A, GROTZINGER J P, PRATT L M, et al. Multi-stage Ediacaran Ocean oxidation and its impact on evolutionary radiation[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A173. |
[13] | 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. |
[14] | TYSON R V. The genesis and palynofacies characteristics of marine petroleum source rocks[J]. Marine Petroleum Source Rocks, 1987, 26(1): 47-67. |
[15] | TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: an overview[J]. Environmental Science, Geography, 1991, 58(1): 1-24. |
[16] |
VAN BENTUM E C V, REICHART G J, DAMSTE J S S. Organic matter provenance, palaeoproductivity and bottom water anoxia during the Cenomanian/Turonian oceanic anoxic event in the Newfoundland Basin (northern proto North Atlantic Ocean)[J]. Organic Geochemistry, 2012, 50: 11-18.
DOI URL |
[17] | 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京: 石油工业出版社, 2004. |
[18] |
WEN B, EVANS D A D, LI Y X, et al. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: stratigraphy, geochemistry, and paleoenvironment[J]. Precambrian Research, 2015, 271: 278-294.
DOI URL |
[19] |
SHEN W B, ZHU X K, XIE H Z. Tectonic-sedimentary evolution during initiation of the Tarim Basin: insights from late Neoproterozoic sedimentary records in the NW basin[J]. Precambrian Research, 2022, 371: 106598.
DOI URL |
[20] | 张传林, 叶海敏, 王爱国, 等. 塔里木西南缘新元古代辉绿岩及玄武岩的地球化学特征: 新元古代超大陆(Rodinia)裂解的证据[J]. 岩石学报, 2004, 20(3):473-482. |
[21] | 丁海峰, 马东升, 姚春彦, 等. 伊犁果子沟地区新元古代冰成沉积的碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评, 2014, 60(3): 666-676. |
[22] | 邬光辉, 李洪辉, 张立平, 等. 塔里木盆地麦盖提斜坡奥陶系风化壳成藏条件[J]. 石油勘探与开发, 2012, 39(2): 144-153. |
[23] |
YU B S, DONG H L, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
DOI URL |
[24] |
ZHOU X Q, CHEN D Z, DONG S F, et al. Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: implications for barium and sulfur cycling in the earliest Cambrian[J]. Precambrian Research, 2015, 263: 79-87.
DOI URL |
[25] |
SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
DOI URL |
[26] |
RIMMER S M, THOMPSON J A, GOODNIGHT S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215(1/2): 125-154.
DOI URL |
[27] |
CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
DOI PMID |
[28] |
WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
PMID |
[29] |
KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11): 995.
DOI URL |
[30] |
ELDERFIELD H, PAGETT R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175-197.
DOI URL |
[31] |
WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
DOI URL |
[32] |
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
DOI URL |
[33] |
SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
DOI URL |
[34] |
GERMAN C R, HOLLIDAY B P, ELDERFIELD H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558.
DOI URL |
[35] |
DUBININ A V. Geochemistry of rare earth elements in the ocean[J]. Lithology and Mineral Resources, 2004, 39(4): 289-307.
DOI URL |
[36] |
SLACK J F, GRENNE T, BEKKER A, et al. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 243-256.
DOI URL |
[37] |
GERMAN C R, MASUZAWA T, GREAVES M J, et al. Dissolved rare earth elements in the Southern Ocean: cerium oxidation and the influence of hydrography[J]. Geochimica et Cosmochimica Acta, 1995, 59(8): 1551-1558.
DOI URL |
[38] | 于炳松, 陈建强, 李兴武, 等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报, 2004, 22(1):59-66. |
[39] | 范青青, 卢双舫, 李文浩, 等. 中下寒武统海相地层地球化学特征及油气地质意义: 以塔里木盆地柯坪地区为例[J]. 中国矿业大学学报, 2019, 48(2): 377-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||