Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (1): 17-24.DOI: 10.13745/j.esf.2020.1.3
Previous Articles Next Articles
HUANG Yonghui1,2,3(), PANG Zhonghe1,2,4,*(), CHENG Yuanzhi1,2,4, KONG Yanlong1,2,4, WANG Jiyang1,2,4
Received:
2019-03-31
Revised:
2019-05-11
Online:
2020-01-20
Published:
2020-01-20
Contact:
PANG Zhonghe
CLC Number:
HUANG Yonghui, PANG Zhonghe, CHENG Yuanzhi, KONG Yanlong, WANG Jiyang. The development and outlook of the deep aquifer thermal energy storage (deep-ATES)[J]. Earth Science Frontiers, 2020, 27(1): 17-24.
特点 | 水箱蓄热 | 浅层含水层储热 | 深层含水层储热 |
---|---|---|---|
储热媒介 | 水 | 地下水/岩石 | 地下水/岩石 |
地质要求 | + | + + | + + + |
储热体积 | + | + + + | + + + |
可储热量 | + | + + | + + + |
空间需求 | + + + | + | + |
投资 | + + + | + | + |
环境影响 | + + | ++ | + |
Table 1 Comparison of three seasonal underground thermal energy storage (UTES) scheme. Modified from [6].
特点 | 水箱蓄热 | 浅层含水层储热 | 深层含水层储热 |
---|---|---|---|
储热媒介 | 水 | 地下水/岩石 | 地下水/岩石 |
地质要求 | + | + + | + + + |
储热体积 | + | + + + | + + + |
可储热量 | + | + + | + + + |
空间需求 | + + + | + | + |
投资 | + + + | + | + |
环境影响 | + + | ++ | + |
年份 | 地点/工程名称 | 当前状态 | 热源 | 注入温度/℃ | 深度/ m |
---|---|---|---|---|---|
1976 | Auburn University, Mobile/AL, USA | 实验/已关闭 | 电厂余热 | 55 | 40~61 |
1982 | SPEOS, Lausanne-Dorigny, Switzerland | 已关闭 | 废水处理厂余热 | 69 | 未知 |
1982 | Hørsholm, Denmark | 示范工程/已关闭 | 垃圾处理厂余热 | 100 | 10 |
1982 | University of Minnesota, St. Paul, USA | 实验/已关闭 | 未知 | 115 (150) | 180~240 |
1987 | Plaisir, Thiverval-Grignon, France | 实验/已关闭 | 未知 | 180 | 500 |
1991 | De Uithof, Universiteit Utrecht, Netherlands | 示范工程/已关闭 | 热电联供 | 90 | 4~45 |
1998 | Hooge Burch, Zwammerdam near Gouda, Netherlands | 示范工程/已关闭 | 热电联供 | 90 | 未知 |
1999 | Reichstag, Berlin, Germany | 示范工程/正在运行 | 热电联供 | 70 | 300 |
2004 | Neubrandenburg, Germany | 运行中 | 热电联供 | 75~80 | 1 250 |
2015 | Duiven, Netherlands | 可行性研究 | 垃圾处理厂余热 | 140 | 未知 |
2016 | BMW, TU Munich, Germany | 示范工程/运行中 | 未知 | 130 | 500~700 |
2017 | Hamburg, Germany | 运行中 | 垃圾处理厂余热 | 80~90 | 400~500 |
2017 | Bern, Switzerland | 计划 | 垃圾处理厂余热 | 90~100 | 500 |
Table 2 Overview of deep aquifer energy storage project[9]
年份 | 地点/工程名称 | 当前状态 | 热源 | 注入温度/℃ | 深度/ m |
---|---|---|---|---|---|
1976 | Auburn University, Mobile/AL, USA | 实验/已关闭 | 电厂余热 | 55 | 40~61 |
1982 | SPEOS, Lausanne-Dorigny, Switzerland | 已关闭 | 废水处理厂余热 | 69 | 未知 |
1982 | Hørsholm, Denmark | 示范工程/已关闭 | 垃圾处理厂余热 | 100 | 10 |
1982 | University of Minnesota, St. Paul, USA | 实验/已关闭 | 未知 | 115 (150) | 180~240 |
1987 | Plaisir, Thiverval-Grignon, France | 实验/已关闭 | 未知 | 180 | 500 |
1991 | De Uithof, Universiteit Utrecht, Netherlands | 示范工程/已关闭 | 热电联供 | 90 | 4~45 |
1998 | Hooge Burch, Zwammerdam near Gouda, Netherlands | 示范工程/已关闭 | 热电联供 | 90 | 未知 |
1999 | Reichstag, Berlin, Germany | 示范工程/正在运行 | 热电联供 | 70 | 300 |
2004 | Neubrandenburg, Germany | 运行中 | 热电联供 | 75~80 | 1 250 |
2015 | Duiven, Netherlands | 可行性研究 | 垃圾处理厂余热 | 140 | 未知 |
2016 | BMW, TU Munich, Germany | 示范工程/运行中 | 未知 | 130 | 500~700 |
2017 | Hamburg, Germany | 运行中 | 垃圾处理厂余热 | 80~90 | 400~500 |
2017 | Bern, Switzerland | 计划 | 垃圾处理厂余热 | 90~100 | 500 |
指标 | 定义 | 方程式 |
---|---|---|
热干扰强度 | 一口井附近区域的水温受另一口井的水温影响的变化程度 | 热突破时间[ |
热回收效率 | 从含水层中开采出来的热量与注入含水层中的热量的比值 | 热回收效率[ |
瑞利数 (Rayleigh number) | 含水层中自然对流和扩散热量、质量传递之比 | 瑞利数[ |
Table 3 The thermal performance indicators for high-temperature aquifer thermal storage system
指标 | 定义 | 方程式 |
---|---|---|
热干扰强度 | 一口井附近区域的水温受另一口井的水温影响的变化程度 | 热突破时间[ |
热回收效率 | 从含水层中开采出来的热量与注入含水层中的热量的比值 | 热回收效率[ |
瑞利数 (Rayleigh number) | 含水层中自然对流和扩散热量、质量传递之比 | 瑞利数[ |
储热模式 | 热回收率 | 参考文献 |
---|---|---|
深层含水层储热系统 | 60%~80% | [8,10,17] |
浅层含水层储热系统 | 45%~85% | [8,18] |
地埋管储热系统 | 40%~70% | [19-20] |
水箱蓄热 | 80%~90% | [20] |
Table 4 Comprehensive comparison of thermal recovery efficiencies of different thermal storage systems
储热模式 | 热回收率 | 参考文献 |
---|---|---|
深层含水层储热系统 | 60%~80% | [8,10,17] |
浅层含水层储热系统 | 45%~85% | [8,18] |
地埋管储热系统 | 40%~70% | [19-20] |
水箱蓄热 | 80%~90% | [20] |
模型 | 数值离散方法 | 特征与应用条件 |
---|---|---|
AQUA3D[ | 有限元 | 3-D;模拟地下水流动、质量传输与热传导过程 |
DuMux [ | 有限体积 | 3-D;开源模拟多孔介质与裂隙介质中的非等温多相流传输 |
FEFLOW[ | 有限元 | 3-D;多组分多相流的质量传输、热传导 |
FEHM[ | 控制体积有限元 | 3-D;多组分多相流的质量传输、热传导以及化学反应耦合过程 |
HST2D/3D[ | 有限差分 | 模拟饱和流体在多孔介质中的流动,可模拟地下水流随温度/压力的变化 |
TOUGH2[ | 积分式有限差分 | 3-D; 模拟非饱和/饱和流体在多孔介质与裂隙介质中的流动和传输过程 |
MT3DMS[ | 有限差分 | 3-D; 通常与MODFLOW进行耦合,可用于模拟地下水流动、质量传输与热传导过程 |
OpenGeoSys[ | 有限元 | 3-D;多孔介质与裂隙介质中的水力-传热-力学-化学(THMC)多物理场模拟 |
Table 5 Numerical simulation softwares and their characteristics for modeling groundwater flow and heat transport in aquifer
模型 | 数值离散方法 | 特征与应用条件 |
---|---|---|
AQUA3D[ | 有限元 | 3-D;模拟地下水流动、质量传输与热传导过程 |
DuMux [ | 有限体积 | 3-D;开源模拟多孔介质与裂隙介质中的非等温多相流传输 |
FEFLOW[ | 有限元 | 3-D;多组分多相流的质量传输、热传导 |
FEHM[ | 控制体积有限元 | 3-D;多组分多相流的质量传输、热传导以及化学反应耦合过程 |
HST2D/3D[ | 有限差分 | 模拟饱和流体在多孔介质中的流动,可模拟地下水流随温度/压力的变化 |
TOUGH2[ | 积分式有限差分 | 3-D; 模拟非饱和/饱和流体在多孔介质与裂隙介质中的流动和传输过程 |
MT3DMS[ | 有限差分 | 3-D; 通常与MODFLOW进行耦合,可用于模拟地下水流动、质量传输与热传导过程 |
OpenGeoSys[ | 有限元 | 3-D;多孔介质与裂隙介质中的水力-传热-力学-化学(THMC)多物理场模拟 |
大型深度含水层储能系统中 注入热水的温度/℃ | 成本价格/ (欧元·GJ-1) |
---|---|
75 | 3.5 |
93 | 1.9 |
Table 6 Cost price per GJ of thermal energy for the large high-temperature aquifer thermal storage system[8]
大型深度含水层储能系统中 注入热水的温度/℃ | 成本价格/ (欧元·GJ-1) |
---|---|
75 | 3.5 |
93 | 1.9 |
[1] | SCHMIDT T. The central solar heating plant with aquifer thermal energy store in Rostock: results after four years of operation [C]//Proceedings of Eurosun. Freiburg, Germany: International Solar Energy Society, 2004: 20-23. |
[2] |
JEON J, LEE S, PASQUINELLI L, et al. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well[J]. Energy, 2015, 90:1349-1359.
DOI URL |
[3] | 刘雪玲, 朱家玲, 刘立伟. 热泵耦合含水层储能技术应用研究[J]. 水文地质工程地质, 2009, 36:132-135. |
[4] | 赵新颖, 万曼影, 马捷. 地下含水层储能及其对环境影响的评估[J]. 能源研究与利用, 2004, 1:51-54. |
[5] | 马捷, 王明育, 戴斌. 地下含水层的储能和过程特性的分析[J]. 华北电力大学学报, 2004, 31:57-60. |
[6] | FLEUCHAUS P, GODSCHALK B, STOBER I, et al. Worldwide application of aquifer thermal energy storage:a review[J]. Renewable & Sustainable Energy Reviews, 2018, 94:861-876. |
[7] |
WESSELINK M, LIU W, KOORNNEEF J, et al. Conceptual market potential framework of high temperature aquifer thermal energy storage:a case study in the Netherlands[J]. Energy, 2018, 147:477-489.
DOI URL |
[8] | DRIJVER B, VAN AARSSEN M, ZWART B D. High-temperature aquifer thermal energy storage ( HT-ATES ) : sustainable and multi-usable [C]//Proceedings of the 12th international conference on energy storage.Lleida, Spain: International Energy Agency, 2012. |
[9] | HOLSTENKAMP L, NEIDIG P, STEFFAHN J, et al. Interdisciplinary review of medium-deep aquifer thermal energy in north Germany[J]. Energy Procedia, 2017, 142:327-336. |
[10] |
SCHOUT G, DRIJVER B, GUTIERREZ-NERI M, et al. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method[J]. Hydrogeology Journal, 2014, 22:281-291.
DOI URL |
[11] | KABUS F, WOLFGRAMM M, SEIBT A, et al. Aquifer thermal energy storage in Neubrandenburg: monitoring throughout three years of regular operation [C]//Proceedings of the EFFSTOCK conference. Stockholm, Sweden: Swedish Society of HVAC Engineers, 2009: 1-8. |
[12] |
UECKERT M, BAUMANN T. Hydrochemical aspects of high-temperature aquifer storage in carbonaceous aquifers: evaluation of a field study[J]. Geothermal Energy, 2019, 7(1):4.
DOI URL |
[13] |
GAO L, ZHAO J, AN Q, et al. A review on system performance studies of aquifer thermal energy storage[J]. Energy Procedia, 2017, 142:3537-3545.
DOI URL |
[14] | RANDOLPH J B, SAAR M. Combining geothermal energy capture with geologic carbon dioxide sequestration[J]. Geophysical Research Letters, 2011, 38:10. |
[15] |
GAO L, ZHAO J, AN Q, et al. Thermal performance of medium-to-high-temperature aquifer thermal energy storage systems[J]. Applied Thermal Engineering, 2019, 146:898-909.
DOI URL |
[16] |
ZHOU X, GAO Q, CHEN X, et al. Developmental status and challenges of GWHP and ATES in China[J]. Renewable and Sustainable Energy Reviews, 2015, 42:973-985
DOI URL |
[17] |
VAN LOPIK J H, HARTOG N, ZAADNOORDIJK W J. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems[J]. Hydrogeology Journal, 2016, 24:1255-1271.
DOI URL |
[18] |
BAKR M, VAN OOSTROM N, SOMMER W. Efficiency of and interference among multiple aquifer thermal energy storage systems: a Dutch case study[J]. Renewable Energy, 2013, 60:53-62.
DOI URL |
[19] | WENZLAFF C, WINTERLEITNER G, SCHÜTZ F. Controlling parameters of a mono-well high-temperature aquifer thermal energy storage in porous media, northern Oman[J]. Petroleum Geoscience, 2019: 2018-104. |
[20] | LANAHAN M, TABARES-VELASCO P. Seasonal thermal-energy storage: a critical review on BTES systems, modeling, and system design for higher system efficiency[J]. Energy, 2017, 10(6):743. |
[21] | TRAN M, ZUBA M, LE S, et al. Aqua-3D: an underwater network animator[J]. Oceans IEEE, 2012: 1-5. |
[22] |
FLEMISCH B, DARCIS M, ERBERSEDER K, et al. DuMux: DUNE for multi-{phase, component, scale, physics, …} flow and transport in porous media[J]. Advances in Water Resources, 2011, 34:1102-1112.
DOI URL |
[23] | DIERSCH H J G, BAUER D, HEIDEMANN W, et al. Finite element modeling of borehole heat exchanger systems[J]. Computational Geosciences, 2011, 37:1122-1135. |
[24] | ZYVOLOSKI G, FEHM: a control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer[J]. Los Alamos Unclassif, 2007: Rep. LA-UR-07-3359. |
[25] | KIPP K L Jr. Guide to the revised heat and solute transport simulator: HST3D Version 2[R]//Water-resources investigations report. Virginia:United States Geological Survey, 1997, 97:4157. |
[26] | PRUESS K, OLDENBURG C, MORIDIS G. TOUGH2 user's guide. Berkeley: Lawrence Berkeley National Laboratory, 2012: Rep. LBNL-43134. |
[27] | ZHENG C M. MT3D: a modular three-dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems[R]. Tuscaloosa: University of Alabama, 1992. |
[28] | KOLDITZ O, GÖRKE U J, SHAO H, et al. Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking[M]. Cham: Springer International Publishing, 2015. |
[29] |
WINTERLEITNER G, SCHÜTZ F, WENZLAFF C, et al. The impact of reservoir heterogeneities on high-temperature aquifer thermal energy storage systems: a case study from northern Oman[J]. Geothermics, 2018, 74:150-162.
DOI URL |
[30] |
KILKI&͐, &͐ F, WANG C, BJÖRK F, et al. Cleaner energy scenarios for building clusters in campus areas based on the rational exergy management model[J]. Journal of Cleaner Production, 2017, 155:72-82.
DOI URL |
[31] |
RÉVEILLÈRE A, HAMM V, LESUEUR H, et al. Geothermal contribution to the energy mix of a heating network when using aquifer thermal energy storage: modeling and application to the Paris basin[J]. Geothermics, 2013, 47:69-79.
DOI URL |
[32] | WERNER J. Environmental footprint of high temperature aquifer thermal energy storage[D]. Utrecht, Netherlands: University Utrecht, 2016. |
[33] |
WESSELINK M, LIU W, KOORNNEEF J, et al. Conceptual market potential framework of high temperature aquifer thermal energy storage:a case study in the Netherlands[J]. Energy, 2018, 147:477-489.
DOI URL |
[1] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[2] | LUO Wenxing, SUN Guoqiang, ZHOU Yang, LIU Demin, CHEN Qi. Discussion on the mechanism of deep geothermal energy transmission [J]. Earth Science Frontiers, 2020, 27(1): 10-16. |
[3] | PANG Zhonghe, LUO Ji, CHENG Yuanzhi, DUAN Zhongfeng, TIAN Jiao, KONG Yanlong, LI Yiman, HU Shengbiao, WANG Jiyang. Evaluation of geological conditions for the development of deep geothermal energy in China [J]. Earth Science Frontiers, 2020, 27(1): 134-151. |
[4] | KONG Yanlong, HUANG Yonghui, ZHENG Tianyuan, LU Renchao, PAN Sheng, SHAO Haibing, PANG Zhonghe. Principle and application of OpenGeoSys for geothermal energy sustainable utilization [J]. Earth Science Frontiers, 2020, 27(1): 170-177. |
[5] | KANG Fangchao, TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China [J]. Earth Science Frontiers, 2020, 27(1): 185-193. |
[6] | LI De-Wei. Earth system dynamics and reducing disaster and emission by development of geothermal energy [J]. Earth Science Frontiers, 2014, 21(6): 243-253. |
[7] | . A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery. [J]. Earth Science Frontiers, 2012, 19(3): 280-294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||