地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 150-161.DOI: 10.13745/j.esf.sf.2023.2.12
• 深层-超深层海相层系烃源岩发育、生烃演化和油气地球化学特征及示踪 • 上一篇 下一篇
陈践发1,2,3(), 许锦1,2,*(
), 王杰1,2, 刘鹏1,2, 陈斐然4, 黎茂稳1,2
收稿日期:
2023-01-06
修回日期:
2023-02-07
出版日期:
2023-11-25
发布日期:
2023-11-25
通信作者:
* 许锦(1981—),女,高级工程师,主要从事油气地球化学研究工作。E-mail: 作者简介:
陈践发(1961—),男,教授,博士生导师,主要从事天然气地质学和同位素地球化学研究工作。E-mail: jfchen@cup.edu.cn
基金资助:
CHEN Jianfa1,2,3(), XU Jin1,2,*(
), WANG Jie1,2, LIU Peng1,2, CHEN Feiran4, LI Maowen1,2
Received:
2023-01-06
Revised:
2023-02-07
Online:
2023-11-25
Published:
2023-11-25
摘要:
通过对塔里木盆地西北缘下寒武统玉尔吐斯组沉积地层特征及地球化学分析,研究了玉尔吐斯组沉积时期水体氧化-还原环境及初级生产力的变化特征,探讨了玉尔吐斯组黑色岩系有机质富集机制及烃源岩分布的主要控制因素。塔里木盆地西北缘玉尔吐斯组可分为5段:底部黑色含磷硅质岩段,下部黑色泥岩段,中部灰色白云岩段,上部黑色页岩与灰色微晶灰岩互层段,顶部浅灰色粉晶白云岩段。它们构成一个完整的海侵-海退沉积旋回。氧化-还原指标及热液示踪参数显示玉尔吐斯组黑色岩系不同层段的形成环境存在差异:底部硅质岩形成于缺氧环境,热液活动显著;下部黑色泥岩形成于强缺氧硫化环境,热液活动较强;上部黑色页岩形成于贫氧-氧化环境,热液活动较弱。综合研究表明:玉尔吐斯组黑色岩系沉积时期,水体先变深后变浅,氧逸度先降低后升高,古生产力逐渐减弱,在缺氧的水体条件和热液作用主导的高生产力综合控制下形成了以玉尔吐斯组下部黑色泥岩为代表的优质烃源岩。
中图分类号:
陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161.
CHEN Jianfa, XU Jin, WANG Jie, LIU Peng, CHEN Feiran, LI Maowen. Paleo-environmental variation and its control on organic enrichment in the black rock series, Cambrian Yuertusi Formation in northwestern Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 150-161.
图1 塔里木盆地西北缘地理位置及地层分布图(据文献[18-19]修改) a—塔里木盆地构造单元;b—盆地西北缘构造单元分布;c—阿克苏地区区域地质图;d—西北缘寒武系地层柱状图。
Fig.1 Location of the northwestern margin of the Tarim Basin and the stratigraphic distribution. a and b. tectonic units of the Tarim Basin and its northwestern margin; c. geological setting of the Akes area of the NW Tarim Basin; d. Cambrian lithologic columns in NW Tarim Basin. Modified after [18-19].
图2 塔里木盆地西北缘昆盖阔坦剖面下寒武统玉尔吐斯组沉积地层序列
Fig.2 Location of the northwestern margin of the Tarim Basin and the stratigraphic distribution. a and b. tectonic units of the Tarim Basin and its northwestern margin; c. geological setting of the Akes area of the NW Tarim Basin; d. Cambrian lithofacies in NW Tarim Basin
图3 塔里木盆地西北缘昆盖阔坦剖面玉尔吐斯组烃源岩氧化-还原敏感元素及TOC垂向分布
Fig.3 Profiles of TOC, Ni/V, V/Cr, Ni/Co and U/Th from the Cambrian Yuertusi Formation black rock series of Kungaikuotan section in NW Tarim Basin
图4 塔里木盆地西北缘昆盖阔坦剖面玉尔吐斯组烃源岩Ce/Ce*与稀土元素关系图 a—ΣREE含量-Ce/Ce*图; b—Eu/Eu*-Ce/Ce*图; c—(La/Yb)N-Ce/Ce*图。
Fig.4 Plots REE versus Ce/Ce* ratios of the Cambrian Yuertusi Formation black rock series of Kungaikuotan section in NW Tarim Basin
图5 塔里木盆地西北缘昆盖阔坦剖面玉尔吐斯组烃源岩热液参数垂向分布图
Fig.5 Profiles of ∑REEs, LREE/HREE, Ce/Ce* and Eu/Eu* from the Cambrian Yuertusi Formation black rock series of Kungaikuotan section in NW Tarim Basin
图6 塔里木盆地西北缘昆盖阔坦剖面玉尔吐斯组稀土元素参数、生物生产力指标垂向分布
Fig.6 Profiles of Rb/Sr, Cu and Ba from the Cambrian Yuertusi Formation black rock series of Kungaikuotan section in NW Tarim Basin
图7 塔里木盆地西北缘昆盖阔坦剖面玉尔吐斯组烃源岩TOC与氧化还原、生物生产力指标相关性图 a—U/Th-TOC含量图; b—V/Cr-TOC含量图; c—Ni/V-TOC含量图; d—Rb/Sr-TOC含量图; e—Ba含量-TOC含量图; f—Cu含量-TOC含量图。
Fig.7 Plots TOC versus redox index and hydrothermal tracing parameters showing organic matter enrichment of black rock series in Cambrian Yuertusi Formation, NW Tarim Basin
图8 塔里木盆地西北缘昆玉尔吐斯组黑色岩系有机质富集模式图
Fig.8 Schematic diagram showing Early Cambrian marine redox variation, distribution of organic-rich rock, hydrothermal activities and spatial variation of TOC in NW Tarim Basin
[1] |
WINGATE M T D, CAMPBELL I H, COMPSTON W, et al. Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia[J]. Precambrian Research, 1998, 87(3/4): 135-159.
DOI URL |
[2] |
LI Z X, EVANS D A D, HALVERSON G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294: 219-232.
DOI URL |
[3] |
ZHANG Z Y, ZHU W B, SHU L S, et al. Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia[J]. Geological Magazine, 2009, 146(1): 150-154.
DOI URL |
[4] |
POWELL C M, LI Z X, MCELHINNY M W, et al. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana[J]. Geology, 1993, 21(10): 889-892.
DOI URL |
[5] |
CAWOOD P A, STRACHAN R A, PISAREVSKY S A, et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 2016, 449: 118-126.
DOI URL |
[6] |
MEERT J G, VOO R V D. The assembly of Gondwana 800-550 Ma[J]. Journal of Geodynamics, 1997, 23(3/4): 223-235.
DOI URL |
[7] |
MEERT J G. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 2003, 362(1/2/3/4): 1-40.
DOI URL |
[8] |
POWELL C M, PISAREVSKY S A. Late neoproterozoic assembly of East Gondwana[J]. Geology, 2002, 30(1): 3-6.
DOI URL |
[9] |
SCHRÖDER S, GROTZINGER J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, 2007, 164(1): 175-187.
DOI URL |
[10] |
GOLDBERG T, POULTON S W, STRAUSS H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: diagenetic constraints and seawater evolution[J]. Precambrian Research, 2005, 137(3/4): 223-241.
DOI URL |
[11] |
WANG J G, CHEN D Z, YAN D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306/307: 129-138.
DOI URL |
[12] | FIKE D A, GROTZINGER J P, PRATT L M, et al. Multi-stage Ediacaran Ocean oxidation and its impact on evolutionary radiation[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A173. |
[13] | 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21. |
[14] | TYSON R V. The genesis and palynofacies characteristics of marine petroleum source rocks[J]. Marine Petroleum Source Rocks, 1987, 26(1): 47-67. |
[15] | TYSON R V, PEARSON T H. Modern and ancient continental shelf anoxia: an overview[J]. Environmental Science, Geography, 1991, 58(1): 1-24. |
[16] |
VAN BENTUM E C V, REICHART G J, DAMSTE J S S. Organic matter provenance, palaeoproductivity and bottom water anoxia during the Cenomanian/Turonian oceanic anoxic event in the Newfoundland Basin (northern proto North Atlantic Ocean)[J]. Organic Geochemistry, 2012, 50: 11-18.
DOI URL |
[17] | 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京: 石油工业出版社, 2004. |
[18] |
WEN B, EVANS D A D, LI Y X, et al. Newly discovered Neoproterozoic diamictite and cap carbonate (DCC) couplet in Tarim Craton, NW China: stratigraphy, geochemistry, and paleoenvironment[J]. Precambrian Research, 2015, 271: 278-294.
DOI URL |
[19] |
SHEN W B, ZHU X K, XIE H Z. Tectonic-sedimentary evolution during initiation of the Tarim Basin: insights from late Neoproterozoic sedimentary records in the NW basin[J]. Precambrian Research, 2022, 371: 106598.
DOI URL |
[20] | 张传林, 叶海敏, 王爱国, 等. 塔里木西南缘新元古代辉绿岩及玄武岩的地球化学特征: 新元古代超大陆(Rodinia)裂解的证据[J]. 岩石学报, 2004, 20(3):473-482. |
[21] | 丁海峰, 马东升, 姚春彦, 等. 伊犁果子沟地区新元古代冰成沉积的碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质论评, 2014, 60(3): 666-676. |
[22] | 邬光辉, 李洪辉, 张立平, 等. 塔里木盆地麦盖提斜坡奥陶系风化壳成藏条件[J]. 石油勘探与开发, 2012, 39(2): 144-153. |
[23] |
YU B S, DONG H L, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436.
DOI URL |
[24] |
ZHOU X Q, CHEN D Z, DONG S F, et al. Diagenetic barite deposits in the Yurtus Formation in Tarim Basin, NW China: implications for barium and sulfur cycling in the earliest Cambrian[J]. Precambrian Research, 2015, 263: 79-87.
DOI URL |
[25] |
SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
DOI URL |
[26] |
RIMMER S M, THOMPSON J A, GOODNIGHT S A, et al. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215(1/2): 125-154.
DOI URL |
[27] |
CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952.
DOI PMID |
[28] |
WIGNALL P B, TWITCHETT R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272(5265): 1155-1158.
PMID |
[29] |
KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11): 995.
DOI URL |
[30] |
ELDERFIELD H, PAGETT R. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment, 1986, 49: 175-197.
DOI URL |
[31] |
WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 631-644.
DOI URL |
[32] |
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 363-372.
DOI URL |
[33] |
SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
DOI URL |
[34] |
GERMAN C R, HOLLIDAY B P, ELDERFIELD H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558.
DOI URL |
[35] |
DUBININ A V. Geochemistry of rare earth elements in the ocean[J]. Lithology and Mineral Resources, 2004, 39(4): 289-307.
DOI URL |
[36] |
SLACK J F, GRENNE T, BEKKER A, et al. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 243-256.
DOI URL |
[37] |
GERMAN C R, MASUZAWA T, GREAVES M J, et al. Dissolved rare earth elements in the Southern Ocean: cerium oxidation and the influence of hydrography[J]. Geochimica et Cosmochimica Acta, 1995, 59(8): 1551-1558.
DOI URL |
[38] | 于炳松, 陈建强, 李兴武, 等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报, 2004, 22(1):59-66. |
[39] | 范青青, 卢双舫, 李文浩, 等. 中下寒武统海相地层地球化学特征及油气地质意义: 以塔里木盆地柯坪地区为例[J]. 中国矿业大学学报, 2019, 48(2): 377-394. |
[1] | 谷雨, 吴俊, 樊太亮, 吕峻岭. 塔北-塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[2] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[3] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[4] | 张家志, 姜在兴, 徐杰, 魏思源, 宋立舟, 刘桐, 沈志晗, 姜晓龙, 李永飞, 张玺. 朝阳盆地白垩系九佛堂组火山沉积作用及其对有机质富集的影响[J]. 地学前缘, 2024, 31(3): 284-297. |
[5] | 王俊鹏, 曾联波, 徐振平, 王珂, 曾庆鲁, 张知源, 张荣虎, 蒋俊. 成岩流体对超深致密砂岩储层构造裂缝充填及溶蚀改造的影响:以塔里木盆地克拉苏油气田为例[J]. 地学前缘, 2024, 31(3): 312-323. |
[6] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[7] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[8] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[9] | 张力钰, 陈强路, 黎茂稳, 袁坤, 马晓潇, 席斌斌, 岳勇, 黄泰誉. 鄂西-黔东北地区早寒武世有机质富集机理对比研究[J]. 地学前缘, 2023, 30(6): 181-198. |
[10] | 邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
[11] | 陈泽亚, 陈践发, 黎茂稳, 付娆, 师肖飞, 徐学敏, 伍建军. 塔里木台盆区下古生界天然气甲烷氢同位素组成特征及地质意义[J]. 地学前缘, 2023, 30(6): 232-246. |
[12] | 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262. |
[13] | 朱秀香, 曹自成, 隆辉, 曾溅辉, 黄诚, 陈绪云. 塔里木盆地顺北地区走滑断裂带压扭段和张扭段油气成藏实验模拟及成藏特征研究[J]. 地学前缘, 2023, 30(6): 289-304. |
[14] | 李慧莉, 高键, 曹自成, 朱秀香, 郭小文, 曾帅. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义[J]. 地学前缘, 2023, 30(6): 316-328. |
[15] | 陈强路, 马中良, 黎茂稳, 席斌斌, 郑伦举, 庄新兵, 袁坤, 马晓潇, 许锦. 塔里木盆地北部奥陶系超深层液态烃演化与保存机制:来自模拟实验的证据[J]. 地学前缘, 2023, 30(6): 329-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||