地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 440-455.DOI: 10.13745/j.esf.sf.2024.12.82

• 地学智能计算 • 上一篇    下一篇

隐式建模和机器学习算法在西藏巨龙斑岩型铜钼矿床三维成矿预测中的应用研究

娄渝明1(), 康旭1,*(), 赖渊平2, 龚建生1, 周涤非1, 窦世荣1, 樊炳良1, 丁帅1, 舒德福2, 陈根1   

  1. 1.紫金矿业集团西南地质勘查有限公司, 四川 成都 610059
    2.西藏巨龙铜业有限公司, 西藏 拉萨 850000
  • 收稿日期:2024-04-01 修回日期:2024-12-14 出版日期:2025-09-25 发布日期:2025-10-14
  • 通信作者: 康旭
  • 作者简介:娄渝明(1993—),男,博士,主要从事三维地质建模与成矿预测研究工作。E-mail: LYMcdut@outlook.com
  • 基金资助:
    国家重点研发计划项目(2022YFC290500502);紫金矿业集团内部项目“西藏巨龙铜业有限公司矿山综合找矿预测”

Application of implicit modeling and machine learning algorithm to 3D metallogenic prediction of the Julong porphyry copper-molybdenum deposit, Xizang

LOU Yuming1(), KANG Xu1,*(), LAI Yuanping2, GONG Jiansheng1, ZHOU Difei1, DOU Shirong1, FAN Bingliang1, DING Shuai1, SHU Defu2, CHEN Gen1   

  1. 1. Zijin Mining Group Southwest Geological Exploration Co., Ltd., Chengdu 610059, China
    2. Xizang Julong Copper Co., Ltd., Lhasa 850000, China
  • Received:2024-04-01 Revised:2024-12-14 Online:2025-09-25 Published:2025-10-14
  • Contact: KANG Xu

摘要:

三维成矿预测打破了传统二维预测图件的限制,可以将地学信息在真三维空间中直观地表达出来,因此受到人们越来越多的关注。三维地质建模和成矿预测方法是三维成矿预测过程中非常重要的步骤,但是随着地质数据采集方式的多样化,地质数据来源的多样性,地质数据也逐渐具备大数据的特征,传统的显式建模方式和成矿有利信息提取方法受到诸多限制,主要体现在不能有效地对三维模型进行实时更新和对大量地质勘查数据进行分析与处理。为了提出针对该类问题的一种有效解决方案,笔者选择西藏巨龙超大型斑岩铜钼矿床为研究对象,利用隐式建模方法构建矿区三维地质-地球化学模型,并通过机器学习算法对成矿有利信息进行提取、分析,最后对潜在的有利成矿空间进行预测。建模结果表明:隐式建模方法可以通过插值函数获得整个空间的地质体数据,三维地质体曲面重建算法可以对地质体数据进行三维建模与可视化,自动生成三维可视化模型。隐式建模大大降低了显示建模中人机交互圈定地质界线的烦琐过程,可以实现三维模型的快速动态更新,而且隐式建模在更大程度上能够精确反映地下深部地质体的空间分布特征。成矿预测主要基于三维地质-地球化学模型提取深部有利成矿信息,构建训练集和测试集,利用有监督的机器学习模型(逻辑回归模型、支持向量机模型、人工神经网络模型和随机森林模型)进行训练。训练后的模型对测试集进行预测,并将预测结果绘制成ROC曲线对预测结果进行评估。评估结果显示:4个不同预测模型的AUC值都大于0.6,说明所训练的模型预测精度是优于随机过程的,其中随机森林算法的AUC值最大(0.97),模型预测效果最优。本文选择随机森林模型对矿床深部进行预测,圈定了2个找矿靶区。经过钻探验证,靶区B潜在资源与预测结果相符,证实了该方法具有一定的科学性和可行性。

关键词: 巨龙铜钼矿, 隐式建模, 机器学习, 成矿预测

Abstract:

Three-dimensional metallogenic prediction overcomes the limitations of traditional two-dimensional prediction maps and can represent geo-information directly in true 3D space, so it has attracted more and more attention. 3D geological modeling and metallogenic prediction methods are important steps in the process of 3D metallogenic prediction. However, with the diversification of geological data collection methods and the diversity of geological data sources, geological data has gradually acquired the characteristics of big data. Traditional explicit modeling methods and extraction methods of favorable metallogenic information face many limitations. These limitations are mainly reflected in the inability to effectively update the 3D model in real time and analyze a large number of geological survey data. To address these challenges, the author selects the Julong super-large porphyry copper-molybdenum deposit in Tibet as the research object, employs implicit modeling methods to build a 3D geological-geochemical model of the mining area, and uses the machine learning algorithm to extract and analyze favorable metallogenic information, and finally predicts the potential favorable metallogenic space. The modeling results show that the implicit modeling method can obtain the geological entities of the whole space through the interpolation function, and the 3D geological body surface reconstruction algorithm can model and visualize the geological entities and automatically generate the 3D visualization model. Implicit modeling greatly reduces the cumbersome process of human-computer interaction delineating geological boundaries in explicit modeling, and can realize rapid dynamic update of 3D models. Moreover, implicit modeling can accurately reflect the spatial distribution characteristics of deep underground geological bodies to a greater extent. Metallogenic prediction is mainly based on 3D geological and geochemical models to extract deep favorable metallogenic information, build training sets and test sets, and train supervised machine learning models (logistic regression model, support vector machine model, artificial neural network model, random forest model) respectively. The trained model makes predictions to the test set, and plots the prediction results on Receiver Operating Characteristic (ROC) curves to evaluate the prediction results. The evaluation results show that the Area Under the Curve (AUC) values of the four different prediction models are all greater than 0.6, indicating that the prediction accuracy of the trained model is better than that of the random process, among which the AUC value of the random forest algorithm is the largest (0.97), and the model has the best prediction effect. In this paper, the random forest model is selected to predict the depth extent of the mineralization, and two prospecting targets are delineated. After drilling verification, the potential resources in target area B are consistent with the predicted results, which proves that the method is scientific and feasible.

Key words: Julong copper-molybdenum deposit, implicit modeling, machine learning algorithm, metallogenic prediction

中图分类号: