Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 26-48.DOI: 10.13745/j.esf.sf.2021.1.11
Previous Articles Next Articles
CHEN Yongqing(), MO Xuanxue*(
)
Received:
2021-01-25
Revised:
2021-01-30
Online:
2021-05-20
Published:
2021-05-23
Contact:
MO Xuanxue
CLC Number:
CHEN Yongqing, MO Xuanxue. Metallogenic background, process and exploration as one: A trinity concept for prospecting for super-large ore deposits[J]. Earth Science Frontiers, 2021, 28(3): 26-48.
Fig.2 Divergent plate boundaries and the main deposit types in inland hot spring/incipient rift (a), inland rift zone (b), or ocean ridge/Hawaii type hot spring deposit (c). Adapted from [32].
组间距 | 频数 | 频率/% | 累积频率/% | 组间距 | 频数 | 频率/% | 累积频率/% |
---|---|---|---|---|---|---|---|
0.1~0.2 | 2 | 0.69 | 0.69 | 1.1~1.2 | 12 | 4.17 | 92.01 |
0.2~0.3 | 10 | 3.47 | 4.17 | 1.2~1.3 | 6 | 2.08 | 94.10 |
0.3~0.4 | 17 | 5.90 | 10.07 | 1.3~1.4 | 4 | 1.39 | 95.49 |
0.4~0.5 | 60 | 20.83 | 30.90 | 1.4~1.5 | 3 | 1.04 | 96.53 |
0.5~0.6 | 51 | 17.71 | 48.61 | 1.5~1.6 | 4 | 1.39 | 97.92 |
0.6~0.7 | 37 | 12.85 | 61.46 | 1.6~1.7 | 3 | 1.04 | 98.96 |
0.7~0.8 | 28 | 9.72 | 71.18 | 1.7~1.8 | 0 | 0.00 | 98.96 |
0.8~0.9 | 23 | 7.99 | 79.17 | 1.8~1.9 | 2 | 0.69 | 99.65 |
0.9~1.0 | 16 | 5.56 | 84.72 | 1.9~2.0 | 1 | 0.35 | 100 |
1.0~1.1 | 9 | 3.13 | 87.85 |
Table 1 Ore-forming favorability frequency and cumulative frequency of sample units in the Gejiu-Bozhushan ore-rich area
组间距 | 频数 | 频率/% | 累积频率/% | 组间距 | 频数 | 频率/% | 累积频率/% |
---|---|---|---|---|---|---|---|
0.1~0.2 | 2 | 0.69 | 0.69 | 1.1~1.2 | 12 | 4.17 | 92.01 |
0.2~0.3 | 10 | 3.47 | 4.17 | 1.2~1.3 | 6 | 2.08 | 94.10 |
0.3~0.4 | 17 | 5.90 | 10.07 | 1.3~1.4 | 4 | 1.39 | 95.49 |
0.4~0.5 | 60 | 20.83 | 30.90 | 1.4~1.5 | 3 | 1.04 | 96.53 |
0.5~0.6 | 51 | 17.71 | 48.61 | 1.5~1.6 | 4 | 1.39 | 97.92 |
0.6~0.7 | 37 | 12.85 | 61.46 | 1.6~1.7 | 3 | 1.04 | 98.96 |
0.7~0.8 | 28 | 9.72 | 71.18 | 1.7~1.8 | 0 | 0.00 | 98.96 |
0.8~0.9 | 23 | 7.99 | 79.17 | 1.8~1.9 | 2 | 0.69 | 99.65 |
0.9~1.0 | 16 | 5.56 | 84.72 | 1.9~2.0 | 1 | 0.35 | 100 |
1.0~1.1 | 9 | 3.13 | 87.85 |
靶区编号 | Si/km2 | Fi | POi | Pi |
---|---|---|---|---|
I | 125 | 0.95 | 119 | 0.05 |
II | 325 | 1.24 | 403 | 0.34 |
III | 275 | 1.12 | 307 | 0.24 |
IV | 250 | 0.86 | 214 | 0.15 |
V | 825 | 1.28 | 1056 | 1 |
VI | 75 | 0.86 | 64.5 | 0 |
VII | 100 | 0.9 | 90.25 | 0.02 |
VIII | 175 | 0.95 | 166.25 | 0.1 |
Table 2 Ore prospecting priority and prospecting probability of the target area
靶区编号 | Si/km2 | Fi | POi | Pi |
---|---|---|---|---|
I | 125 | 0.95 | 119 | 0.05 |
II | 325 | 1.24 | 403 | 0.34 |
III | 275 | 1.12 | 307 | 0.24 |
IV | 250 | 0.86 | 214 | 0.15 |
V | 825 | 1.28 | 1056 | 1 |
VI | 75 | 0.86 | 64.5 | 0 |
VII | 100 | 0.9 | 90.25 | 0.02 |
VIII | 175 | 0.95 | 166.25 | 0.1 |
[1] | 谢学锦. 用新观念与新技术寻找巨型矿床[J]. 科学中国人, 1995, 10:15-16. |
[2] |
SINGER D A. World class base and precious metal deposit: a quantitative analysis[J]. Economic Geology, 1995, 90(1):88-104.
DOI URL |
[3] | SCHODDE R C, HRONSKY J M A. The role of world-class mines in wealth creation[J]. Society of Economic Geologists, Special Publication, 2006, 12:77-90. |
[4] | LAZNICKA P. Giant ore deposits: a quantitative approach[J]. Global Tectonics and Metallogeny, 1983, 41:63. |
[5] | LAZNICKA P. Giant metallic deposits: Future sources of industrial metals[M]. Berlin: Springer Verlag, 2010: 1-949. |
[6] | 涂光炽. 超大型矿床的寻找与研究的若干进展[J]. 地学前缘, 1994, 1(3):45-53. |
[7] | GARWIN S, HALL R, WATANABE Y. Tectonic setting, geology, and gold and copper mineralization in Cenozoic magmatic arcs of Southeast Asia and the West Pacific[C]. Hedenquist J W, et al. Economic Geology One Hundredth Anniversary Volume 1905-2005. 2005: 891-930. |
[8] |
KHASHGEREL B E, RYE R O, KAVALIERIS I, et al. The sericitic to advanced argillic transition: Stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi district, Mongolia[J]. Economic Geology, 2009, 104(8):1087-1110.
DOI URL |
[9] |
KELLEY K D, LANG J, EPPINGER R G. The giant Pebble Cu-Au-Mo deposit and surrounding region, southwest Alaska: introduction[J]. Economic Geology, 2013, 108(3):397-404.
DOI URL |
[10] | WHITING B H, HODGSON C J, MASON R, Giant Ore deposits[C]. Society of Economic Geologists Special Publication, 1993, 2:1-163. |
[11] | CLARK A H. Giant ore deposits-I-Controls on the Scale of Orogenic Magmatic-Hydrothermla Mineralization[C]. Proceedings of the Second Giant Ore Deposits Workshop, Kingston, Ontario, Canada, 1995: 1-696. |
[12] | COOKE D R, PONGRATZ J. Giant Ore deposits: Characteristics, genesis and exploration[M]. CODES Special Publication 4, 2002: 1-269. |
[13] | 涂光炽. 中国超大型矿床[M]. 北京: 科学出版社, 2000: 1-584. |
[14] | 赵鹏大, 陈永清, 张寿庭, 等. 大型-超大型矿床成矿地球动力学背景、 过程与定量评价: 定量勘查与评价[M]. 北京: 地质出版社, 2020: 1-151. |
[15] | 陈永清, 陈守余, 黄静宁, 等. 个旧超大型锡铜多金属矿床成矿背景-过程-定量评价[M]. 北京: 地质出版社, 2020: 1-206. |
[16] | 王世称, 陈永良. 大型、 超大型金矿床综合信息成矿预测标志[J]. 黄金地质, 1999, 5(1):1-5. |
[17] | HRONSKY J M A. Self-organized critical systems and ore formation: the key to spatial targeting?[J]. SEG Newsletter, 2011(84):14-16. |
[18] | SCHODDE R C, HRONSKY J M A. The role of world-class mines in wealth creation[J]. Special Publication-Society of Economic Geologists, 2006, 12:71-90. |
[19] |
CARLSON C A. Spatial distribution of ore deposits[J]. Geology, 1991, 19(2):111-114.
DOI URL |
[20] |
AGTERBERG F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1):1-8.
DOI URL |
[21] |
PIQUUER J, BERRY, R F, SCOTT R J, et al. Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile[J]. Journal of Structural Geology, 2016, 89:101-117.
DOI URL |
[22] | 李胜荣. 山东郯庐断裂两侧大型-超大型金矿床成矿地球动力学背景, 过程与定量评价工作项目可行性报告[R]. 北京: 中国地质大学, 2011. |
[23] | 滕吉文, 杨立强, 姚敬金, 等. 金属矿产资源的深部找矿、 勘探与成矿的深层动力过程[J]. 地球物理学进展, 2007, 2:317-334. |
[24] | 滕吉文, 姚敬金, 江昌洲, 等. 地壳深部岩浆岩岩基体与大型、 超大型金属矿床的形成及找矿效应[J]. 岩石学报, 2009, 25(5):1009-1038. |
[25] | 科兹洛夫斯基 E A. 科拉超深钻井[M]. 张秋生主译. 北京: 地质出版社, 1984. |
[26] | 滕吉文. 强化第二深度空间金属矿产资源探查, 加速发展地球物理勘探新技术与仪器设备的研制及产业化[J]. 地球物理学进展, 2010, 25(3):729-748. |
[27] |
GRAUPNER T, NIEDERMANN S, KEMPE U, et al. Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data[J]. Geochimica et Cosmochimica Acta, 2006, 70:5356-5370.
DOI URL |
[28] | KEMPE U, GRAUPNER T, SELTMANN R, et al. Muruntau gold (Uzbekistan): a unique ancient hydrothermal system in the southern Tien Shan[J]. Geosciences Frontier, 2016, 7:495-528. |
[29] | 董树文, 李廷栋, 陈宣华, 等. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报, 2012, 55(12):884-3901. |
[30] | ERNEST W G. The Dynamic Planet[M]. New York: Columbia University Press, 1990: 1-280. |
[31] |
BARLEY M E, GROVES D I. Supercontinent cycles and the distribution of metal deposits through time[J]. Geology, 1992, 20:291-294.
DOI URL |
[32] | MITCHELL A H G, GARSON M S. Mineral deposits and global tectonic settings[M]. Academic Press, 1981: 1-405. |
[33] | ROBB L. Introduction to ore-forming processes[M]. Oxford: Blackwell Publishing Company, 2005: 1-373. |
[34] | 莫宣学. 大型-超大型矿床成矿地球动力学背景[J]. 地学前缘, 2020, 7(2):13-19. |
[35] |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13:7-27.
DOI URL |
[36] |
GOLDFARB R J, TAYLOR R D, COLLINS G S. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 2014, 25:48-102.
DOI URL |
[37] |
DISTLER V V, YUDOVSKAYAA M A, GENNADY L, et al. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia[J]. Ore Geology Reviews, 2004, 24:7-44.
DOI URL |
[38] | KERRICH R, GOLDFARB R J, RICHARDS J P. Metallogenic provinces in an evolving Geodynamic framework[C]// HEDENQUUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic Geology: One Hundredth Anniversary Volume (1905-2005). 2005: 1097-1113. |
[39] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1):13-27. |
[40] | WYBORN L A I, HEINRICH C A, JAQUES A. Australian Proterozoic mineral systems: essential ingredients and mappable criteria[C]. Melbourne: Australian Institute of Mining and Metallurgy Annual Conference, 1994: 109-115. |
[41] |
SAAGER R, MEYER M, MUFF R. Gold distribution in supracrustal rocks from Archean greenstone belts of southern Africa and from Paleozoic ultramafic complexes of the European Alps: metallogenic and geochemical implications[J]. Economic Geology, 1982, 77(1):1-24.
DOI URL |
[42] | 陈永清, 赵鹏大, 刘红光. 鲁西金矿成矿组分的聚集与演化[J]. 地球科学: 中国地质大学学报, 2001, 26(1):41-48. |
[43] | 张秋生, 刘连登. 矿源与成矿[M]. 北京: 地质出版社, 1982: 1-278. |
[44] | MITCHELL A H G, LEACH T M. Epithermal gold in the Philippines: island arc metallogenesis, geothermal systems and geology[M]. London: United Kingdom Academic Press, 1991: 1-457. |
[45] | 胡受奚. 花岗岩类成矿的某些基本问题[J]. 矿物岩石地球化学通讯, 1983, 3:17-20. |
[46] | BAK P. How nature works: the science of self-organized criticality[M]. Berlin: Springer Science & Business Media, 2013. |
[47] | MANDELBROT B B. The statistics of natural resources and the law of pareto[J]. Fractals in Petroleum Geology and Earth Processes, 1995: 1-12. |
[48] |
HRONSKY J M, GROVES D I. Science of targeting: definition, strategies, targeting and performance measurement[J]. Australian Journal of Earth Sciences, 2008, 55:101-122.
DOI URL |
[49] | 赵鹏大, 陈永清. 科学选靶的途径[J]. 地球科学: 中国地质大学学报, 2001, 36(2):1-8. |
[50] |
RAINES G L. Are fractal dimensions of the spatial distribution of mineral deposits meaningful?[J]. Natural Resources Research, 2008, 17(2):87-97.
DOI URL |
[51] |
AGTERBERG F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1):1-8.
DOI URL |
[52] |
CHENG Q. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5):503-532.
DOI URL |
[53] |
HRONSKY J M A, GROVES D I. Science of targeting: definition, strategies, targeting and performance measurement[J]. Australian Journal of Earth Sciences, 2008, 55(1):3-12.
DOI URL |
[54] | Supercontinent cycles through Earth history[C]. London: Geological Society of London, 2016. |
[55] | CARR P M, CATHLES III L M, BARRIE C T. On the size and spacing of volcanogenic massive sulfide deposits within a district with application to the Matagami district, Quebec[J]. Economic Geology, 2008, 3(7):1395-1409. |
[56] | SCHNEIDER E D, SAGAN D. Into the cool: energy flow, thermodynamics, and life[M]. Chicago: University of Chicago Press, 2005. |
[57] |
RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11):911-916.
DOI URL |
[58] | 於崇文. 地质系统的复杂性(上、 下册)[M]. 北京: 地质出版社, 2003. |
[59] | ROBINSON L J. The spatial and temporal distribution of the metal mineralization in Eastern Australia and the relationship of the observed patterns to giant ore deposits[D]. Australia, Queensland: University of Queensland, 2007: 116. |
[60] | WALSHE J L, COOKE D R, NEUMAYR P. Five questions for fun and profit: a mineral systems perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits[J]. Mineral deposit research: meeting of the global challenge, 2005: 477-480. |
[61] |
MCCUAIG T C, BERESFORD S, HRONSKY J. Translating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 2010, 38:128-138.
DOI URL |
[62] | MCCUAIG T C, HRONSKY J M A. The mineral system concept: the key to exploration targeting[J]. Society of Economic Geologists Special Publication, 2014, 18:153-175. |
[63] | 赵鹏大, 陈永清. 地质异常矿体定位的基本途径[J]. 地球科学: 中国地质大学学报, 1998, 23(2):111-114. |
[64] | SINCLAIR A J. Geological controls in resource/reserve estimation[J]. Exploration Mining Geology, 1998, 7(1/2):29-44. |
[65] | 陈永清, 赵鹏大. 综合致矿地质异常信息提取与集成[J]. 地球科学: 中国地质大学学报, 2009, 34(2):325-335. |
[66] | 王世称, 陈永良, 夏立显. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000: 1-343. |
[67] | 陈永清, 汪新庆, 陈建国, 等. 基于GIS的矿产资源综合定量评价技术[M]. 北京: 地质出版社, 2007. |
[68] | 陈永清, 汪新庆, 陈建国, 等. 基于GIS的矿产资源综合定量评价[J]. 地质通报, 2007, 26(2):141-149. |
[69] | MCGAUGHEY W J, VALLEE M A. Integrating geology and borehole geophysics in a common earth model for improved three-dimensional delineation of mineral deposits[J]. Exploration and Mining Geology, 1998, 7(1/2):51-62. |
[70] | 张本仁. 成矿带地球化学研究的理论构想和方法[C]. 张本仁, 勘查地球物理、 勘查地球化学文集. 北京: 地质出版社, 1989: 1-20. |
[71] | BARNEET C T. Mineral exploration using modern data mining techniques[J]. First Break, 2006, 24:30. |
[72] | 陈永清, 夏庆霖, 黄静宁, 等. “证据权”法在西南“三江”南段矿产资源评价中的应用[J]. 中国地质, 2007, 34(1):132-141. |
[73] |
CHEN Y Q, ZHAO P D, CHEN J G, et al. Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in western Shandong uplift terrain, eastern China[J]. Natural Resources Research, 2001, 10(1):35-49.
DOI URL |
[74] |
ZHAO P D, CHEN Y Q. Digital geosciences and quantitative mineral exploration[J]. Journal of Earth Science, 2021, 32(2):269-275.
DOI URL |
[75] |
CHEN C, ZHU X, CHEN Y Q. Application of BEMD in extraction of magnetic anomaly components associated with Sn-W polymetallic mineralization in SE Yunnan, SW China[J]. Journal of Earth Science, 2021, 32(2):318-326.
DOI URL |
[76] |
CHEN Y Q, ZHANG L N, ZHAO B B. Application of Bi-dimensional empirical mode decomposition (BEMD) modeling for extracting gravity anomaly indicating the ore-controlling geological architectures and granites in the Gejiu tin-copper polymetallic ore field, southwestern China[J]. Ore Geology Reviews, 2017, 88:832-840.
DOI URL |
[77] |
GUO L F, CHEN Y Q, ZHAO B B. Application of singular value decomposition (SVD) to the extraction of gravity anomalies associated with Ag-Pb-Zn-W Polymetallic mineralization in the Bozhushan Ore Field, Southwestern China[J]. Journal of Earth Science, 2021, 32(2):310-317.
DOI URL |
[78] |
CHEN Y Q, ZHANG L N, ZHAO B B. Application of singular value decomposition (SVD) in extraction of gravity components indicating the deeply and shallowly buried granitic complex associated with Tin polymetallic mineralization in the Gejiu Tin ore field, Southwestern China[J]. Journal of Applied Geophysics, 2015, 123:63-70.
DOI URL |
[79] | 黄静宁, 赵鹏大, 陈永清, 等. 滇东南矿集区地球化学致矿信息提取[J]. 矿产勘查, 2018, 9(11):2233-2245. |
[80] | MCCAMMON R B, BOTBOL J M, LARSEN R S. Characteristic analysis-1981[J]. Final Program and a Possible Discovery: Math Geology, 1983, 15(1):59-84. |
[1] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[2] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[3] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[4] | ZHANG Aikui, YUAN Wanming, LIU Guanglian, ZHANG Yong, WANG Zhouxin, SUN Feifei, LIU Zhigang. Metallogenic regularities and exploration directions of strategic metallic minerals around the Qaidam Basin [J]. Earth Science Frontiers, 2024, 31(3): 260-283. |
[5] | WANG Jian, YANG Yanchen, LI Ai, YUAN Haiqi. Characteristics of mineral chemistry and geochemistry of the Late Triassic Hongqiling mafic-ultramafic intrusions: Implications for Ni-Cu mineralization [J]. Earth Science Frontiers, 2024, 31(2): 249-269. |
[6] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[7] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[8] | CHENG Qiuming. Long-range effects of mid-ocean ridge dynamics on earthquakes, magmatic activities, and mineralization events in plate subduction zones [J]. Earth Science Frontiers, 2024, 31(1): 1-14. |
[9] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[10] | YANG Liqiang, YANG Wei, ZHANG Liang, GAO Xue, SHEN Shilong, WANG Sirui, XU Hantao, JIA Xiaochen, DENG Jun. Developing structural control models for hydrothermal metallogenic systems: Theoretical and methodological principles and applications [J]. Earth Science Frontiers, 2024, 31(1): 239-266. |
[11] | YANG Mengfan, QIU Kunfeng, HE Dengyang, HUANG Yaqi, WANG Yuxi, FU Nan, YU Haocheng, XUE Xianfa. Mineralogy and geochemistry of gold-bearing sulfides in the Wanken gold deposit, West Qinling Orogen [J]. Earth Science Frontiers, 2023, 30(6): 371-390. |
[12] | LI Jiankang, LI Peng, HUANG Zhibiao, ZHOU Fangchun, ZHANG Liping, HUANG Xiaoqiang. Geological features and formation mechanism of pegmatite-type rare-metal deposits in the Renli orefield, northern Hunan, China—an overview [J]. Earth Science Frontiers, 2023, 30(5): 1-25. |
[13] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[14] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[15] | HE Lanfang, LI Liang, SHEN Ping, WANG Sihao, LI Zhiyuan, ZHOU Nannan, CHEN Rujun, QIN Kezhang. Geophysical approaches to the exploration of lithium pegmatites and a case study in Koktohay [J]. Earth Science Frontiers, 2023, 30(5): 244-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||