地学前缘 ›› 2023, Vol. 30 ›› Issue (2): 479-494.DOI: 10.13745/j.esf.sf.2022.2.82
收稿日期:
2022-01-05
修回日期:
2022-06-09
出版日期:
2023-03-25
发布日期:
2023-01-05
通信作者:
蒋宏忱
作者简介:
马 力(1996—),男,博士研究生,海洋科学专业。E-mail: 1114824383@qq.com
基金资助:
MA Li1(), XIE Yihao2, WU Geng2, JIANG Hongchen1,*(
)
Received:
2022-01-05
Revised:
2022-06-09
Online:
2023-03-25
Published:
2023-01-05
Contact:
JIANG Hongchen
摘要:
地热生境具有高温、缺氧等特点,与早期地球环境条件相似。因此,现代地热生境中嗜热菌可作为研究对象用来探讨地球早期生命与环境协同演化过程。微生物介导的硫循环过程是早期地球主要的生物地球化学过程之一。因此,研究地热生境微生物介导的硫循环及其耦合的相关元素循环过程,有助于我们理解早期地球硫元素生物地球化学循环过程及其环境效应。本文综述了地热生境中硫循环微生物多样性特征及其影响因素,以及与硫循耦合的碳、氮、铁循环的微生物过程;结合地球早期的环境条件以及对应的地层中的同位素地质记录,探讨了地球早期微生物介导的硫循环过程可能产生的环境效应,为研究早期地球微生物介导的硫循环与环境的协同演化过程提出展望。
中图分类号:
马力, 谢逸豪, 吴耿, 蒋宏忱. 地热生境中硫循环微生物研究进展——对早期地球生命过程的启示[J]. 地学前缘, 2023, 30(2): 479-494.
MA Li, XIE Yihao, WU Geng, JIANG Hongchen. Research progress in microbial-mediated sulfur cycles in geothermal habitats: Insights into biological processes on the early Earth[J]. Earth Science Frontiers, 2023, 30(2): 479-494.
图2 硫循环主要微生物代谢途径[19] SOX—硫氧化酶系统;DSR—异化亚硫酸盐还原;Soe—膜结合亚硫酸盐脱氢酶;Sor—可溶性亚硫酸盐脱氢酶;Sqr—硫化物-醌氧化-还原酶;Fcc—黄细胞色素c硫化物脱氢酶;rDSR—反向异化亚硫酸盐还原;aprAB—腺苷硫酸盐还原酶亚基;qmoAB—醌类氧化-还原酶亚基;Sat—硫酸盐腺苷转移酶;APS—腺苷磷硫酸盐。
Fig.2 Main metabolic pathway of the sulfur cycle (adapted from [19]). SOX: sulfur oxidizing enzyme system; DSR: dissimilatory sulfite reduction; Soe: membrane-bound sulfite dehydrogenases; Sor: soluble sulfite dehydrogenase; Sqr: sulfide-quinone oxidoreductase; Fcc: flavocytochrome c sulfide dehydrogenase; rDSR: reverse dissimilatory sulfite reduction; aprAB: adenylylsulfate reductase; qmoAB: adenylylsulfate reductase; Sat: sulfate adenylyltransferase; APS: adenosine phosphosulphate.
太古宙样本 | 分馏结果 | 年龄/Ga | 推测过程 | 文献 |
---|---|---|---|---|
Isua Supracrustal Belt BIFs, West Greenland | δ56Fe=0.4‰~1.1‰ | 3.7 | Anoxygenic Photosynthesis | [ |
Marble Bar Chert, Australia | δ56Fe=1.5‰~2.6‰ | 3.46 | Anoxygenic Photosynthesis | [ |
Buck Reef Chert, South Africa | δ13C=-35‰~-20‰ | 3.42 | Anoxygenic Photosynthesis | [ |
Barberton Greenstone Belt, South Africa | δ13C=-26.8‰~-22.7‰ | 3.47 | Anoxygenic Photosynthesis | [ |
Strelley Pool Formation, Australia | δ34S=-40‰~25‰ | 3.45 | Sulfur Metabolism | [ |
Barberton Greenstone Belt, South Africa | δ34S=-39.8‰~-3.2‰ | 3.45 | Sulfur Metabolism | [ |
Isua Greenstone Belt, West Greenland | δ34S=-3.8‰~3.4‰ | 3.8 | Sulfur Metabolism | [ |
Dresser Formation, Western Australia | δ34S=-22‰~-14‰ | 3.5 | Sulfate Reduction | [ |
Sargur Group, India | δ34S=-11.4‰~-8.3‰ | 3.2 | Sulfate Reduction | [ |
Pyrites Within Barites, Pilbara Craton | δ34S/δ32S=25‰ | 3.47 | Sulfate Reduction | [ |
Dresser Formation, Western Australia | Δ33S=2.3‰±1.8‰ | 3.49 | Sulfur Disproportionation | [ |
Microscopic pyrite, Strelley Pool Formation, Australia | Δ33S=-1.7‰±1.4‰ | 3.45 | Sulfur Disproportionation | [ |
Dresser Formation, Western Australia | δ13C=-56‰ | 3.47 | Methanogenesis | [ |
Lalla Rookh Sandstone, Western Australia | δ13C=-38‰~-30‰ | 3.0 | Methanogenesis | [ |
Fortesque Group, Tumbiana Formation | δ13C=-50‰~-40‰ | 2.72 | Methanogenesis | [ |
Strelley Pool Formation stromatolites, Australia | δ13C=-45‰~-29‰ | 3.43 | Methanotrophy | [ |
Mount Roe Paleosol, Western Australia | δ13C=-51‰~-33‰ | 2.77 | Methanotrophy | [ |
Fortescue Group, Australia | δ56Fe=-4.2‰~3.0‰ | 2.7 | Iron Reduction | [ |
Barberton Greenstone Belt, Kaapvaal Craton | δ56Fe=-1.8‰~3.8‰ | 3.2 | Iron Reduction | [ |
Marine and fluvial sedimentary rocks | δ15N=0±1.2‰ | 3.2 | Nitrogen Fixation | [ |
Mount McRae, Australia | δ15N=1‰~7.5‰ | 2.5 | Nitrification/Denitrification | [ |
表1 太古宙主要微生物代谢过程的地球化学证据
Table 1 Geochemical evidences for major Archaean microbial metabolic processes
太古宙样本 | 分馏结果 | 年龄/Ga | 推测过程 | 文献 |
---|---|---|---|---|
Isua Supracrustal Belt BIFs, West Greenland | δ56Fe=0.4‰~1.1‰ | 3.7 | Anoxygenic Photosynthesis | [ |
Marble Bar Chert, Australia | δ56Fe=1.5‰~2.6‰ | 3.46 | Anoxygenic Photosynthesis | [ |
Buck Reef Chert, South Africa | δ13C=-35‰~-20‰ | 3.42 | Anoxygenic Photosynthesis | [ |
Barberton Greenstone Belt, South Africa | δ13C=-26.8‰~-22.7‰ | 3.47 | Anoxygenic Photosynthesis | [ |
Strelley Pool Formation, Australia | δ34S=-40‰~25‰ | 3.45 | Sulfur Metabolism | [ |
Barberton Greenstone Belt, South Africa | δ34S=-39.8‰~-3.2‰ | 3.45 | Sulfur Metabolism | [ |
Isua Greenstone Belt, West Greenland | δ34S=-3.8‰~3.4‰ | 3.8 | Sulfur Metabolism | [ |
Dresser Formation, Western Australia | δ34S=-22‰~-14‰ | 3.5 | Sulfate Reduction | [ |
Sargur Group, India | δ34S=-11.4‰~-8.3‰ | 3.2 | Sulfate Reduction | [ |
Pyrites Within Barites, Pilbara Craton | δ34S/δ32S=25‰ | 3.47 | Sulfate Reduction | [ |
Dresser Formation, Western Australia | Δ33S=2.3‰±1.8‰ | 3.49 | Sulfur Disproportionation | [ |
Microscopic pyrite, Strelley Pool Formation, Australia | Δ33S=-1.7‰±1.4‰ | 3.45 | Sulfur Disproportionation | [ |
Dresser Formation, Western Australia | δ13C=-56‰ | 3.47 | Methanogenesis | [ |
Lalla Rookh Sandstone, Western Australia | δ13C=-38‰~-30‰ | 3.0 | Methanogenesis | [ |
Fortesque Group, Tumbiana Formation | δ13C=-50‰~-40‰ | 2.72 | Methanogenesis | [ |
Strelley Pool Formation stromatolites, Australia | δ13C=-45‰~-29‰ | 3.43 | Methanotrophy | [ |
Mount Roe Paleosol, Western Australia | δ13C=-51‰~-33‰ | 2.77 | Methanotrophy | [ |
Fortescue Group, Australia | δ56Fe=-4.2‰~3.0‰ | 2.7 | Iron Reduction | [ |
Barberton Greenstone Belt, Kaapvaal Craton | δ56Fe=-1.8‰~3.8‰ | 3.2 | Iron Reduction | [ |
Marine and fluvial sedimentary rocks | δ15N=0±1.2‰ | 3.2 | Nitrogen Fixation | [ |
Mount McRae, Australia | δ15N=1‰~7.5‰ | 2.5 | Nitrification/Denitrification | [ |
图3 太古宙海洋硫-甲烷-铁循环耦合示意图[20,117]
Fig.3 Schematic diagram showing the coupling of the sulfur-methane-iron cycle in the Archean ocean. Adapted from [20,117].
[15] |
BOYD E S, FECTEAU K M, HAVIG J R, et al. Modeling the habitat range of phototrophs in Yellowstone National Park: toward the development of a comprehensive fitness landscape[J]. Frontiers in Microbiology, 2012, 3: 221.
DOI PMID |
[16] |
COX A, SHOCK E L, HAVIG J R. The transition to microbial photosynthesis in hot spring ecosystems[J]. Chemical Geology, 2011, 280(3/4): 344-351.
DOI URL |
[17] |
GEORGIEVA M N, LITTLE C T S, MASLENNIKOV V V, et al. The history of life at hydrothermal vents[J]. Earth-Science Reviews, 2021, 217: 103602.
DOI URL |
[18] |
HAVIG J R, HAMILTON T L, BACHAN A, et al. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic[J]. Earth-Science Reviews, 2017, 174: 1-21.
DOI URL |
[19] |
WU B, LIU F F, FANG W W, et al. Microbial sulfur metabolism and environmental implications[J]. Science of the Total Environment, 2021, 778: 146085.
DOI URL |
[20] |
FAKHRAEE M, KATSEV S. Organic sulfur was integral to the Archean sulfur cycle[J]. Nature Communications, 2019, 10: 4556.
DOI PMID |
[21] |
MUYZER G, STAMS A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454.
DOI PMID |
[22] |
GILLEAUDEAU G J, KAH L C. Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic Ocean: evidence from carbon-sulfur-iron relationships[J]. Precambrian Research, 2015, 257: 94-108.
DOI URL |
[23] |
CANFIELD D E, RAISWELL R. The evolution of the sulfur cycle[J]. American Journal of Science, 1999, 299(7/8/9): 697-723.
DOI URL |
[24] | COCKELL C S, RAVEN J A. Ozone and life on the Archaean earth[J]. Philosophical Transactions Mathematical Physical and Engineering Sciences, 2007, 365(1856): 1889-1901. |
[25] |
DODD M S, PAPINEAU D, GRENNE T, et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates[J]. Nature, 2017, 543(7643): 60-64.
DOI URL |
[26] |
NISBET E G, SLEEP N H. The habitat and nature of early life[J]. Nature, 2001, 409(6823): 1083-1091.
DOI URL |
[27] |
ROBERT F, CHAUSSIDON M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts[J]. Nature, 2006, 443(7114): 969-972.
DOI URL |
[28] |
KNAUTH L P. Temperature and salinity history of the Precambrian Ocean: implications for the course of microbial evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 53-69.
DOI URL |
[29] |
GAUCHER E A, GOVINDARAJAN S, GANESH O K. Palaeotemperature trend for Precambrian life inferred from resurrected proteins[J]. Nature, 2008, 451(7179): 704-707.
DOI URL |
[30] |
FRALICK P, CARTER J E. Neoarchean deep marine paleotemperature: evidence from turbidite successions[J]. Precambrian Research, 2011, 191(1/2): 78-84.
DOI URL |
[31] |
VAN DEN BOORN S H J M, VAN BERGEN M J, NIJMAN W, et al. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes[J]. Geology, 2007, 35(10): 939-942.
DOI URL |
[32] |
BLAKE R E, CHANG S J, LEPLAND A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean Ocean[J]. Nature, 2010, 464(7291): 1029-1032.
DOI URL |
[1] |
CICCARELLI F D, DOERKS T, VON MERING C, et al. Toward automatic reconstruction of a highly resolved tree of life[J]. Science, 2006, 311(5765): 1283-1287.
DOI PMID |
[2] |
BROWN J R, DOUADY C J, ITALIA M J, et al. Universal trees based on large combined protein sequence data sets[J]. Nature Genetics, 2001, 28(3): 281-285.
DOI PMID |
[3] |
HUA Z S, WANG Y L, EVANS P N, et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea[J]. Nature Communications, 2019, 10: 4574.
DOI URL |
[4] |
YANG Y Y, ZHANG C L, LENTON T M, et al. The evolution pathway of ammonia-oxidizing Archaea shaped by major geological events[J]. Molecular Biology and Evolution, 2021, 38(9): 3637-3648.
DOI PMID |
[5] |
DI GIULIO M. The universal ancestor lived in a thermophilic or hyperthermophilic environment[J]. Journal of Theoretical Biology, 2000, 203(3): 203-213.
PMID |
[6] |
MARTIN W, BAROSS J, KELLEY D, et al. Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology, 2008, 6(11): 805-814.
DOI PMID |
[7] |
AMENABAR M J, BOYD E S. A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems[J]. World Journal of Microbiology and Biotechnology, 2019, 35(2): 29.
DOI PMID |
[8] |
KASTING J F. Earth’s early atmosphere[J]. Science, 1993, 259(5097): 920-926.
DOI URL |
[9] |
KASTING J F, SIEFERT J L. Life and the evolution of Earth’s atmosphere[J]. Science, 2002, 296(5570): 1066-1068.
DOI URL |
[10] |
WANG S, HOU W G, DONG H L, et al. Control of temperature on microbial community structure in hot springs of the Tibetan Plateau[J]. PLoS One, 2013, 8(5): e62901.
DOI URL |
[11] |
WU G, JIANG H C, DONG H L, et al. Distribution of arsenite- oxidizing bacteria and its correlation with temperature in hot springs of the Tibetan- Yunnan geothermal zone in Western China[J]. Geomicrobiology Journal, 2015, 32(6): 482-493.
DOI URL |
[12] |
BOYD E S, HAMILTON T L, SPEAR J R, et al. FeFe -hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism[J]. The ISME Journal, 2010, 4(12): 1485-1495.
DOI URL |
[13] |
ADAM N, PERNER M. Microbially mediated hydrogen cycling in deep-sea hydrothermal vents[J]. Frontiers in Microbiology, 2018, 9: 2873.
DOI PMID |
[14] |
JØRGENSEN B B, BOETIUS A. Feast and famine—microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10): 770-781.
DOI URL |
[33] | GARCIA A K, SCHOPF J W, YOKOBORI S I, et al. Reconstructed ancestral enzymes suggest long-term cooling of Earth’s photic zone since the Archean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4619-4624. |
[34] |
KELLER M A, KAMPJUT D, HARRISON S A, et al. Sulfate radicals enable a non-enzymatic Krebs cycle precursor[J]. Nature Ecology and Evolution, 2017, 1(4): 83.
DOI PMID |
[35] | KRISSANSEN-TOTTON J, ARNEY G N, CATLING D C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4105-4110. |
[36] | 李超, 程猛, ALGEO T J, 等. 早期地球海洋水化学分带的理论预测[J]. 中国科学: 地球科学, 2015, 45(12): 1829-1838. |
[37] | CATLING D C, ZAHNLE K J. The Archean atmosphere[J]. Science Advances, 2020, 6(9): eaax1420. |
[38] |
KUMP L R, SEYFRIED W E Jr. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth and Planetary Science Letters, 2005, 235(3/4): 654-662.
DOI URL |
[39] | FAKHRAEE M, CROWE S A, KATSEV S. Sedimentary sulfur isotopes and neoarchean ocean oxygenation[J]. Science Advances, 2018, 4(1): e1701835. |
[40] |
FAKHRAEE M, HANCISSE O, CANFIELD D E, et al. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry[J]. Nature Geoscience, 2019, 12(5): 375-380.
DOI URL |
[41] |
KONHAUSER K O, PECOITS E, LALONDE S V, et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 2009, 458(7239): 750-753.
DOI URL |
[42] | PAULO L M, STAMS A J M, SOUSA D Z. Methanogens, sulphate and heavy metals: a complex system[J]. Reviews in Environmental Science and Bio-Technology, 2015, 14(4): 537-553. |
[43] | TOPUOGLU B D, MEYDAN C, NGUYEN T B, et al. Growth kinetics, carbon isotope fractionation, and gene expression in the Hyperthermophile methanocaldococcus jannaschii during hydrogen-limited growth and inter species hydrogen transfer[J]. Applied and Environmental Microbiology, 2019, 85(9): e00180-e00190. |
[44] |
ZHANG Y M, WU G, JIANG H C, et al. Abundant and rare microbial biospheres respond differently to environmental and spatial factors in Tibetan hot springs[J]. Frontiers in Microbiology, 2018, 9: 2096.
DOI PMID |
[45] | 刘阳, 姜丽晶, 邵宗泽. 硫氧化细菌的种类及硫氧化途径的研究进展[J]. 微生物学报, 2018, 58(2): 191-201. |
[46] | 陈俊松, 杨渐, 蒋宏忱. 湖泊硫循环微生物研究进展[J]. 微生物学报, 2020, 60(6): 1177-1191. |
[47] |
TIAN H M, GAO P K, CHEN Z H, et al. Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China[J]. Frontiers in Microbiology, 2017, 8: 143.
DOI PMID |
[48] | CAO H L, WANG Y, LEE O O, et al. Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge[J]. MBio, 2014, 5(1): e00980-e00913. |
[49] | 甄莉, 吴耿, 杨渐, 等. 西藏热泉沉积物的硫氧化细菌多样性及其影响因素[J]. 微生物学报, 2019, 59(6): 1089-1104. |
[50] | 张宏, 李颖杰, 王文颖, 等. 微生物硫循环网络的研究进展[J]. 微生物学报, 2021, 61(6): 1567-1581. |
[51] |
MEIER D V, PJEVAC P, BACH W, et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents[J]. The ISME Journal, 2017, 11(7): 1545-1558.
DOI URL |
[52] |
GIOVANNELLI D, SIEVERT S M, HÜGLER M, et al. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans[J]. elife, 2017, 6: e18990.
DOI URL |
[53] |
EVERROAD R C, OTAKI H, MATSUURA K, et al. Diversification of bacterial community composition along a temperature gradient at a thermal spring[J]. Microbes and Environments, 2012, 27(4): 374-381.
DOI PMID |
[54] |
CZAJA A D, BEUKES N J, OSTERHOUT J T. Sulfur-oxidizing bacteria prior to the Great Oxidation Event from the 2.52 Ga Gamohaan Formation of South Africa[J]. Geology, 2016, 44(12): 983-986.
DOI URL |
[55] |
JAVAUX E J, MARSHALL C P, BEKKER A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits[J]. Nature, 2010, 463(7283): 934-938.
DOI URL |
[56] |
KAPPLER A, PASQUERO C, KONHAUSER K O, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33(11): 865-868.
DOI URL |
[57] |
LEPOT K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon[J]. Earth-Science Reviews, 2020, 209: 103296.
DOI URL |
[58] |
BÜHRING S I, SIEVERT S M, JONKERS H M, et al. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems[J]. Geobiology, 2011, 9(2): 166-179.
DOI PMID |
[59] | HAMILTON T L, BENNETT A C, MURUGAPIRAN S K, et al. Anoxygenic phototrophs span geochemical gradients and diverse morphologies in terrestrial geothermal springs[J]. mSystems, 2019, 4(6): e00498-e00419. |
[60] |
KALASHNIKOV A M, GAISIN V A, SUKHACHEVA M V, et al. Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)[J]. Microbiology, 2014, 83(4): 407-421.
DOI URL |
[61] |
KAWAI S, KAMIYA N, MATSUURA K, et al. Symbiotic growth of a thermophilic sulfide-oxidizing photoautotroph and an elemental sulfur-disproportionating chemolithoautotroph and cooperative dissimilatory oxidation of sulfide to sulfate[J]. Frontiers in Microbiology, 2019, 10: 1150.
DOI PMID |
[62] |
AKIMOV V N, PODOSOKORSKAYA O A, SHLYAPNIKOV M G, et al. Dominant phylotypes in the 16S rRNA gene clone libraries from bacterial mats of the Uzon caldera (Kamchatka, Russia) hydrothermal springs[J]. Microbiology, 2013, 82(6): 721-727.
DOI URL |
[63] |
BENNETT A C, MURUGAPIRAN S K, HAMILTON T L. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park[J]. Environmental Microbiology Reports, 2020, 12(5): 503-513.
DOI URL |
[64] |
REINHARD C T, RAISWELL R, SCOTT C, et al. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents[J]. Science, 2009, 326(5953): 713-716.
DOI PMID |
[65] |
CANFIELD D E, JØRGENSEN B B, FOSSING H, et al. Pathways of organic carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113(1/2): 27-40.
DOI URL |
[66] |
PIRES R H, LOURENÇO A I, MORAIS F, et al. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774[J]. Biochimica et Biophysica Acta-Bioenergetics, 2003, 1605(1/2/3): 67-82.
DOI URL |
[67] |
PEREIRA I A C, RAMOS A R, GREIN F, et al. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and Archaea[J]. Frontiers in Microbiology, 2011, 2: 69.
DOI PMID |
[68] |
LELOUP J, FOSSING H, KOHLS K, et al. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation[J]. Environmental Microbiology, 2009, 11(5): 1278-1291.
DOI PMID |
[69] |
MA L, SHE W Y, WU G, et al. Influence of temperature and sulfate concentration on the sulfate/sulfite reduction prokaryotic communities in the Tibetan hot springs[J]. Microorganisms, 2021, 9(3): 583.
DOI URL |
[70] |
MORI K, KIM H, KAKEGAWA T, et al. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp nov., a new thermophilic isolate from a hot spring[J]. Extremophiles, 2003, 7(4): 283-290.
DOI URL |
[71] |
STETTER K O, LAUERER G, THOMM M, et al. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria[J]. Science, 1987, 236(4803): 822-824.
PMID |
[72] | ITOH T, SUZUKI K, SANCHEZ P C, et al. Caldivirga maquilingensis gen. nov., sp nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines[J]. International Journal of Systematic Bacteriology, 1999, 49(3): 1157-1163. |
[73] |
SIEBERS B, ZAPARTY M, RADDATZ G, et al. The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota[J]. PLoS One, 2011, 6(10): e24222.
DOI URL |
[74] |
CHERNYH N A, NEUKIRCHEN S, FROLOV E N, et al. Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism[J]. Nature Microbiology, 2020, 5(11): 1428-1438.
DOI URL |
[75] |
DAVID L A, ALM E J. Rapid evolutionary innovation during an Archaean genetic expansion[J]. Nature, 2011, 469(7328): 93-96.
DOI URL |
[76] |
ZHOU J Z, HE Q, HEMME C L, et al. How sulphate-reducing microorganisms cope with stress: lessons from systems biology[J]. Nature Reviews Microbiology, 2011, 9(6): 452-466.
DOI PMID |
[77] |
SHEN Y N, BUICK R. The antiquity of microbial sulfate reduction[J]. Earth-Science Reviews, 2004, 64(3/4): 243-272.
DOI URL |
[78] |
UENO Y, ONO S, RUMBLE D, et al. Quadruple sulfur isotope analysis of Ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean[J]. Geochimica et Cosmochimica Acta, 2008, 72(23): 5675-5691.
DOI URL |
[79] |
SHEN Y N, FARQUHAR J, MASTERSON A, et al. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics[J]. Earth and Planetary Science Letters, 2009, 279(3/4): 383-391.
DOI URL |
[80] | JEANTHON C, L’HARIDON S, CUEFF V, et al. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(3): 765-772. |
[81] |
MOUSSARD H, L’HARIDON S, TINDALL B J, et al. Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(1): 227-233.
DOI URL |
[82] |
SEKIGUCHI Y, MURAMATSU M, IMACHI H, et al. Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio[J]. International journal of systematic and evolutionary microbiology, 2008, 58(11): 2541-2548.
DOI URL |
[83] |
SIEVERT S M, KUEVER J. Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece)[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(3): 1239-1246.
DOI URL |
[84] |
VIGNERON A, CRUAUD P, CULLEY A I, et al. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem[J]. Microbiome, 2021, 9(1): 46.
DOI PMID |
[85] |
ANANTHARAMAN K, HAUSMANN B, JUNGBLUTH S P, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle[J]. The ISME Journal, 2018, 12(7): 1715-1728.
DOI URL |
[86] |
ZHANG J Z, MILLERO F J. The rate of sulfite oxidation in seawater[J]. Geochimica et Cosmochimica Acta, 1991, 55(3): 677-685.
DOI URL |
[87] |
FINSTER K. Microbiological disproportionation of inorganic sulfur compounds[J]. Journal of Sulfur Chemistry, 2008, 29(3/4): 281-292.
DOI URL |
[88] |
ZINDER S, BROCK T D. Sulfur dioxide in geothermal waters and gases[J]. Geochimica et Cosmochimica Acta, 1977, 41(1): 73-79.
DOI URL |
[89] |
COLMAN D R, LINDSAY M R, AMENABAR M J, et al. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth[J]. The ISME Journal, 2020, 14(5): 1316-1331.
DOI URL |
[90] |
WACEY D, KILBURN M R, SAUNDERS M, et al. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia[J]. Nature Geoscience, 2011, 4(10): 698-702.
DOI URL |
[91] |
PHILIPPOT P, VAN ZUILEN M V, LEPOT K, et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate[J]. Science, 2007, 317(5844): 1534-1537.
PMID |
[92] |
FINSTER K W, KJELDSEN K U, KUBE M, et al. Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds[J]. Standards in Genomic Sciences, 2013, 8(1): 58-68.
DOI URL |
[93] | MARDANOV A V, BELETSKY A V, KADNIKOV V V, et al. Genome analysis of thermosulfurimonas dismutans, the first thermophilic sulfur-disproportionating bacterium of the phylum thermodesulfobacteria[J]. Frontiers in Microbiology, 2016, 7: 950. |
[94] |
SLOBODKIN A, REYSENBACH A L, SLOBODKINA G B, et al. Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(6): 1967-1971.
DOI URL |
[95] |
SLOBODKIN A I, SLOBODKINA G B, PANTELEEVA A, et al. Dissulfurimicrobium hydrothermale gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating deltaproteobacterium isolated from a hydrothermal pond[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2): 1022-1026.
DOI URL |
[96] |
KOJIMA H, UMEZAWA K, FUKUI M. Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(4): 1828-1831.
DOI URL |
[97] |
CZAJA A D, JOHNSON C M, BEARD B L, et al. Biological Fe oxidation controlled deposition of banded iron formation in the Ca. 3770 Ma Isua Supracrustal Belt (West Greenland)[J]. Earth and Planetary Science Letters, 2013, 363: 192-203.
DOI URL |
[98] |
LI W Q, CZAJA A D, VAN KRANENDONK M J, et al. An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago[J]. Geochimica et Cosmochimica Acta, 2013, 120: 65-79.
DOI URL |
[99] |
TICE M M, LOWE D R. Photosynthetic microbial mats in the 3, 416-myr-old ocean[J]. Nature, 2004, 431(7008): 549-552.
DOI URL |
[100] |
WESTALL F, DE RONDE C E J, SOUTHAM G, et al. Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1474): 1857-1875.
DOI URL |
[101] |
BONTOGNALI T R R, SESSIONS A L, ALLWOOD A C, et al. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15146-15151.
PMID |
[102] |
MCLOUGHLIN N, GROSCH E, KILBURN M, et al. Sulfur isotope evidence for a paleoarchean subseafloor biosphere, Barberton, South Africa[J]. Geology, 2012, 40(11): 1031-1034.
DOI URL |
[103] | GRASSINEAU N V, ABELL P, APPEL P W U, et al. Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga)[M]//KESLER S E, OHMOTO H. Evolution of early Earth’s atmosphere, hydrosphere, and biosphere:Constraints from ore deposits. Colorado: Geological Society of America, 2006: 33-52. |
[104] |
MULLER É, PHILIPPOT P, ROLLION-BARD C, et al. Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India[J]. Precambrian Research, 2017, 295: 38-47.
DOI URL |
[105] |
UENO Y, YAMADA K, YOSHIDA N, et al. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era[J]. Nature, 2006, 440(7083): 516-519.
DOI URL |
[106] |
STÜEKEN E E, BUICK R. Environmental control on microbial diversification and methane production in the Mesoarchean[J]. Precambrian Research, 2018, 304: 64-72.
DOI URL |
[107] |
BUICK R, DUNLOP J S R. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia[J]. Sedimentology, 1990, 37(2): 247-277.
DOI URL |
[108] |
FLANNERY D T, ALLWOOD A C, SUMMONS R E, et al. Spatially-resolved isotopic study of carbon trapped in -3.43 Ga Strelley Pool Formation stromatolites[J]. Geochimica et Cosmochimica Acta, 2018, 223: 21-35.
DOI URL |
[109] |
RYE R, HOLLAND H D. Life associated with a 2.76 Ga ephemeral pond: evidence from Mount Roe#2 paleosol[J]. Geology, 2000, 28(6): 483-486.
DOI URL |
[110] |
YOSHIYA K, NISHIZAWA M, SAWAKI Y, et al. In situ iron isotope analyses of pyrite and organic carbon isotope ratios in the Fortescue Group: metabolic variations of a Late Archean ecosystem[J]. Precambrian Research, 2012, 212/213: 169-193.
DOI URL |
[111] |
YOSHIYA K, SAWAKI Y, SHIBUYA T, et al. In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton[J]. Chemical Geology, 2015, 403: 58-73.
DOI URL |
[112] |
STÜEKEN E E, BUICK R, GUY B M, et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr[J]. Nature, 2015, 520(7549): 666-669.
DOI URL |
[113] |
GARVIN J, BUICK R, ANBAR A D, et al. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean[J]. Science, 2009, 323(5917): 1045-1048.
DOI PMID |
[114] |
THOMAZO C, PINTI D L, BUSIGNY V, et al. Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record[J]. Comptes Rendus Palevol, 2009, 8(7): 665-678.
DOI URL |
[115] |
CRADDOCK P R, DAUPHAS N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean[J]. Earth and Planetary Science Letters, 2011, 303(1/2): 121-132.
DOI URL |
[116] |
CROWE S A, JONES C, KATSEV S, et al. Photoferrotrophs thrive in an Archean Ocean analogue[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(41): 15938-15943.
DOI PMID |
[117] |
HEARD A W, DAUPHAS N, GUILBAUD R, et al. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation[J]. Science, 2020, 370(6515): 446-449.
DOI PMID |
[118] |
KUMP L R, BARLEY M E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago[J]. Nature, 2007, 448(7157): 1033-1036.
DOI URL |
[119] |
HOLM N G. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations[J]. Chemical Geology, 1989, 77(1): 41-45.
DOI URL |
[120] |
BRATERMAN P S, CAIRNS-SMITH A G, SLOPER R W. Photo-oxidation of hydrated Fe2+: significance for banded iron formations[J]. Nature, 1983, 303(5913): 163-164.
DOI URL |
[121] |
WIDDEL F, SCHNELL S, HEISING S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362(6423): 834-836.
DOI URL |
[122] |
HEGLER F, POSTH N R, JIANG J, et al. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments[J]. FEMS Microbiology Ecology, 2008, 66(2): 250-260.
DOI PMID |
[123] |
WU W F, SWANNER E D, HAO L K, et al. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum: implications for Precambrian Fe(II) oxidation[J]. FEMS Microbiology Ecology, 2014, 88(3): 503-515.
DOI URL |
[124] |
HEISING S, RICHTER L, LUDWIG W, et al. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain[J]. Archives of Microbiology, 1999, 172(2): 116-124.
DOI URL |
[125] |
RICKARD D, LUTHER G W. Chemistry of iron sulfides[J]. Chemical Reviews, 2007, 107(2): 514-562.
PMID |
[126] |
BERG J S, DUVERGER A, CORDIER L, et al. Rapid pyritization in the presence of a sulfur/sulfate-reducing bacterial consortium[J]. Scientific Reports, 2020, 10(1): 8264.
DOI PMID |
[127] |
FRANK K L, ROGERS K L, ROGERS D R, et al. Key factors influencing rates of heterotrophic sulfate reduction in active seafloor hydrothermal massive sulfide deposits[J]. Frontiers in Microbiology, 2015, 6: 1449.
DOI PMID |
[128] |
FRANK K L, ROGERS D R, OLINS H C, et al. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents[J]. The ISME Journal, 2013, 7(7): 1391-1401.
DOI URL |
[129] |
DILLON J G, FISHBAIN S, MILLER S R, et al. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms[J]. Applied and Environmental Microbiology, 2007, 73(16): 5218-5226.
PMID |
[130] |
CANFIELD D E, HABICHT K S, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466): 658-661.
PMID |
[131] |
MA L, WU G, YANG J, et al. Distribution of hydrogen-producing bacteria in Tibetan hot springs, China[J]. Frontiers in Microbiology, 2021, 12: 569020.
DOI URL |
[132] |
RABUS R, VENCESLAU S S, WÖHLBRAND L, et al. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes[J]. Advances in Microbial Physiology, 2015, 66: 55-321.
DOI PMID |
[133] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
DOI URL |
[134] |
SIPMA J, LETTINGA G, STAMS A J M, et al. Hydrogenogenic CO conversion in a moderately thermophilic (55 ℃) sulfate-fed gas lift reactor: competition for CO-derived H2[J]. Biotechnology Progress, 2006, 22(5): 1327-1334.
DOI URL |
[135] |
VAN HOUTEN R T, YUN S Y, LETTINGA G. Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source[J]. Biotechnology and Bioengineering, 1997, 55(5): 807-814.
DOI URL |
[136] |
BEAL E, CLAIRE M, HOUSE C. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels[J]. Geobiology, 2011, 9(2): 131-139.
DOI PMID |
[137] |
KALLMEYER J, BOETIUS A. Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin[J]. Applied and Environmental Microbiology, 2004, 70(2): 1231-1233.
DOI PMID |
[138] |
MCKAY L J, DLAKIĆ M, FIELDS M W, et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota[J]. Nature Microbiology, 2019, 4(4): 614-622.
DOI PMID |
[139] |
GODFREY L V, FALKOWSKI P G. The cycling and redox state of nitrogen in the Archaean Ocean[J]. Nature Geoscience, 2009, 2(10): 725-729.
DOI URL |
[140] |
STÜEKEN E E, KIPP M A, KOEHLER M C, et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220-239.
DOI URL |
[141] |
SHAO M F, ZHANG T, FANG H H P. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5): 1027-1042.
DOI URL |
[142] | JIAO J Y, LIAN Z H, LI M M, et al. Comparative genomic analysis of Thermus provides insights into the evolutionary history of an incomplete denitrification pathway[J]. mLife, 2022, 2: 198-209. |
[143] |
SKIRNISDOTTIR S, HREGGVIDSSON G O, HOLST O, et al. Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus[J]. Extremophiles, 2001, 5(1): 45-51.
DOI URL |
[144] |
AMEND J P, ROGERS K L, SHOCK E L, et al. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy[J]. Geobiology, 2003, 1(1): 37-58.
DOI URL |
[145] |
LI G X, LI H, XIAO K Q, et al. Thiosulfate reduction coupled with anaerobic ammonium oxidation by Ralstonia sp. GX3-BWBA[J]. ACS Earth and Space Chemistry, 2020, 4(12): 2426-2434.
DOI URL |
[146] |
LI Y F, TANG K, ZHANG L B, et al. Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem[J]. Frontiers in Microbiology, 2018, 9: 2718.
DOI PMID |
[1] | 朱茂林, 刘震, 刘惠民, 张鹏飞, 赵振. 东营凹陷北带基岩风化壳储层发育特征及控制因素[J]. 地学前缘, 2024, 31(3): 324-336. |
[2] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[3] | 董海良, 曾强, 刘邓, 盛益之, 刘晓磊, 刘源, 胡景龙, 李扬, 夏庆银, 李润洁, 胡大福, 张冬磊, 张文慧, 郭东毅, 张晓文. 黏土矿物-微生物相互作用机理以及在环境领域中的应用[J]. 地学前缘, 2024, 31(1): 467-485. |
[4] | 马永生, 蔡勋育, 李慧莉, 朱东亚, 张军涛, 杨敏, 段金宝, 邓尚, 尤东华, 武重阳, 陈森然. 深层-超深层碳酸盐岩储层发育机理新认识与特深层油气勘探方向[J]. 地学前缘, 2023, 30(6): 1-13. |
[5] | 鲁鹏达, 李泽奇, 田腾振, 吴娟, 孙玮, 乔占峰, 王永生, 刘树根, 邓宾. 四川盆地震旦系灯影组二段葡萄-花边结构成因及其对储层控制作用[J]. 地学前缘, 2023, 30(6): 14-31. |
[6] | 魏洪斌, 罗明, 张世文, 周鹏飞. 不同生态修复模式对矿业废弃地重金属-微生物影响分析[J]. 地学前缘, 2023, 30(5): 541-552. |
[7] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[8] | 熊贵耀, 吴吉春, 杨蕴, 祝晓彬, 刘梦雯, 宋亚霖. 有机污染土壤-地下水系统中的微生物场及多场耦合研究[J]. 地学前缘, 2022, 29(3): 189-199. |
[9] | 梁凯旋, 刘菲, 张莉. 高氯酸盐自然衰减的柱实验研究[J]. 地学前缘, 2022, 29(3): 207-216. |
[10] | 叶翔宇, 陈雪霞, 于波, 张敏, 郭彩娟, 卢晓霞. 长江经济带某石化场地土壤中污染物分布与微生物特征[J]. 地学前缘, 2022, 29(3): 239-247. |
[11] | 郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75. |
[12] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[13] | 张晟瑀, 张朦幻, 王利刚, 万玉玉. 微生物对地下水中萘的降解特性及动力学研究[J]. 地学前缘, 2021, 28(5): 146-158. |
[14] | 刘芷彤, 周妮, 乔文静, 叶淑君. 邻硝基对甲基苯酚和邻氨基对甲基苯酚对1,2,4-TCB厌氧生物降解影响研究[J]. 地学前缘, 2021, 28(5): 159-166. |
[15] | 刘伟, 黄擎宇, 白莹, 石书缘. 同生-准同生期大气淡水溶蚀对微生物碳酸盐岩储层的控制作用:以塔里木盆地下寒武统为例[J]. 地学前缘, 2021, 28(1): 225-234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||