地学前缘 ›› 2023, Vol. 30 ›› Issue (3): 221-232.DOI: 10.13745/j.esf.sf.2023.2.10
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之七 • 上一篇 下一篇
徐啸1,2(), 余嘉豪1,2, 向波1,2,*(
), 郭晓玉1,2, 李春森1,2, 罗旭聪1,2, 仝霄飞1,2, 袁梓昭1,2, 林燕琪1,2, 时宏城1,2
收稿日期:
2023-01-20
修回日期:
2023-02-01
出版日期:
2023-05-25
发布日期:
2023-04-27
通信作者:
*向 波(1990—),男,博士研究生,主要从事青藏高原构造地球物理学研究。E-mail: 作者简介:
徐 啸(1980—),男,副教授,硕士研究生导师,主要从事岩石圈尺度构造地球物理研究。E-mail: xuxiao8@mail.sysu.edu.cn
基金资助:
XU Xiao1,2(), YU Jiahao1,2, XIANG Bo1,2,*(
), GUO Xiaoyu1,2, LI Chunsen1,2, LUO Xucong1,2, TONG Xiaofei1,2, YUAN Zizhao1,2, LIN Yanqi1,2, SHI Hongcheng1,2
Received:
2023-01-20
Revised:
2023-02-01
Online:
2023-05-25
Published:
2023-04-27
摘要:
拉萨地体南缘作为印度-欧亚大陆碰撞的最前缘是研究碰撞带地壳接触关系的最佳区域。拉萨地体东南部在新生代陆-陆碰撞前还经历了中生代特提斯大洋岩石圈的俯冲演化阶段,多期次构造演化导致地壳结构复杂,致使不同分辨率地球物理方法观测地壳深部结构不清晰,宽频带地震观测和深地震反射数据对于俯冲的印度地壳前缘位置的解释并不一致。本研究在前人布设的测线周围平行布设了一条短周期密集台阵测线。通过本次研究的高分辨远震P波接收函数计算结果发现,前人通过宽频带数据所界定持续向北延伸的印度下地壳实际并不连续,印度地壳仅存在于雅鲁藏布江缝合带下方,这一认识与深地震反射结果一致。拉萨地体的中上地壳存在对应南北向挤压形成的逆冲构造。宽频带数据观测结果中看到的下地壳榴辉岩化区域位于雅鲁藏布江缝合带以北,主要位于中拉萨以及北拉萨南部。
中图分类号:
徐啸, 余嘉豪, 向波, 郭晓玉, 李春森, 罗旭聪, 仝霄飞, 袁梓昭, 林燕琪, 时宏城. 拉萨地体东南缘地壳深部结构[J]. 地学前缘, 2023, 30(3): 221-232.
XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane[J]. Earth Science Frontiers, 2023, 30(3): 221-232.
图1 藏南构造简图及前人地球物理观测测线分布(b引自文献[4⇓⇓⇓⇓⇓⇓⇓⇓-13]) a—青藏高原主要构造单元;b—拉萨地体中东部构造简图,并展示了该区域主要的宽频带地震观测、深地震反射观测、大地电磁观测的分布。观测结果主要表现为拉萨地体的壳内含有低速或者低阻体,且宽频带与深反射数据对于印度地壳向北延伸的最终位置以及下地壳成分存在比较大的差异。
Fig.1 Tectonic units of southern Tibet (a) and distribution of previous geophysical observation lines (b, adapted from [4⇓⇓⇓⇓⇓⇓⇓⇓-13])
图2 藏南东部南北向岩石圈结构(引自文献[31-32]) 根据图1中的地球物理观测的综合结果以及地表超钾岩和He同位素的分布显示,向北俯冲的印度大陆与欧亚大陆的接触面从浅部往深部并不连续,不同的研究方法给出了不同的缝合带位置分布。图中构造信息仅作为定性示意,不做具体量化。
Fig.2 Lithospheric structure beneath the south-north trending rift zone of southeastern Tibet. Adapted from [31-32].
图3 短周期密集台阵位置及地震事件分布图(引自文献[4,7]) 图中蓝色三角形为本次研究的节点式地震仪,黄色和绿色为前人布设的宽频带地震仪;本次研究测线由南向北横跨了特提斯喜马拉雅北部、南拉萨、中拉萨和北拉萨南部等地质体;研究区包括冈底斯岩基、林子宗火山岩、洛巴堆—米拉山断裂、亚东—谷露裂谷、念青唐古拉山、狮泉河—纳木错断裂等构造单元。
Fig.3 Location of short-period dense station array and distribution of seismic events. Adapted from [4,7].
图4 节点式短周期台站数据结果和宽频带地震仪数据结果的对比分析(引自文献[4]) a—短周期和宽频带地震仪位置和70 km深度穿刺点分布图;b和d—短周期(红色振幅)和宽频带(蓝色振幅)接收函数结果按反方位角排列,对应台站位置见图a,黄色虚线为莫霍面,绿色虚线为下地壳顶界面;c和e—放大显示反方位角116°到120°范围内的结果,主要是清晰显示本次研究结果;f—将图b和d中提取的两个界面按照南北向展示,不同区域位置显示在图a。
Fig.4 Comparative analysis of interpreted nodal short-period station and broadband seismogaphic data. Adapted from [4].
图6 高斯系数2.5的CCP叠加成像结果与Gangdese 92°E对比(据文献[7]修改) a—Gangdese 92°E CCP成像结果,红色虚线为前人解释的印度地壳前缘位置,黑色粗虚线为莫霍面,黑色细虚线为与本次研究对比相似的壳内信息;b—测线位置图;由于本次研究布设台站在东西上有大约1°的跨度,因此,为了准确对应地表构造单元,按照实际台站分布分别分成3段测线分别成像展示,这样也更好地显示了深部结构的东西向变化;c,d和e—为短周期台站数据CCP叠加成像结果,测线位置见图b,图中虚线标识与图a相同。
Fig.6 Results of CCP superimposed imaging of Gangdese 92°E with Gaussian factor 2.5 (c-e) compared with previous result (a), and location of seismic profiles (b). Modified after [7].
图7 高斯系数3.5的CCP叠加成像结果(a据文献[44]修改) a—拉萨地体和高喜马拉雅地区中、高压变质岩带形成的p-T条件;b,c和d—为高斯系数3.5的短周期台站数据CCP叠加成像结果,测线位置见图6b。
Fig.7 (a) p-T curve for the metamorphic belts of the Lhasa Terrane and Himalayas (a, modified from [44]) and (b-d) results of CCP superimposed imaging of Gangdese 92°E with Gaussian factor 3.5
图8 特提斯喜马拉雅北缘及拉萨地体地壳结构无比例简单示意图 有关印度俯冲板片的位置仅定性展示东部和中部俯冲的岩石圈地幔存在角度差异并有板片撕裂现象,俯冲板片前缘仅以黑色实曲线加以问号标识,不代表实际位置。
Fig.8 Crustal structural model of the Tethys Himalayan northern margin and Lhasa Terrane (not to scale)
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.
DOI URL |
[2] |
MO X, HOU Z, NIU Y, et al. Mantle contributions to crustal thickening in south Tibet in response to the India-Asia collision[J]. Lithos, 2007, 96(1/2): 225-242.
DOI URL |
[3] |
ZHU D C, PAN G T, CHUNG S L, et al. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet[J]. International Geology Review, 2008, 50(5): 442-471.
DOI URL |
[4] |
SHI D, KLEMPERER S L, SHI J, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences, 2020, 117(40): 24742-24747.
DOI URL |
[5] |
NÁBĚLEK J, HETÉNYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1374.
DOI PMID |
[6] |
XU Q, ZHAO J, YUAN X, et al. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting[J]. Gondwana Research, 2015, 27(4): 1487-1493.
DOI URL |
[7] |
SHI D, WU Z, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15.
DOI URL |
[8] | LU Z, GUO X, GAO R, et al. Active construction of southernmost Tibet revealed by deep seismic imaging[J]. Nature Communications, 2022, 13(1). https://doi.org/10.1038/s41467-022-30887-3. |
[9] |
KIND R, YUAN X, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian Plate Subduction[J]. Science, 2002, 298(5596): 1219-1221.
PMID |
[10] |
DONG X, LI W, LU Z, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395.
DOI URL |
[11] |
WANG G, WEI W, YE G, et al. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179.
DOI URL |
[12] | XIE C, JIN S, WEI W, et al. Middle crustal partial melting triggered since the Mid-Miocene in southern Tibet: insights from magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9). https://doi.org/10.1029/2021JB022435. |
[13] | 李才, 黄小鹏, 翟庆国, 等. 龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界[J]. 地学前缘, 2006, 13(4): 136-147. |
[14] |
LIU Z, TIAN X, YUAN X, et al. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves[J]. Earth and Planetary Science Letters, 2020, 531: 115954.
DOI URL |
[15] |
TIAN X, LIU Z, SI S, et al. The crustal thickness of NE Tibet and its implication for crustal shortening[J]. Tectonophysics, 2014, 634: 198-207.
DOI URL |
[16] | HUANG S, YAO H, LU Z, et al. High-resolution 3-D shear wave velocity model of the Tibetan Plateau: implications for crustal deformation and porphyry Cu deposit formation[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(7). https://doi.org/10.1029/2019JB019215. |
[17] | YANG Y, RITZWOLLER M H, ZHENG Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4). https://doi.org/10.1029/2011JB008810. |
[18] |
SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2): 954-979.
DOI URL |
[19] | XIE C, JIN S, WEI W, et al. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data[J]. Earth, Planets and Space, 2017, 69(1). https://doi.org/10.1186/s40623-017-0734-z. |
[20] |
ZHU L. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves[J]. Earth and Planetary Science Letters, 2000, 179(1): 183-190.
DOI URL |
[21] | ZHU L, KANAMORI H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. |
[22] |
LI J, SONG X. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8296-8300.
DOI URL |
[23] |
CHEN Y, LI W, YUAN X, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24.
DOI URL |
[24] |
张佳伟, 李汉敖, 张会平, 等. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
DOI |
[25] | 许志琴, 王勤, 李忠海, 等. 印度-亚洲碰撞:从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23. |
[26] | 吴福元, 黄宝春, 叶凯, 等. 青藏高原造山带的垮塌与高原隆升[J]. 岩石学报, 2008, 24(1): 1-30. |
[27] |
GILLIGAN A, PRIESTLEY K F, ROECKER S W, et al. The crustal structure of the western Himalayas and Tibet[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3946-3964.
DOI URL |
[28] | WANG G, THYBO H, ARTEMIEVA I M. No mafic layer in 80 km thick Tibetan crust[J]. Nature Communications, 2021, 12(1). https://doi.org/10.1038/s41467-021-21420-z. |
[29] | 武振波, 徐涛, 武澄泷, 等. 利用接收函数反演青藏高原西部地壳S波速度结构[J]. 地球物理学报, 2016, 59(2): 516-527. |
[30] |
吴佳杰, 徐啸, 郭晓玉, 等. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230.
DOI |
[31] | 赵志丹, 莫宣学, NOMADE S, 等. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 2006(4): 787-794. |
[32] | KLEMPERER S L, ZHAO P, WHYTE C J, et al. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences, 2022, 119(12): e2113877119. |
[33] |
ZHU D C, ZHAO Z D, NIU Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
DOI URL |
[34] |
ZHU D C, ZHAO Z D, NIU Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730.
DOI URL |
[35] |
MO X, NIU Y, DONG G, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/2/3/4): 49-67.
DOI URL |
[36] | 朱弟成, 赵志丹, 牛耀龄, 等. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 2012, 18(1): 1-15. |
[37] | LIU D, ZHAO Z, DEPAOLO D J, et al. Potassic volcanic rocks and adakitic intrusions in southern Tibet: insights into mantle-crust interaction and mass transfer from Indian plate[J]. Lithos, 2017, 268/269/270/271: 48-64. |
[38] |
HOU Z, YANG Z, LU Y, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250.
DOI URL |
[39] |
郭晓玉, 罗旭聪, 高锐, 等. 印度-欧亚板块主碰撞带全地壳尺度相互作用关系研究[J]. 地学前缘, 2023, 30(2): 1-17.
DOI |
[40] | WANG R, COLLINS W J, WEINBERG R F, et al. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust-mantle mixing and metamorphism in the deep crust[J]. Contributions to Mineralogy and Petrology, 2016, 171(7). https://doi.org/10.1007/s00410-016-1272-6. |
[41] |
YI J K, ZHU D C, WEINBERG R F, et al. Origin of Tibetan post-collisional high-K adakitic granites: anatexis of intermediate to felsic arc rocks[J]. Geology, 2022, 50(7): 771-775.
DOI URL |
[42] | 孙浩哲, 赵志丹, 朱弟成, 等. 藏南米拉山地区中新世埃达克质岩石的年代学、地球化学和成因[J]. 岩石学报, 2021, 37(11): 3479-3500. |
[43] | 董昕, 张泽明, 向华, 等. 青藏高原南部拉萨地体的变质作用与动力学[J]. 地球学报, 2013, 34(3): 257-262. |
[44] |
ZHANG Z M, DONG X, SANTOSH M, et al. Metamorphism and tectonic evolution of the Lhasa Terrane, Central Tibet[J]. Gondwana Research, 2014, 25(1): 170-189.
DOI URL |
[45] |
XUE S, CHEN Y, LIANG H, et al. Deep electrical resistivity structure across the Gyaring Co fault in Central Tibet revealed by magnetotelluric data and its implication[J]. Tectonophysics, 2021, 809: 228835.
DOI URL |
[46] |
SHENG Y, JIN S, LEI L, et al. Deep thermal state on the eastern margin of the Lhasa-Gangdese belt and its constraints on tectonic dynamics based on the 3-D electrical model[J]. Tectonophysics, 2020, 793: 228606.
DOI URL |
[47] | ZHU D C, WANG Q, WEINBERG R F, et al. Interplay between oceanic subduction and continental collision in building continental crust[J]. Nature Communications, 2022, 13(1). https://doi.org/10.1038/s41467-022-34826-0. |
[48] |
LIANG X, CHEN Y, TIAN X, et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 2016, 443: 162-175.
DOI URL |
[49] |
李春森, 徐啸, 向波, 等. 北喜马拉雅构造带东部Moho形态研究: 以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67.
DOI |
[1] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[2] | 蔡蔚, 卢占武, 黄荣, 李文辉, 罗银河, 王光文, 穆青, 程永志, 陈司, 王冠, 陈子龙. 基于短周期密集台阵接收函数揭示的藏南错那洞穹窿地壳结构[J]. 地学前缘, 2024, 31(1): 170-180. |
[3] | 李强, 吴建平. 中国大陆东南缘地壳厚度与泊松比及其构造意义[J]. 地学前缘, 2023, 30(5): 408-419. |
[4] | 穆青, 黄荣, 严加永, 卢占武, 罗银河, 张永谦, 姜小欢, 文宏斌, 魏鹏龙, 周万里. 利用接收函数H-κ-c叠加方法约束武陵山重力梯度带地壳结构[J]. 地学前缘, 2023, 30(5): 369-383. |
[5] | 姜小欢, 黄荣, 朱露培, 卢占武, 罗银河, 张荣堂, 徐浩. RF-RTM成像方法研究新疆西准噶尔地区线性台阵下方地壳结构[J]. 地学前缘, 2023, 30(5): 358-368. |
[6] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[7] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[8] | 杜林涛, 毕文军, 李亚林, 张佳伟, 张少文, 尹须伟, 王成秀. 羌塘盆地安多114道班地区上白垩统阿布山组沉积环境、物源分析及其构造意义[J]. 地学前缘, 2023, 30(4): 245-259. |
[9] | 李春森, 徐啸, 向波, 郭晓玉, 吴优, 吴佳杰, 罗旭聪, 余嘉豪, 仝霄飞, 袁梓昭, 林燕琪. 北喜马拉雅构造带东部Moho形态研究:以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67. |
[10] | 周鹏哲, 高锐, 叶卓. 祁连山中部地壳各向异性研究:来自远震接收函数的证据[J]. 地学前缘, 2022, 29(4): 265-277. |
[11] | 吴佳杰, 徐啸, 郭晓玉, 卢占武, 吴优, 向波, 于洋, 李春森, 余嘉豪, 仝霄飞, 罗旭聪. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230. |
[12] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. 远震数据显示贝加尔裂谷带北穆伊斯克(Severomuysk)段地壳和上地幔的精细结构[J]. 地学前缘, 2022, 29(2): 378-392. |
[13] | 卢占武, 高锐, Simon KLEMPERER, 王海燕, 董树文, 李文辉, 李洪强. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217. |
[14] | 李化启,许志琴,杨经绥,唐哲民,杨梅. 拉萨地体内松多榴辉岩的同碰撞折返:来自构造变形和40Ar-39Ar年代学的证据[J]. 地学前缘, 2011, 18(3): 66-78. |
[15] | 楼海, 王椿镛, 姚志祥, 李红谊, 苏伟, 吕智勇. 龙门山断裂带深部构造和物性分布的分段特征[J]. 地学前缘, 2010, 17(5): 128-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||