Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 329-339.DOI: 10.13745/j.esf.sf.2021.12.1
Previous Articles Next Articles
LI Shan1,2(), WU Huaichun1,2,*(
), FANG Qiang1,2, XU Junjie1,2, SHI Meinan1,2
Received:
2021-08-01
Revised:
2021-11-20
Online:
2022-05-25
Published:
2022-04-28
Contact:
WU Huaichun
CLC Number:
LI Shan, WU Huaichun, FANG Qiang, XU Junjie, SHI Meinan. Cyclostratigraphy of the Devonian/Carboniferous boundary sections in South China[J]. Earth Science Frontiers, 2022, 29(3): 329-339.
长偏心率/ka | 短偏心率/ka | 斜率/ka | 岁差/ka | 轨道参数周期比例 | 文献来源 | ||
---|---|---|---|---|---|---|---|
405 | 130 | 98.6 | 34.6 | 23.0 | 17.4 | 23.3∶7.5∶5.7∶2.0∶1.3∶1 | Waltham等[ |
405 | 130 | 98.6 | 31.6 | 21.1 | 20.3 | 19.9∶6.4∶4.9∶1.6∶1.0∶1 | Berger等[ |
405 | 130 | 100 | 34 | 22.1 | 17.8 | 22.7∶7.2∶5.6∶1.9∶1.2∶1 | Ma等[ |
Table 1 Earth’s orbital period and ratio during the Late Devonian
长偏心率/ka | 短偏心率/ka | 斜率/ka | 岁差/ka | 轨道参数周期比例 | 文献来源 | ||
---|---|---|---|---|---|---|---|
405 | 130 | 98.6 | 34.6 | 23.0 | 17.4 | 23.3∶7.5∶5.7∶2.0∶1.3∶1 | Waltham等[ |
405 | 130 | 98.6 | 31.6 | 21.1 | 20.3 | 19.9∶6.4∶4.9∶1.6∶1.0∶1 | Berger等[ |
405 | 130 | 100 | 34 | 22.1 | 17.8 | 22.7∶7.2∶5.6∶1.9∶1.2∶1 | Ma等[ |
化石带 | 牙形类化石带的持续时间/ka | ||
---|---|---|---|
睦化II | 大坡上 | 度里 | |
Si. duplicata | 54.1 | 30.7 | 10 |
Si. bransoni | 32.1 | 17.6 | 15 |
Si. sulcata | 41.2 | 38.2 | 23.3 |
Pr. kockeli | 35.1 | 20.6 | 27 |
ckI | 32.4 | 35.4 | 45.8 |
Table 2 Astrochronological calibrated duration (in ka) of conodont zones of three studied sections
化石带 | 牙形类化石带的持续时间/ka | ||
---|---|---|---|
睦化II | 大坡上 | 度里 | |
Si. duplicata | 54.1 | 30.7 | 10 |
Si. bransoni | 32.1 | 17.6 | 15 |
Si. sulcata | 41.2 | 38.2 | 23.3 |
Pr. kockeli | 35.1 | 20.6 | 27 |
ckI | 32.4 | 35.4 | 45.8 |
[1] | 郄文昆, 马学平, 徐洪河, 等. 中国泥盆纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 115-138. |
[2] |
SIMAKOV K V. The dynamics and biochronological structure of the Hangenbergian bioevent[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 104: 127-137.
DOI URL |
[3] | WALLISER O H. Pleading for a natural D/C boundary[J]. CFS Courier Forschungsinstitut Senckenberg, 1984, 67: 241-246. |
[4] |
BRAND U, LEGRAND-BLAIN M, STREEL M. Biochemostratigraphy of the Devonian-Carboniferous boundary global stratotype section and point, Griotte Formation, La Serre, Montagne Noire, France[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205(3/4): 337-357.
DOI URL |
[5] |
JOACHIMSKI M M, BREISIG S, BUGGISCH W, et al. Devonian climate and reef evolution: insights from oxygen isotopes in apatite[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 599-609.
DOI URL |
[6] |
BRUGGER J, HOFMANN M, PETRI S, et al. On the sensitivity of the Devonian climate to continental configuration, vegetation cover, orbital configuration, CO2 concentration, and insolation[J]. Paleoceanography and Paleoclimatology, 2019, 34(8): 1375-1398.
DOI URL |
[7] |
MYROW P M, RAMEZANI J, HANSON A E, et al. High-precision U-Pb age and duration of the latest Devonian (Famennian) Hangenberg event, and its implications[J]. Terra Nova, 2014, 26(3): 222-229.
DOI URL |
[8] |
KAISER S I, ARETZ M, BECKER R T. The global Hangenberg Crisis (Devonian-Carboniferous transition): review of a first-order mass extinction[J]. Geological Society, London, Special Publications, 2015, 423(1): 387-437.
DOI URL |
[9] | BECKER R T, HOUSE M R. Devonian ammonoid zones and their correlation with established series and stage boundaries[J]. CFS Courier Forschungsinstitut Senckenberg, 2000, 220(220): 113-151. |
[10] |
PAPROTH E, FEIST R, FLAJS G. Decision on the Devonian-carboniferous stratotype[J]. Episodes, 1991, 14(4): 331-336.
DOI URL |
[11] | SPALLETTA C, PERRI M C, OVER D J, et al. Famennian (Upper Devonian) conodont zonation: revised global standard[J]. Bulletin of Geosciences, 2017, 92(1): 31-57. |
[12] |
CLAOUÉ-LONG J C, KING R W, KERRICH R. Reply to comment by F. Corfu and D.W. Davis on “Archaean hydrothermal zircon in the Abitibi greenstone belt: constraints on the timing of gold mineralisation”[J]. Earth and Planetary Science Letters, 1992, 109(3/4): 601-609.
DOI URL |
[13] |
MENNING M, BELKA Z, CHUVASHOV B, et al. The optimal number of Carboniferous series and stages[J]. Newsletters on Stratigraphy, 2001, 38(2/3): 105-111
DOI URL |
[14] |
TRAPP E, KAUFMANN B, MEZGER K, et al. Numerical calibration of the Devonian-Carboniferous boundary: two new U-Pb isotope dilution-thermal ionization mass spectrometry single-zircon ages from Hasselbachtal (Sauerland, Germany)[J]. Geology, 2004, 32(10): 857-860
DOI URL |
[15] | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报, 2011, 36(3): 409-428. |
[16] |
LASKAR J, CORREIA A C M, GASTINEAU M, et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars[J]. Icarus, 2004, 170(2): 343-364.
DOI URL |
[17] |
HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1703-1734.
DOI URL |
[18] |
DE VLEESCHOUWER D, WHALEN M T, Jed DAY J E, et al. Cyclostratigraphic calibration of the Frasnian (Late Devonian) time scale (western Alberta, Canada)[J]. Geological Society of America Bulletin, 2012, 124(5/6): 928-942.
DOI URL |
[19] |
DE VLEESCHOUWER D, RAKOCI ŃSKI M, RACKI G, et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland)[J]. Earth and Planetary Science Letters, 2013, 365: 25-37.
DOI URL |
[20] |
DE VLEESCHOUWER D, DA SILVA A C, SINNESAEL M, et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity[J]. Nature Communications, 2017, 8(1): 2268.
DOI URL |
[21] |
DA SILVA A C, HLADIL J, CHADIMOVÁ L, et al. Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian-Pragian sediments (Prague Synform, Czech Republic)[J]. Earth and Planetary Science Letters, 2016, 455: 125-139.
DOI URL |
[22] | GONG Y M, LI B H, WU Y. Devonian frasnian-famennian transitional milankovitch cycles and high-resolution stratigraphic correlation[J]. Acta Geologica Sinica(English Edition), 2001, 75(4): 354-363. |
[23] | 季强, 魏家庸, 王洪第, 等. 贵州长顺睦化泥盆-石炭系界线研究取得重大突破: 介绍大坡上泥盆-石炭系界线剖面[J]. 中国地质, 1988, 15(3): 28-30. |
[24] | 季强. 泥盆纪-石炭纪之交的牙形类动物群演替与界线层型研究[C]// 中国地质科学院地层古生物论文集编委会. 地层古生物论文集(第二十八辑). 北京: 地质出版社, 2004: 118-130. |
[25] | 侯鸿飞, 季强, 吴祥和, 等. 贵州睦化泥盆-石炭系界线[M]. 北京: 地质出版社, 1985: 14-50. |
[26] | 王训练, 李世隆, 王约. 华南上泥盆统和下石炭统层序地层学[J]. 地球学报(中国地质科学院院报), 1997, 18(1): 98-105. |
[27] |
LIU Y Q, JI Q, KUANG H W, et al. U-Pb zircon age, sedimentary facies, and sequence stratigraphy of the Devonian-carboniferous boundary, daposhang section, Guizhou, China[J]. Palaeoworld, 2012. 21(2): 100-107.
DOI URL |
[28] | 聂婷. 华南上泥盆统法门阶至下石炭统杜内阶牙形石生物地层和腕足动物群[D]. 北京: 北京大学, 2019: 1-136. |
[29] | 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. |
[30] | 马文璞. 区域构造解析:方法理论和中国板块构造[M]. 北京: 地质出版社, 1992: 308. |
[31] | 舒良树, 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报, 2006, 12(4): 418-431. |
[32] | 白志强. 泥盆纪华南板块古地理的位置及其漂移[J]. 北京大学学报(自然科学版), 1998, 34(6): 807-812. |
[33] | BLAKEY R C. Chapter 7 Pennsylvanian-Jurassic sedimentary basins of the Colorado plateau and southern rocky mountains[J]. Sedimentary Basins of the World, 2008, 5: 245-296. |
[34] |
DE VLEESCHOUWER D, PARNELL A C. Reducing time-scale uncertainty for the Devonian by integrating astrochronology and Bayesian statistics[J]. Geology, 2014, 42(6): 491-494.
DOI URL |
[35] | SCHÖNLAUB H P. Significant geological events in the Paleozoic record of the Southern Alps (Austrian part)[M]//WALLISER O H. Global bio-events. Berlin, Heidelberg: Springer, 1986: 161-167. |
[36] | SCHÖNLAUB H P. The Devonian-Carboniferous boundary at Grüne Schneid section (Carnic Alps), a review[J]. Annales De La Société Géologique De Belgique, 2010, 115: 661-664. |
[37] |
KAISER S I, KUMPAN T, RASSER M W. High-resolution conodont biostratigraphy in two key sections from the Carnic Alps (Grüne Schneid) and Graz Paleozoic (Trolp): implications for the biozonation concept at the Devonian-Carboniferous boundary[J]. Newsletters on Stratigraphy, 2020, 53(3): 249-274.
DOI URL |
[38] |
KAISER S I, BECKER R T, STEUBER T, et al. Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian-Carboniferous boundary in the eastern Anti-Atlas (SE Morocco)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3/4): 340-364.
DOI URL |
[39] | 刘犟嗣. 泥盆纪-石炭纪之交生物大灭绝期生物地球化学循环及其环境背景[D]. 武汉: 中国地质大学(武汉), 2019: 2-10. |
[40] | HOU H F, JI Q, XIONG J F, et al. A possible stratotype of Devonian-Carboniferous boundary in Guizhou Province, South China[J]. CFS Courier Forschungsinstitut Senckenberg, 1984, 67: 193-205. |
[41] | JI Q. On the frasnian conodont biostratigraphy in the Guilin area of Guangxi, South China[J]. CFS Courier Forschungsinstitut Senckenberg, 1989, 117: 303-319. |
[42] |
QIE W K, SUN Y L, GUO W, et al. Devonian-Carboniferous boundary in China[J]. Palaeobiodiversity and Palaeoenvironments, 2021, 101(2): 589-611.
DOI URL |
[43] |
ELLWOOD B B, CRICK R E, HASSANI A E, et al. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input versus carbonate productivity[J]. Geology, 2000, 28(12): 1135-1138
DOI URL |
[44] | STAGE M. Magnetic susceptibility as carrier of a climatic signal in chalk[J]. Earthand Planetary Science Letters, 2001, 188(1/2): 17-27. |
[45] |
REY D, RUBIO B, MOHAMED K, et al. Detrital and early diagenetic processes in Late Pleistocene and Holocene sediments from the SW Galicia Bank inferred from high-resolution enviromagnetic and geochemical records[J]. Marine Geology, 2008, 249(1/2): 64-92.
DOI URL |
[46] | HLADIL J, CEJCHAN P, BABEK O, et al. Dust-A geology-orientated attempt to reappraise the natural components, amounts, inputs to sediment, and importance for correlation purposes[J]. Geologica Belgica, 2013, 13(4): 367-384. |
[47] |
MAHER B A. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance[J]. Aeolian Research, 2011, 3(2): 87-144.
DOI URL |
[48] |
ZHONG Y Y, WU H C, ZHANG Y D, et al. Astronomical calibration of the Middle Ordovician of the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505(15): 86-99.
DOI URL |
[49] |
BLOEMENDAL J, DEMENOCAL P. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements[J]. Nature, 1989, 342(6252): 897-900.
DOI URL |
[50] |
ELLWOOD B B, WANG W H, TOMKIN J H, et al. Testing high resolution magnetic susceptibility and gamma radiation methods in the Cenomanian-Turonian (Upper Cretaceous) GSSP and near-by coeval section[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 378: 75-90.
DOI URL |
[51] |
WU H C, ZHANG S H, HINNOV L A, et al. Time-calibrated Milankovitch cycles for the late Permian[J]. Nature Communications, 2013, 4: 2452.
DOI URL |
[52] |
LI M S, HUANG C J, OGG J, et al. Paleoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China[J]. Earth-Science Reviews, 2019, 189(7): 125-146.
DOI URL |
[53] |
THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 1982, 70(9): 1055-1096.
DOI URL |
[54] | MEYERS S R. Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology[J]. Paleoceanography, 2012, 27(3): PA3228. |
[55] | MEYERS S R. Astrochron: an R package for astrochronology[EB/OL]. (2021-05-20) [2014-01-01]. https://cran.r-project.org/package=astrochron. |
[56] | KODAMA K P, HINNOV L A. Rock magnetic cyclostratigraphy, Wiley-blackwell fast-track monograph: new analytical methods in Earth and environmental science series[M]. Chichester: John Wiley & Sons, Ltd, 2015: 1-140. |
[57] | MEYERS S R, MALINVERNO A. Proterozoic Milankovitch cycles and the history of the solar system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6363-6368. |
[58] |
WALTHAM D. Milankovitch period uncertainties and their impact on cyclostratigraphy[J]. Journal of Sedimentary Research, 2015, 85(8): 990-998.
DOI URL |
[59] |
BERGER A, LOUTREM F, LASKAR J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566.
DOI URL |
[60] |
HINNOV L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 419-475.
DOI URL |
[61] | MA K Y, HINNOV L A, ZHANG X S, et al. Astronomical time calibration of the Upper Devonian Lali section, South China[J]. Global and Planetary Change, 2020, 193: 103267. |
[1] | ZHAO Shengxian, LI Bo, CHEN Xin, LIU Wenping, ZHANG Chenglin, JI Chunhai, LIU Yongyang, LIU Dongchen, CAO lieyan, CHEN Yulong, LI Jiajun, LEI Yue, TAN Jingqiang. Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan [J]. Earth Science Frontiers, 2024, 31(5): 75-88. |
[2] | PENG Bo, LIU Chenglin, QI Kening, LIU Dapeng, WANG Jiaqi, LI Zongxing, MA Yinsheng, HU Junjie. Sedimentary di fferentiation characteristics of and the main factors controlling the Upper Devonian-Lower Carboni ferous sediments in the eastern Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(1): 104-114. |
[3] | . [J]. Earth Science Frontiers, 2017, 24(6): 322-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||