Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 385-402.DOI: 10.13745/j.esf.sf.2021.12.2
Previous Articles Next Articles
JIAO Xiaoqin1,2(), ZHANG Guanlong3, NIU Huapeng1,2,*(), WANG Shengzhu3, YU Hongzhou3, XIONG Zhengrong3, ZHOU Jian3, GU Wenlong1,2
Received:
2021-07-29
Revised:
2021-12-12
Online:
2022-07-25
Published:
2022-07-28
Contact:
NIU Huapeng
CLC Number:
JIAO Xiaoqin, ZHANG Guanlong, NIU Huapeng, WANG Shengzhu, YU Hongzhou, XIONG Zhengrong, ZHOU Jian, GU Wenlong. Genesis of Carboniferous volcanic rocks in northeastern Junggar Basin: New insights into the Junggar Ocean closure[J]. Earth Science Frontiers, 2022, 29(4): 385-402.
Fig.1 Simplified geological maps of the study area. (a) Geological sketch map of northwestern China, (b) tectonic sketch map of Junggar Basin (modified after [42-43]), and (c) geological sketch map of Wulungu
Fig.3 Classification diagrams for Carboniferous volcanic rocks of Wulungu. (a) (K2O+Na2O) vs. SiO2 diagram (adapted from [50]). (b) Zr/TiO2 vs. Nb/Y diagram (adapted from [51]). (c) K2O vs. SiO2 diagram (adapted from [52]). (d) AFM diagram (adapted from [53]).
Fig.4 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams for Carboniferous volcanic rocks of Wulungu (b). Chondrite-normalized and primitive mantle-normalized values from [56].
样品号 | 岩性 | Age/ Ma | wB/10-6 | 87Rb/86Sr | 87Sr/86Sr | ±2σ | (87Sr/86Sr)i | wB/10-6 | 147Sm/144Nd | 143Nd/144Nd | ±2σ | (143Nd/144Nd)t | εNd(t) | tDM1/ Ma | tDM2/ Ma | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Sr | Sm | Nd | ||||||||||||||
WG-2 | 玄武岩 | 305 | 9.8 | 306 | 0.09 | 0.704 875 | 0.000 009 | 0.704 474 | 1.64 | 5.70 | 0.174 0 | 0.512 939 | 0.000 009 | 0.512 939 | 6.8 | 810 | 483 |
WG-3 | 玄武岩 | 305 | 6.5 | 235 | 0.08 | 0.704 904 | 0.000 007 | 0.704 559 | 1.62 | 5.52 | 0.177 4 | 0.512 932 | 0.000 003 | 0.512 932 | 6.5 | 916 | 502 |
WG-4 | 玄武质安山岩 | 332 | 88.6 | 480 | 0.53 | 0.706 109 | 0.000 010 | 0.703 586 | 4.26 | 18.80 | 0.137 0 | 0.512 830 | 0.000 003 | 0.512 830 | 6.3 | 637 | 540 |
WG-5 | 玄武质安山岩 | 332 | 73.6 | 506 | 0.42 | 0.705 517 | 0.000 006 | 0.703 529 | 4.27 | 19.50 | 0.132 4 | 0.512 842 | 0.000 007 | 0.512 842 | 6.7 | 578 | 510 |
WG-6 | 安山岩 | 312 | 48.8 | 360 | 0.39 | 0.706 081 | 0.000 009 | 0.704 340 | 3.21 | 16.80 | 0.115 5 | 0.512 779 | 0.000 004 | 0.512 779 | 6.0 | 577 | 543 |
WG-7 | 安山岩 | 312 | 66.4 | 265 | 0.72 | 0.707 399 | 0.000 009 | 0.704 180 | 4.55 | 21.30 | 0.129 1 | 0.512 746 | 0.000 004 | 0.512 746 | 4.8 | 729 | 625 |
WG-1 | 安山岩 | 312 | 244.0 | 244 | 2.90 | 0.716 107 | 0.000 007 | 0.703 250 | 6.45 | 31.00 | 0.125 8 | 0.512 831 | 0.000 005 | 0.512 831 | 6.6 | 554 | 501 |
Table 2 Sr-Nd isotope compositions of Carboniferous volcanic rocks of Wulungu
样品号 | 岩性 | Age/ Ma | wB/10-6 | 87Rb/86Sr | 87Sr/86Sr | ±2σ | (87Sr/86Sr)i | wB/10-6 | 147Sm/144Nd | 143Nd/144Nd | ±2σ | (143Nd/144Nd)t | εNd(t) | tDM1/ Ma | tDM2/ Ma | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rb | Sr | Sm | Nd | ||||||||||||||
WG-2 | 玄武岩 | 305 | 9.8 | 306 | 0.09 | 0.704 875 | 0.000 009 | 0.704 474 | 1.64 | 5.70 | 0.174 0 | 0.512 939 | 0.000 009 | 0.512 939 | 6.8 | 810 | 483 |
WG-3 | 玄武岩 | 305 | 6.5 | 235 | 0.08 | 0.704 904 | 0.000 007 | 0.704 559 | 1.62 | 5.52 | 0.177 4 | 0.512 932 | 0.000 003 | 0.512 932 | 6.5 | 916 | 502 |
WG-4 | 玄武质安山岩 | 332 | 88.6 | 480 | 0.53 | 0.706 109 | 0.000 010 | 0.703 586 | 4.26 | 18.80 | 0.137 0 | 0.512 830 | 0.000 003 | 0.512 830 | 6.3 | 637 | 540 |
WG-5 | 玄武质安山岩 | 332 | 73.6 | 506 | 0.42 | 0.705 517 | 0.000 006 | 0.703 529 | 4.27 | 19.50 | 0.132 4 | 0.512 842 | 0.000 007 | 0.512 842 | 6.7 | 578 | 510 |
WG-6 | 安山岩 | 312 | 48.8 | 360 | 0.39 | 0.706 081 | 0.000 009 | 0.704 340 | 3.21 | 16.80 | 0.115 5 | 0.512 779 | 0.000 004 | 0.512 779 | 6.0 | 577 | 543 |
WG-7 | 安山岩 | 312 | 66.4 | 265 | 0.72 | 0.707 399 | 0.000 009 | 0.704 180 | 4.55 | 21.30 | 0.129 1 | 0.512 746 | 0.000 004 | 0.512 746 | 4.8 | 729 | 625 |
WG-1 | 安山岩 | 312 | 244.0 | 244 | 2.90 | 0.716 107 | 0.000 007 | 0.703 250 | 6.45 | 31.00 | 0.125 8 | 0.512 831 | 0.000 005 | 0.512 831 | 6.6 | 554 | 501 |
Fig.5 εNd(t) vs. 87Sr/86Sr(i) plot for Carboniferous volcanic rocks of Wulungu (adapted from [58]). LC—lower crust; UC—upper crust; DM—depleted mantle.
Fig.6 Geochemical classification plots for Carboniferous volcanic rocks of Wulungu. (a) 87Sr/86Sr(i) vs. SiO2 (adapted from [60]). (b) 143Nd/144Nd(t) vs. SiO2. (c) Nb/Zr vs. Th/Zr (adapted from [59]);(d) Th/Yb vs. Nb/Yb (adapted from [71]).
Fig.8 Tectonic discrimination diagrams for Carboniferous volcanic rocks from Wulungu. (a) TiO2 vs. Zr (adapted from [54], data partly from [10,26]). (b) Ce/Nb vs. Th/Nb (adapted from [85], data partly from [10,26]).(c) Nb-Zr-Y diagram (adapted from [86]). (A1+A2)—WPB-alkaline basalts; (A2+C)—WPB tholeiite; B—E-MORB; (C+D)—volcanic basalts. (d) Hf/3-Th-Ta diagram (adapted from [21]).
[1] | COLEMAN R G. Continental growth of northwest China[J]. Tectonics, 1989, 8(3): 621-635. |
[2] | 肖序常, 汤耀庆, 李锦铁. 新疆北部及其邻区的构造演化[M]. 北京: 地质出版社, 1992: 1-180. |
[3] | JAHN B M, WINDLEY B, NATAL’IN B, et al. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 23(5): 599-603. |
[4] | 陈发景, 汪新文, 汪新伟. 准噶尔盆地的原型和构造演化[J]. 地学前缘, 2005, 12(3): 77-89. |
[5] | 李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006, 80(1): 148-168. |
[6] | 朱永峰, 王涛, 徐新. 新疆及邻区地质与矿产研究进展[J]. 岩石学报, 2007, 23(8): 1785-1794. |
[7] | FENG Y, COLEMAN R G, TILTON G, et al. Tectonic evolution of the west Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8(4): 729-752. |
[8] | 梁云海, 李文铅, 李卫东. 新疆准噶尔造山带多旋回开合构造特征[J]. 地质通报, 2004, 23(3): 279-285. |
[9] | 肖文交, 韩春明, 袁超, 等. 新疆北部石炭纪-二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 2006, 22(5): 1062-1076. |
[10] | 毛治国, 邹才能, 朱如凯, 等. 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义[J]. 岩石学报, 2010, 26(1): 207-216. |
[11] | KOVALENKO V I, YARMOLYUK V V, KOVACH V P, et al. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence[J]. Journal of Asian Earth Sciences, 2004, 23(5): 1-627. |
[12] | 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(8): 2201-2210. |
[13] | 任收麦, 黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J]. 地球物理学进展, 2002, 17(1): 113-120. |
[14] | BUCKMAN S, AITCHISON J C. Tectonic evolution of Palaeozoic terranes in West Junggar, Xinjiang, NW China[J]. Geological Society London Special Publications, 2004, 226(1): 101-129. |
[15] | 雷敏, 赵志丹, 侯青叶, 等. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比[J]. 岩石学报, 2008, 24(4): 661-672. |
[16] | CARROLL A R, LIANG Y, GRAHAM S A, et al. Junggar Basin, northwest China: trapped Late Paleozoic ocean[J]. Tectonophysics, 1990, 181: 1-14. |
[17] | 王方正, 杨梅珍, 郑建平. 准噶尔盆地岛弧火山岩地体拼合基底的地球化学证据[J]. 岩石矿物学杂志, 2002, 21(1): 1-10. |
[18] | 龙晓平, 孙敏, 袁超, 等. 东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J]. 岩石学报, 2006, 22(1): 31-40. |
[19] | YANG X F, HE DF, WAND Q C, et al. Tectonostraphic evolution of the Carboniferous arc-related basin in the East Junggar Basin, northwest China: insights into its link with the subduction process[J]. Gondwana Research, 2012, 22: 1030-1046. |
[20] | 张峰, 陈建平, 徐涛, 等. 东准噶尔晚古生代依旧存在俯冲消减作用: 来自石炭纪火山岩岩石学、 地球化学及年代学证据[J]. 大地构造与成矿学, 2014, 38(1): 140-156. |
[21] | LI D, HE D F, TANG Y. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): implications for the architecture and evolution of the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2016, 121: 84-107. |
[22] | 王道永, 邓江红. 东准噶尔地区板块构造特征及演化[J]. 成都理工学院学报, 1995, 22(4): 38-45. |
[23] | 韩宝福, 何国琦, 王式洸. 后碰撞幔源岩浆活动、 底垫作用及准噶尔盆地基底的性质[J]. 中国科学D辑: 地球科学, 1999, 29(1): 16-21. |
[24] | 赵泽辉, 郭召杰, 韩宝福, 等. 新疆三塘湖盆地古生代晚期火山岩地球化学特征及其构造-岩浆演化意义[J]. 岩石学报, 2006, 22(1): 199-214. |
[25] | 赵霞, 贾承造, 张光亚, 等. 准噶尔盆地陆东-五彩湾地区石炭系中、 基性火山岩地球化学及其形成环境[J]. 地学前缘, 2008, 15(2): 272-279. |
[26] | 吴小奇, 刘德良, 魏国齐, 等. 准噶尔盆地陆东-五彩湾地区石炭系火山岩地球化学特征及其构造背景[J]. 岩石学报, 2009, 25(1): 55-66. |
[27] | 吴庆福. 论准噶尔中间地块的存在及其在哈萨克斯坦板块构造演化中的位置[C]//《中国北方板块构造论文集》编委会. 中国北方板块构造论文集. 第2辑. 北京: 地质出版社, 1987: 29-38. |
[28] | 杨宗仁, 顾焕明. 准噶尔盆地基底性质及演化: 航磁资料初步处理结果讨论[J]. 新疆石油地质, 1987, 8(2): 37-45. |
[29] | 李天德, POLIYANGSIJI B H. 中国和哈萨克斯坦阿尔泰大地构造及地壳演化[J]. 新疆地质, 2001, 19(1): 27-32. |
[30] | 江远达. 关于准噶尔地区基底问题的初步探讨[J]. 新疆地质, 1984, 2(1): 11-16. |
[31] | ZHENG J P, SUN M, ZHAO G C, et al. Elemental and Sr-Nd-Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: implications for the formation and evolution of the basin basement[J]. Journal of Asian Earth Sciences, 2007, 29: 778-794. |
[32] | XU X W, JIANG N, LI X H, et al. Tectonic evolution of the East Junggar terrane: evidence from the Taheir tectonic window, Xinjiang, China[J]. Gondwana Research, 2013, 24: 578-600. |
[33] | 李锦轶. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J]. 岩石学报, 1995, 11(增刊1): 73-84. |
[34] | 张旗, 周国庆, 王焰. 中国蛇绿岩的分布、 时代及其形成环境[J]. 岩石学报, 2003, 19(1): 1-8. |
[35] | 张元元, 郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、 西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 2010, 26(2): 421-430. |
[36] | 李锦轶, 肖序常, 汤耀庆, 等. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J]. 地质论评, 1990, 36(4): 305-316. |
[37] | 李春昱, 汤耀庆. 亚洲古板块划分以及有关问题[J]. 地质学报, 1983, 4(1): 1-10. |
[38] | SENGOR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. |
[39] | 王方正, 杨梅珍, 郑建平. 准噶尔盆地陆梁地区基底火山岩的岩石地球化学及其构造环境[J]. 岩石学报, 2002, 18(1): 9-16. |
[40] |
何登发, 陈新发, 张义杰, 等. 准噶尔盆地油气富集规律[J]. 石油学报, 2004, 25(3): 1-10.
DOI |
[41] | XIAO W J, HAN C M, YUAN C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 102-117. |
[42] | 杨朝, 赵淑娟, 李三忠, 等. 准噶尔盆地东北缘乌伦古坳陷油气成藏的构造制约[J]. 地质科学, 2015, 50(2): 536-552. |
[43] | LI D, HE D F, SANTOSH M, et al. Tectonic framework of the northern Junggar Basin Part I: the eastern Luliang Uplift and its link with the east Junggar terrane[J]. Gondwana Research, 2015, 27: 1089-1109. |
[44] | 张朝军, 何登发, 吴晓智, 等. 准噶尔多旋回叠合盆地的形成与演化[J]. 中国石油勘探, 2006, 49(1): 47-58. |
[45] | 吴晓智, 赵永德, 李策. 准噶尔东北缘前陆盆地构造演化与油气关系[J]. 新疆地质, 1996, 14(4): 297-305. |
[46] | 何川. 乌伦古坳陷侏罗系层序地层与沉积特征研究[D]. 青岛: 中国石油大学(华东), 2006: 17-19. |
[47] | 赵卫军, 王小娥, 陈勇, 等. 准噶尔盆地陆梁隆起西部地区油气沿不整合面运移的规律[J]. 天然气勘探与开发, 2007, 31(2): 5-11. |
[48] | LI D, HE D F, SANTOSH M, et al. Tectonic framework of the northern Junggar Basin Part II: the island arc basin system of the western Luliang Uplift and its link with the west Junggar terrane[J]. Gondwana Research, 2015, 27(3): 1110-1130. |
[49] | LIU W G, WEI S, ZHANG J, et al. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 953-960. |
[50] | BAS M J L, MAITRE R W L, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3): 745-750. |
[51] | WINCHESTER J A and FLOYD P A. Geochemical discrimination of different magma series and their differentiation proaucts using immlobile elements[J]. Chemical geology, 1977, 20: 325-347. |
[52] | RICKWOOD P C. Boundary lines within petrological diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. |
[53] | IRVINE T N, BARAGER W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. |
[54] | PEARCE J A, CANN J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 1973, 19(2): 290-300. |
[55] | GREEN D H. Experimental testing of ‘equilibrium’ partial melting of peidotite under water-saturated, high pressure conditions[J]. The Canadian Mineralogist, 1976, 14(3): 255-268. |
[56] | SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42: 313-345. |
[57] | ROLLINSON H R. Using geochemical data:evaluation, presentation, and interpretation[M]. Singapore: Longman Scientific and Technical, 1993: 352-353. |
[58] | DOSSO L, MURTHY V R. A Nd isotopic study of the Kerguelen Islands: inferences on enriched oceanic mantle sources[J]. Earth & Planetary Science Letters, 1980, 48(2): 268-276. |
[59] | LI D, HE D F, MA D L, et al. Carboniferous-Permian tectonic framework and its later modifications to the area from eastern Kazakhstan to southern Altai: insights from the Zaysan-Jimunai Basin evolution[J]. Journal of Asian Earth Sciences, 2015, 113: 16-35. |
[60] | KAYGUSUZ A, ARSLAN M, SIEBEL W, et al. LA-ICP-MS zircon dating, whole-rock and Sr-Nd-Pb-O isotope geochemistry of the Camiboaz pluton, Eastern Pontides, NE Turkey: implications for lithospheric mantle and lower crustal sources in arc-related I-type magmatism[J]. Lithos, 2014, 192/193/194/195: 271-290. |
[61] | SHINJO R, KATO Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4): 117-137. |
[62] | SAUNDERS A D, STOREY M, KENT R W, et al. Consequences of plume lithosphere interaction[J]. The Geological Society Special Publication, 1992, 68: 41-60. |
[63] | KIEFFER B, ARNDT N, LAPIERRE H, et al. Flood and shield basalts from Ethiopia: magmas from the African superswell[J]. Journal of Petrology, 2004, 45(4): 793-834. |
[64] | REDMAN I S, KEAYS R R. Archean volcanism in the eastern Goldfields province, Western Australia[J]. Precambrian Research, 1985, 30: 113-152. |
[65] | ARNDT N T, JENNER G A. Crustally contaminated komatiites and basalts from Kambalda, Western Australia[J]. Chemical Geology, 1986, 56: 229-255. |
[66] | SAUNDERS A D, TARNEY J. Geochemical characteristics of basaltic volcanism within back-arc basins[J]. Geological Society, 1984, 16(1): 59-76. |
[67] | MCCULLOCH MT, GAMBLE JA. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102: 358-374. |
[68] | BORG L E, NYQUIST L E, TAYLOR L A, et al. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201[J]. Geochimica et Cosmochimica Acta, 1997, 61(22): 4915-4931. |
[69] | SAJONA, FERNANDO G, MAURY R C. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology, 1993, 21(11): 1007-1007. |
[70] | EILER J M, CRAWFORD A, ELLIOTT T, et al. Oxygen isotope geochemistry of oceanic-arc lavas[J]. Journal of Petrology, 2000, 41: 229-256. |
[71] | PEARCE J A, PEATE D W. Tectonic implications for the composition of volcanic arc magmas[J]. Annual Reviews Earth and Planetary Sciences, 1995, 23: 251-285. |
[72] | PLANK T, LANGMUIR C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325-394. |
[73] | HOFMANN A, JOCHUM K, SEUFERT M, et al. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth & Planetary Science Letters, 1986, 33: 33-45. |
[74] | ISHIKAWA T, FUJISAWA S, NAGAISHI K, et al. Trace element characteristics of the fluid liberated from amphibolite-facies slab: inference from the metamorphic sole beneath the Oman ophiolite and implication for boninite genesis[J]. Earth & Planetary Science Letters, 2005, 240(2): 355-377. |
[75] | 王超, 马星华, 陈斌, 等. 新疆哈尔里克山地区晚石炭世火山作用: 锆石U-Pb年代学、 元素地球化学及Sr-Nd同位素研究[J]. 岩石学报, 2017, 33(2): 440-454. |
[76] | CARSTEN M. The Isotope and trace element budget of the Cambrian devil river arc system, New Zealand: identification of four source components[J]. Journal of Petrology, 2000, 41(6): 759-788. |
[77] | ZONENSHAIN L P. The evolution of Central Asiatic geosynclines through sea-floor spreading[J]. Tectonophysics, 1973, 19(3): 213-232. |
[78] | 李锦轶. 试论新疆东准噶尔早古生代岩石圈板块构造演化[J]. 中国地质科学院院报, 1991, 23(2): 1-12. |
[79] | 何国琦, 李茂松, 贾进斗, 等. 论新疆东准噶尔蛇绿岩的时代及其意义[J]. 北京大学学报(自然科学版), 2001, 37(6): 852-858. |
[80] | 杨树德. 新疆北部的古板块构造[J]. 新疆地质, 1994, 12(1): 1-8. |
[81] | 张海祥, 牛贺才, HIROAKI S, 等. 新疆北部晚古生代埃达克岩、 富铌玄武岩组合: 古亚洲板块南向俯冲的证据[J]. 高校地质学报, 2004, 10(1): 106-113. |
[82] | 许继峰, 梅厚钧, 于学元, 等. 准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩: 消减板片部分熔融的产物[J]. 科学通报, 2001, 46(8): 684-688. |
[83] | SEGHEDI I, DOWNES H, PECSKAY Z, et al. Magmagenesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians[J]. Lithos, 2001, 57: 237-262. |
[84] | TAMIMOUNT A, DOMINIQUE W, ANDRE G, et al. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence[J]. Lithos, 1998, 45(1/2/3/4): 371-393. |
[85] | SONG X Y, ZHOU M F, CAO Z M, et al. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume[J]. Journal of Geological Society, 2004, 161(5): 773-781. |
[86] | MESCHEDE M A. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. |
[87] | ZHANG J E, XIAO W J, HAN C M, et al. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China[J]. Lithos, 2011, 125: 592-606. |
[88] | CAI K, SUN M, YUAN C, et al. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: implications for geodynamic change of the accretionary orogenic belt[J]. Gondwana Research, 2012, 22: 681-698. |
[89] | SUN M, YUAN C, XIAO W, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 2008, 247: 352-383. |
[90] | ZHANG X, ZHANG H. Geochronological, geochemical, and Sr-Nd-Hf isotopic studies of the Baiyanghe A-type granite porphyry in the Western Junggar: implications for its petrogenesis and tectonic setting[J]. Gondwana Research, 2014, 25: 1554-1569. |
[91] | ZHANG Z C, ZHOU G, KUSKY T M, et al. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 2009, 16: 201-215. |
[92] | KUIBIDA M L, KRUK N N, VLADIMIROV A G, et al. U-Pb isotopic age, composition, and sources of the plagiogranites of the Kalba Range, Eastern Kazakhstan[J]. Doklady Earth Sciences, 2009, 424: 72-76. |
[93] | 宋利宏. 卡拉麦里断裂带形成与演化规律[D]. 合肥: 合肥工业大学, 2015: 64-65. |
[94] | ZHOU T F, YUAN F, FAN Y, et al. Granites in the Saur region of the west Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008, 106(3/4): 191-206. |
[95] | CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115: 137-152. |
[96] | 刘家远, 喻亨祥, 吴郭泉. 新疆东准噶尔两类碱性花岗岩及其地质意义[J]. 矿物岩石地球化学通报, 1999, 18(2): 21-26. |
[97] | HE D F, LI D, FAN C, et al. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, Northwest China: insights into the continental growth of Central Asia[J]. Gondwana Research, 2013, 24: 560-577. |
[98] | 郑建平, 王方正, 成中梅, 等. 拼合的准噶尔盆地基底: 基底火山岩Sr-Nd同位素证据[J]. 地球科学, 2000, 25(2): 179-185. |
[99] | 李锦轶. 新疆东部新元古代晚期和古生代构造格局及其演变[J]. 地质论评, 2004, 50(3): 304-322. |
[1] | LI Shan, WU Huaichun, FANG Qiang, XU Junjie, SHI Meinan. Cyclostratigraphy of the Devonian/Carboniferous boundary sections in South China [J]. Earth Science Frontiers, 2022, 29(3): 329-339. |
[2] | KOU Caihua, LIU Yanxue, LI Jiang, LI Tingdong, DING Xiaozhong, LIU Yong, JIN Shengkai. Geochronology and geochemistry of 830 Ma gabbro in the western segment of the Jiangnan Orogen and constraint on its petrogenesis [J]. Earth Science Frontiers, 2022, 29(2): 218-233. |
[3] | Xiaojun WANG, Yong SONG, Baoli BIAN, Junmeng ZHAO, Heng ZHANG, Maodu YAN, Shunping PEI, Qiang XU, Shuaijun WANG, Hongbing LIU, Changhui JU. Basement structure of the Junggar Basin [J]. Earth Science Frontiers, 2021, 28(6): 235-255. |
[4] | ZHAO Junmeng, ZHANG Peizhen, ZHANG Xiankang, Xiaohui YUAN, Rainer KIND, Robert van der HILST, GAN Weijun, SUN Jimin, DENG Tao, LIU Hongbing, PEI Shunping, XU Qiang, ZHANG Heng, JIA Shixu, YAN Maodu, GUO Xiaoyu, LU Zhanwu, YANG Xiaoping, DENG Gong, JU Changhui. Crust-mantle structure and geodynamic processes in western China and their constraints on resources and environment: Research progress of the ANTILOPE Project [J]. Earth Science Frontiers, 2021, 28(5): 230-259. |
[5] | ZHANG Xionghua, HUANG Xing, ZHANG Meng, GAO Lu, ZHANG Kexin. Carboniferous tectonostratigraphic regionalization and stratigraphic framework in China [J]. Earth Science Frontiers, 2021, 28(5): 362-379. |
[6] | ZHANG Jibiao, DING Xiaozhong, LIU Yanxue. Petrogenesis and tectonic significance of OIB- and arc-type volcanic rocks in the western Yangtze Block: From intracontinental rifting to subduction [J]. Earth Science Frontiers, 2021, 28(4): 250-266. |
[7] | LI Yongjun, LI Hai, NING Wentao, XU Qian, REN Pengfei, TAO Xiaoyang. Redefining the Heishantou Formation and defining the Aketamu Formation in West Junggar, Xinjiang [J]. Earth Science Frontiers, 2021, 28(2): 348-361. |
[8] | PENG Bo, LIU Chenglin, QI Kening, LIU Dapeng, WANG Jiaqi, LI Zongxing, MA Yinsheng, HU Junjie. Sedimentary di fferentiation characteristics of and the main factors controlling the Upper Devonian-Lower Carboni ferous sediments in the eastern Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(1): 104-114. |
[9] | LIU Chenglin, ZHANG Yu, YANG Shenghao, LI Zongxing, TIAN Jixian, PENG Bo, MA Yinsheng, YANG Yuanyuan, KONG Hua. Marine frontier basin petroleum resources assessment: A case study of the Carboniferous of the Delingha Depression, Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(1): 295-307. |
[10] | SHEN Yang, WANG Xunlian, LI Yukun, YANG Zhihua, CEN Wuxuan, WANG Xuebing. Carboniferous foraminifers from the Shangsi area in southern Guizhou and the Visean foraminiferal succession in South China [J]. Earth Science Frontiers, 2020, 27(6): 213-233. |
[11] | ZHU Qiang, SHI Ke, WU Libin, JIANG Laili, HU Zhaoqi, XU Shengfa, WENG Wangfei. Continued subduction of the Yangtze Plate in the Middle Neoproterozoic: new evidence based on the geochronology and petro-geochemistry of island arc volcanic rocks in the Nanhua Period [J]. Earth Science Frontiers, 2020, 27(4): 17-32. |
[12] | DONG Yang, LIU Jingdang, LIU Jin, DOU Shiyong, LIU Su, ZHANG Yanfei, LIANG Shuai, YANG Peiqi, LIANG Tianyi. Geological characteristics and tectonic significance of Carboniferous adakite-like granite in the Boketu area of eastern Inner Mongolia [J]. Earth Science Frontiers, 2020, 27(4): 135-149. |
[13] | PEI Shengliang, DING Rufu, SHAN Lihua, YANG Wusheng. Zircon U-Pb geochronology and geochemistry of the Kekebieketi basic complex in Fuyun, Xinjiang and the geological significance [J]. Earth Science Frontiers, 2020, 27(4): 184-198. |
[14] | LI Wenyuan, WANG Yalei, QIAN Bing, LIU Yuegao, HAN Yixiao. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block [J]. Earth Science Frontiers, 2020, 27(2): 276-293. |
[15] | ZHANG Baoyue,SUN Jiankun,LUO Xiong,JIN Weijun,WANG Long,DU Xueliang,CHEN Wanfeng,DU Jun,ZHANG Qi,ZHU Yueqin. Data analysis of major and trace element of gabbro clinopyroxene from different tectonic setting [J]. Earth Science Frontiers, 2019, 26(4): 33-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||