地学前缘 ›› 2022, Vol. 29 ›› Issue (3): 64-75.DOI: 10.13745/j.esf.sf.2022.1.37
收稿日期:
2021-11-12
修回日期:
2022-02-10
出版日期:
2022-05-25
发布日期:
2022-04-28
作者简介:
郭华明(1975—),男,教授,博士生导师,从事水文地质学方面的教学与科研工作。E-mail: hmguo@cugb.edu.cn
基金资助:
GUO Huaming1,2(), GAO Zhipeng1,2, XIU Wei3
Received:
2021-11-12
Revised:
2022-02-10
Online:
2022-05-25
Published:
2022-04-28
摘要:
C-N-S反应体系是地下水系统中氧化还原敏感组分循环和能量流动的关键系统,但它如何与Fe、Mn循环过程、相关功能微生物代谢路径耦合并控制氧化还原敏感组分的迁移转化却并不清楚。本文在对国内外相关文献进行归纳总结的基础上,把地下水中的氧化还原敏感组分分为氧化富集型和还原富集型,较为系统地梳理了地下水系统C、N、S循环驱动的典型氧化还原敏感组分(主要以U、Cr、Fe、As为例)迁移转化过程,指出了该领域的主要研究热点,包括C-N反应体系中典型氧化还原敏感组分的迁移转化、C-S反应体系中还原富集型组分活化和氧化富集型组分固定机理、典型氧化还原敏感组分之间的相互作用、微生物作用下典型氧化还原敏感组分的转化和富集等,并提出基于代谢路径的C-N-S反应体系及其驱动下地下水典型氧化还原敏感组分转化过程和富集机理,将成为本领域的发展趋势。
中图分类号:
郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75.
GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends[J]. Earth Science Frontiers, 2022, 29(3): 64-75.
图1 典型干旱-半干旱盆地地下水砷、铀浓度关系图(据文献[13⇓⇓⇓⇓-18])
Fig.1 Relationship between As and U concentrations in groundwaters of typical arid-semiarid basins. Adapted from [13⇓⇓⇓⇓-18].
反应体系 | 化学反应式 | 标准状态 ΔG0/(kJ·mol-1) | 与氧化还原敏 感组分的关系 |
---|---|---|---|
C-Fe-(As)体系 | CH3COO-+8Fe(OH)3+15H+=2 | -612[ | 砷释放 |
C3H5 | -347.3[ | 砷释放 | |
CH2O +7CO2+4Fe(OH)3=4Fe2++8 | -114[ | 砷释放 | |
CH4+8 Fe(OH)3+15H+= | -494.37[ | 砷释放 | |
Fe2++ | -62.2[ | 砷去除 | |
N-Fe-(As)体系 | 2 | -438[ | 砷去除 |
2 | -457[ | 砷去除 | |
3Fe(OH)3+5H++NH4+=3Fe2++9H2O +0.5N2 | -245[ | 砷释放 | |
S-Fe-(As)体系 | 2Fe(OH)3+HS-+5H+=2Fe2++S0+6H2O | -175.4[ | 砷释放 |
10S0+4Fe(OH)3=4Fe2++3 | 369.5[ | 砷释放 | |
FeS2+14Fe(OH)3+15 | -806[ | 砷释放 | |
FeS +8Fe(OH)3+9 | -515[ | 砷释放 | |
Fe2++H2S=FeS +H2 (g) | -45[ | 砷去除 | |
N-Cr体系 | 6 | -181.15[ | 铬释放 |
N-U体系 (以U | 5UO2+2 | -973.3[ | 铀释放 |
表1 C-N-S反应体系对As、U、Cr迁移转化影响的主要化学反应及其热力学参数
Table 1 The main chemical reactions of As, U, and Cr transform affected by the C-N-S reaction system and the related thermodynamic parameters
反应体系 | 化学反应式 | 标准状态 ΔG0/(kJ·mol-1) | 与氧化还原敏 感组分的关系 |
---|---|---|---|
C-Fe-(As)体系 | CH3COO-+8Fe(OH)3+15H+=2 | -612[ | 砷释放 |
C3H5 | -347.3[ | 砷释放 | |
CH2O +7CO2+4Fe(OH)3=4Fe2++8 | -114[ | 砷释放 | |
CH4+8 Fe(OH)3+15H+= | -494.37[ | 砷释放 | |
Fe2++ | -62.2[ | 砷去除 | |
N-Fe-(As)体系 | 2 | -438[ | 砷去除 |
2 | -457[ | 砷去除 | |
3Fe(OH)3+5H++NH4+=3Fe2++9H2O +0.5N2 | -245[ | 砷释放 | |
S-Fe-(As)体系 | 2Fe(OH)3+HS-+5H+=2Fe2++S0+6H2O | -175.4[ | 砷释放 |
10S0+4Fe(OH)3=4Fe2++3 | 369.5[ | 砷释放 | |
FeS2+14Fe(OH)3+15 | -806[ | 砷释放 | |
FeS +8Fe(OH)3+9 | -515[ | 砷释放 | |
Fe2++H2S=FeS +H2 (g) | -45[ | 砷去除 | |
N-Cr体系 | 6 | -181.15[ | 铬释放 |
N-U体系 (以U | 5UO2+2 | -973.3[ | 铀释放 |
[1] |
COYTE R M, VENGOSH A. Factors controlling the risks of co-occurrence of the redox-sensitive elements of arsenic, chromium, vanadium, and uranium in groundwater from the eastern United States[J]. Environmental Science and Technology, 2020, 54(7): 4367-4375.
DOI URL |
[2] | WUFUER R, WEI Y Y, LIN Q H, et al. Uranium bioreduction and biomineralization[J]. Advances in Applied Microbiology, 2017, 101: 137-168. |
[3] |
WANG Y X, PI K F, FENDORF S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Science Reviews, 2019, 189: 79-98.
DOI URL |
[4] | GLODOWSKA M, STOPELLI E, STRAUB D, et al. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling[J]. Journal of Hazardous Materials, 2021, 407: 124398. |
[5] | 苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351. |
[6] | 孙占学, 马文洁, 刘亚洁, 等. 地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021, 28(5): 215-225. |
[7] | 徐慧, 仵彦卿. 六价铬在具有渗透性反应墙的渗流槽中迁移实验研究[J]. 生态环境学报, 2010, 19(8): 1941-1946. |
[8] | 汤洁, 林年丰, 卞建民, 等. 内蒙河套平原砷中毒病区砷的环境地球化学研究[J]. 水文地质工程地质, 1996, 23(1): 49-54. |
[9] | 高存荣, 冯翠娥, 刘文波, 等. 地壳表层砷的循环与污染地下水模式[J]. 地球学报, 2014, 35(6): 741-750. |
[10] | 张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质, 2010, 37(3): 551-562. |
[11] | 陈劲松, 周金龙, 曾妍妍, 等. 新疆阿克苏地区平原区高砷地下水分布特征及富集因素分析[J]. 环境化学, 2021, 40(1): 254-262. |
[12] |
GUO H M, ZHOU Y Z, JIA Y F, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin, China: evidence from multiple isotope approaches[J]. Environmental Science and Technology, 2016, 50(23): 12650-12659.
DOI URL |
[13] |
XIE X J, ELLIS A, WANG Y X, et al. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China[J]. Science of the Total Environment, 2009, 407(12): 3823-3835.
DOI URL |
[14] |
GUO H M, JIA Y F, WANTY R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao Basin, Inner Mongolia: implication for origins and fate controls[J]. Science of the Total Environment, 2016, 541: 1172-1190.
DOI URL |
[15] |
GUO H M, ZHAO W G, LI H L, et al. High radionuclides in groundwater of an inland basin from Northwest China: origin and fate[J]. ACS Earth and Space Chemistry, 2018, 2(11): 1137-1144.
DOI URL |
[16] |
SMEDLEY P L, ZHANG M, ZHANG G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia[J]. Applied Geochemistry, 2003, 18(9): 1453-1477.
DOI URL |
[17] |
GUO H M, ZHANG D, WEN D G, et al. Arsenic mobilization in aquifers of the Southwest Songnen Basin, P.R. China: evidences from chemical and isotopic characteristics[J]. Science of the Total Environment, 2014, 490: 590-602.
DOI URL |
[18] |
GUO Q, GUO H M, YANG Y C, et al. Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P.R. China[J]. Journal of Hydrology, 2014, 518: 464-476.
DOI URL |
[19] |
LI H, SU J Q, YANG X R, et al. RNA stable isotope probing of potential Feammox population in paddy soil[J]. Environmental Science and Technology, 2019, 53(9): 4841-4849.
DOI URL |
[20] |
WU W M, CARLEY J, GREEN S J, et al. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface[J]. Environmental Science and Technology, 2010, 44(13): 5104-5111.
DOI URL |
[21] | ETTWIG K F, ZHU B L, SPETH D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences of The United States of America, 2016, 113(45): 12792-12796. |
[22] |
SHI L D, GUO T, LV P L, et al. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils[J]. Nature Geoscience, 2020, 13(12): 799-805.
DOI URL |
[23] |
MOON H S, KOMLOS J, JAFFÉP R. Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/S $SO_{4}^{2-}$ reduction[J]. Journal of Contaminant Hydrology, 2009, 105(1/2): 18-27.
DOI URL |
[24] |
GUO H M, CHEN Y, HU H Y, et al. High hexavalent chromium concentration in groundwater from a deep aquifer in the Baiyangdian Basin of the North China Plain[J]. Environmental Science and Technology, 2020, 54(16): 10068-10077.
DOI URL |
[25] |
XIU W, GUO H M, SHEN J X, et al. Stimulation of Fe(II) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by pseudogulbenkiania sp. strain 2002[J]. Environmental Science and Technology, 2016, 50(12): 6449-6458.
DOI URL |
[26] |
朱永官, 李刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2015, 70(12): 1859-1869.
DOI |
[27] | 杨建锋, 张翠光. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质, 2014, 41(3): 98-104, 110. |
[28] |
KOCAR B D, FENDORF S. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments[J]. Environmental Science and Technology, 2009, 43(13): 4871-4877.
DOI URL |
[29] |
POSTMA D, JAKOBSEN R. Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface[J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3169-3175.
DOI URL |
[30] |
WANG X N, SUN G X, ZHU Y G. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles[J]. Journal of Soils and Sediments, 2017, 17(12): 2831-2846.
DOI URL |
[31] | BALL J W, NORDSTROM D K. User’s manual for WATEQ4F, with revised thermodynamic data base and text cases for calculating speciation of major, trace, and redox elements in natural waters[R]. California: US Geological Survey. 1991. |
[32] | WAN L Y, LIU H, WANG X Z. Anaerobic ammonium oxidation coupled to Fe(III) reduction: discovery, mechanism and application prospects in wastewater treatment[J]. Science of the Total Environment, 2022, 818: 151687. |
[33] |
SCHIPPERS A, JØRGENSEN B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 85-92.
DOI URL |
[34] |
WILKIN R T, BARNES H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4167-4179.
DOI URL |
[35] |
DU X, BOONCHAYAANANT B, WU W M, et al. Reduction of uranium(VI) by soluble iron(II) conforms with thermodynamic predictions[J]. Environmental Science and Technology, 2011, 45(11): 4718-4725.
DOI URL |
[36] |
GUO H M, LI X M, XIU W, et al. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R. China[J]. Journal of Hydrology, 2019, 571: 448-459.
DOI URL |
[37] |
GABOR R S, EILERS K, MCKNIGHT D M, et al. From the litter layer to the saprolite: chemical changes in water-soluble soil organic matter and their correlation to microbial community composition[J]. Soil Biology and Biochemistry, 2014, 68: 166-176.
DOI URL |
[38] |
KULKARNI H V, MLADENOV N, JOHANNESSON K H, et al. Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility[J]. Applied Geochemistry, 2017, 77: 194-205.
DOI URL |
[39] |
SCHITTICH A R, WÜNSCH U J, KULKARNI H V, et al. Investigating fluorescent organic-matter composition as a key predictor for arsenic mobility in groundwater aquifers[J]. Environmental Science and Technology, 2018, 52(22): 13027-13036.
DOI URL |
[40] |
KELLEHER B P, SIMPSON A J. Humic substances in soils: are they really chemically distinct?[J]. Environmental Science and Technology, 2006, 40(15): 4605-4611.
DOI URL |
[41] |
QIAO W, GUO H M, HE C, et al. Molecular evidence of arsenic mobility linked to biodegradable organic matter[J]. Environmental Science and Technology, 2020, 54(12): 7280-7290.
DOI URL |
[42] | VÁZQUEZ-ORTEGA A, HERNANDEZ-RUIZ S, AMISTADI M K, et al. Fractionation of dissolved organic matter by (oxy)hydroxide-coated sands: competitive sorbate displacement during reactive transport[J]. Vadose Zone Journal, 2014, 13(7): 1-13. |
[43] |
MLADENOV N, ZHENG Y, SIMONE B, et al. Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility[J]. Environmental Science and Technology, 2015, 49(18): 10815-10824.
DOI URL |
[44] |
LI X M, GUO H M, ZHENG H, et al. Roles of different molecular weights of dissolved organic matter in arsenic enrichment in groundwater: evidences from ultrafiltration and EEM-PARAFAC[J]. Applied Geochemistry, 2019, 104: 124-134.
DOI URL |
[45] |
CHOROVER J, TROCH P A, RASMUSSEN C, et al. How water, carbon, and energy drive critical zone evolution: the jemez-santa Catalina critical zone observatory[J]. Vadose Zone Journal, 2011, 10(3): 884-899.
DOI URL |
[46] | PERDRIAL J, THOMPSON A, CHOROVER J. Soil geochemistry in the critical zone: influence on atmosphere, surface- and groundwater composition[M]// Developments in Earth Surface Processes. Amsterdam: Elsevier, 2015: 173-201. |
[47] |
KLÜPFEL L, PIEPENBROCK A, KAPPLER A, et al. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments[J]. Nature Geoscience, 2014, 7(3): 195-200.
DOI URL |
[48] |
GAO C Y, SANDER M, AGETHEN S, et al. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils[J]. Geochimica et Cosmochimica Acta, 2019, 245: 266-277.
DOI URL |
[49] |
ORSETTI S, LASKOV C, HADERLEIN S B. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)-goethite surface from AQDS speciation[J]. Environmental Science and Technology, 2013, 47(24): 14161-14168.
DOI URL |
[50] |
BORCH T, KRETZSCHMAR R, KAPPLER A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science and Technology, 2010, 44(1): 15-23.
DOI URL |
[51] |
LI S, BRAUN J C, BUCHNER D, et al. Denitrifier method for nitrite removal in electrochemical analysis of the electron accepting capacity of humic substances[J]. Analytical Chemistry, 2020, 92(1): 616-621.
DOI URL |
[52] |
OHNO T, PARR T B, GRUSELLE M C I, et al. Molecular composition and biodegradability of soil organic matter: a case study comparing two new England forest types[J]. Environmental Science and Technology, 2014, 48(13): 7229-7236.
DOI URL |
[53] |
D’ANDRILLI J, COOPER W T, FOREMAN C M, et al. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability[J]. Rapid Communications in Mass Spectrometry, 2015, 29(24): 2385-2401.
DOI URL |
[54] |
NORRMAN J, SPARRENBOM C J, BERG M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values[J]. Applied Geochemistry, 2015, 61: 248-258.
DOI URL |
[55] |
JIA Y F, GUO H M, JIANG Y X, et al. Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia[J]. Journal of Hydrology, 2014, 518: 410-420.
DOI URL |
[56] |
MIHAJLOV I, MOZUMDER M R H, BOSTICK B C, et al. Arsenic contamination of Bangladesh aquifers exacerbated by clay layers[J]. Nature Communications, 2020, 11: 2244.
DOI URL |
[57] | GAO Z P, JIA Y F, GUO H M, et al. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model[J]. Water Resources Research, 2020, 56(2): e2019WR025492. |
[58] |
LAWSON M, POLYA D A, BOYCE A J, et al. Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters[J]. Geochimica et Cosmochimica Acta, 2016, 178: 160-177.
DOI URL |
[59] |
SHRESTHA J, RICH J J, EHRENFELD J G, et al. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination[J]. Soil Science, 2009, 174(3): 156-164.
DOI URL |
[60] | XIU W, LLOYD J, GUO H M, et al. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: potential importance of ammonium as an electron donor during arsenic mobilization[J]. Environment International, 2020, 136: 105489. |
[61] | GAO Z P, WENG H C, GUO H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 2021, 595: 125981. |
[62] |
JIAO J J, WANG Y, CHERRY J A, et al. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China[J]. Environmental Science and Technology, 2010, 44(19): 7470-7475.
DOI URL |
[63] |
BOYANOV M I, FLETCHER K E, KWON M J, et al. Solution and microbial controls on the formation of reduced U(IV) species[J]. Environmental Science and Technology, 2011, 45(19): 8336-8344.
DOI URL |
[64] |
LANGMUIR D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 547-569.
DOI URL |
[65] |
MUKHERJEE A, FRYAR A E, EASTRIDGE E M, et al. Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal Basin, India[J]. Science of the Total Environment, 2018, 645: 1371-1387.
DOI URL |
[66] |
LOWERS H A, BREIT G N, FOSTER A L, et al. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh[J]. Geochimica et Cosmochimica Acta, 2007, 71(11): 2699-2717.
DOI URL |
[67] |
PLANER-FRIEDRICH B, LONDON J, MCCLESKEY R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance[J]. Environmental Science and Technology, 2007, 41(15): 5245-5251.
DOI URL |
[68] |
GUO Q H, PLANER-FRIEDRICH B, LIU M L, et al. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China[J]. Chemical Geology, 2017, 453: 12-20.
DOI URL |
[69] |
COUTURE R M, ROSE J, KUMAR N, et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation[J]. Environmental Science and Technology, 2013, 47(11): 5652-5659.
DOI URL |
[70] | WANG H Y, GUO H M, XIU W, et al. Indications that weathering of evaporite minerals affects groundwater salinity and As mobilization in aquifers of the northwestern Hetao Basin, China[J]. Applied Geochemistry, 2019, 109: 104416. |
[71] |
SØ H U, POSTMA D, VI M L, et al. Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: effects of sediment-water interactions, sediment burial age and groundwater residence time[J]. Geochimica et Cosmochimica Acta, 2018, 225: 192-209.
DOI URL |
[72] |
HUA B, DENG B L. Reductive immobilization of uranium(VI) by amorphous iron sulfide[J]. Environmental Science and Technology, 2008, 42(23): 8703-8708.
DOI URL |
[73] |
DUAN J, JI H D, ZHAO X, et al. Immobilization of U(VI) by stabilized iron sulfide nanoparticles: water chemistry effects, mechanisms, and long-term stability[J]. Chemical Engineering Journal, 2020, 393: 124692.
DOI URL |
[74] |
BOONCHAYAANANT B, NAYAK D, DU X, et al. Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions[J]. Water Research, 2009, 43(18): 4652-4664.
DOI URL |
[75] | APPELO C A J, POSTMA D. Geochemistry, groundwater and pollution[M]. London: A.A. Balkema Publishers, 2005. |
[76] |
GLODOWSKA M, STOPELLI E, SCHNEIDER M, et al. Arsenic mobilization by anaerobic iron-dependent methane oxidation[J]. Communications Earth and Environment, 2020, 1(42): 1-7.
DOI URL |
[77] |
MAGUFFIN S C, KIRK M F, DAIGLE A R, et al. Substantial contribution of biomethylation to aquifer arsenic cycling[J]. Nature Geoscience, 2015, 8(4): 290-293.
DOI URL |
[78] |
IZBICKI J A, WRIGHT M T, SEYMOUR W A, et al. Cr(VI) occurrence and geochemistry in water from public-supply wells in California[J]. Applied Geochemistry, 2015, 63: 203-217.
DOI URL |
[79] |
KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
DOI URL |
[80] |
ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption[J]. Environmental Science and Technology, 2007, 41(13): 4613-4619.
DOI URL |
[81] |
WANG Z M, LEE S W, KAPOOR P, et al. Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals[J]. Geochimica et Cosmochimica Acta, 2013, 100: 24-40.
DOI URL |
[82] |
SIEBECKER M, MADISON A S, LUTHER G W. Reduction kinetics of polymeric (soluble) manganese (IV) oxide (MnO2) by ferrous iron (Fe2+)[J]. Aquatic Geochemistry, 2015, 21(2/3/4): 143-158.
DOI URL |
[83] |
BOLAND D D, COLLINS R N, GLOVER C J, et al. Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite[J]. Environmental Science and Technology, 2014, 48(16): 9086-9093.
DOI URL |
[84] |
HANSEL C M, BENNER S G, FENDORF S. Competing Fe(II)-induced mineralization pathways of ferrihydrite[J]. Environmental Science and Technology, 2005, 39(18): 7147-7153.
DOI URL |
[85] |
BOLAND D D, COLLINS R N, MILLER C J, et al. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite[J]. Environmental Science and Technology, 2014, 48(10): 5477-5485.
DOI URL |
[86] |
HIEMSTRA T. Ferrihydrite interaction with silicate and competing oxyanions: geometry and Hydrogen bonding of surface species[J]. Geochimica et Cosmochimica Acta, 2018, 238: 453-476.
DOI URL |
[87] |
STOLZE L, ZHANG D, GUO H M, et al. Model-based interpretation of groundwater arsenic mobility during in situ reductive transformation of ferrihydrite[J]. Environmental Science and Technology, 2019, 53(12): 6845-6854.
DOI URL |
[88] |
GUO H M, REN Y, LIU Q, et al. Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application[J]. Environmental Science and Technology, 2013, 47(2): 1009-1016.
DOI URL |
[89] |
SENKO J M, MOHAMED Y, DEWERS T A, et al. Role for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation[J]. Environmental Science and Technology, 2005, 39(8): 2529-2536.
DOI URL |
[90] |
CHEN P, MA Y, KANG M L, et al. The redox behavior of uranium on Beishan granite: effect of Fe2+ and Fe3+ content[J]. Journal of Environmental Radioactivity, 2020, 217: 106208.
DOI URL |
[91] | CHESWORTH W. Encyclopedia of soil science[M]// Berlin,Germany: Springer, 2008: 450-452. |
[92] |
GRIEBLER C, LUEDERS T. Microbial biodiversity in groundwater ecosystems[J]. Freshwater Biology, 2009, 54(4): 649-677.
DOI URL |
[93] |
AKOB D M, KÜSEL K. Where microorganisms meet rocks in the Earth’s Critical Zone[J]. Biogeosciences, 2011, 8(12): 3531-3543.
DOI URL |
[94] |
BORGONIE G, GARCÍA -MOYANO A, LITTHAUER D, et al. Nematoda from the terrestrial deep subsurface of South Africa[J]. Nature, 2011, 474(7349): 79-82.
DOI URL |
[95] | MADSEN E L. Environmental microbiology: from genomes to biogeochemistry[M]. Oxford: Wiley-Blackwell, 2008. |
[96] | MADIGAN M, MARTINKO J, PARKER J. Brock’s biology of microorganisms[J]. New Jersey:Prentice Hall, 2000. |
[97] |
BEAL E J, HOUSE C H, ORPHAN V J. Manganese and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187.
DOI URL |
[98] |
FITZGERALD C M, CAMEJO P, OSHLAG J Z, et al. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen[J]. Water Research, 2015, 70: 38-51.
DOI URL |
[99] | POOLE R.K. Advances in Microbial Physiology[M]// LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(III) and Mn(IV) Reduction. London: Academic Press, 2004: 219-286. |
[100] | MANZ W, KALMBACH S, SZEWZYK U.et al. Aquabacterium. Bergey’s Manual of Systematics of Archaea and Bacteria[M]. New York: Wiley, 2015: 1-6. |
[101] | ALI M, HAROON M F, NARITA Y, et al. Draft genome sequence of the anaerobic ammonium-oxidizing bacterium “Candidatus brocadia sp. 40”[J]. Genome Announcements, 2016, 4(6): e01377-e01316. |
[102] |
YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541.
DOI URL |
[103] |
WENG T N, LIU C W, KAO Y H, et al. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater[J]. Science of the Total Environment, 2017, 578: 167-185.
DOI URL |
[104] |
LI P, LI B, WEBSTER G, et al. Abundance and diversity of sulfate-reducing bacteria in high arsenic shallow aquifers[J]. Geomicrobiology Journal, 2014, 31(9): 802-812.
DOI URL |
[105] | ZHENG T L, DENG Y M, WANG Y X, et al. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China[J]. Science of the Total Environment, 2020, 735: 139327. |
[106] |
PIEPENBROCK A, BEHRENS S, KAPPLER A. Comparison of humic substance- and Fe(III)-reducing microbial communities in anoxic aquifers[J]. Geomicrobiology Journal, 2014, 31(10): 917-928.
DOI URL |
[107] |
BÖTTCHER M E, THAMDRUP B, GEHRE M, et al. 34S/32S and 18O/16O fractionation during sulfur disproportionation by desulfobulbus propionicus[J]. Geomicrobiology Journal, 2005, 22(5): 219-226.
DOI URL |
[108] |
PEDUZZI S, TONOLLA M, HAHN D. Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic Lake Cadagno, Switzerland[J]. FEMS Microbiology Ecology, 2003, 45(1): 29-37.
DOI URL |
[109] |
HOHMANN C, WINKLER E, MORIN G, et al. Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation[J]. Environmental Science and Technology, 2010, 44(1): 94-101.
DOI URL |
[110] |
ISLAM F S, GAULT A G, BOOTHMAN C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments[J]. Nature, 2004, 430(6995): 68-71.
DOI URL |
[111] |
KARN S K, PAN X L. Role of Acinetobacter sp. in arsenite As(III) oxidation and reducing its mobility in soil[J]. Chemistry and Ecology, 2016, 32(5): 460-471.
DOI URL |
[112] | MIRZA B S, SORENSEN D L, DUPONT R R, et al. New arsenate reductase gene (arrA) PCR primers for diversity assessment and quantification in environmental samples[J]. Applied and Environmental Microbiology, 2017, 83(4): e02725-e02716. |
[113] |
CAI X L, ZHANG Z N, YIN N Y, et al. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China[J]. Chemosphere, 2016, 161: 200-207.
DOI URL |
[114] |
GUO H M, LIU Z Y, DING S S, et al. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao Basin, Inner Mongolia[J]. Environmental Pollution, 2015, 203: 50-59.
DOI URL |
[115] |
SURESH G, BALASUBRAMANIAN B, RAVICHANDRAN N, et al. Bioremediation of hexavalent chromium-contaminated wastewater by Bacillus thuringiensis and Staphylococcus capitis isolated from tannery sediment[J]. Biomass Conversion and Biorefinery, 2021, 11(2): 383-391.
DOI URL |
[116] |
THACKER U, MADAMWAR D. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1[J]. World Journal of Microbiology and Biotechnology, 2005, 21(6/7): 891-899.
DOI URL |
[117] |
ZENG J, GOU M, TANG Y Q, et al. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community[J]. Bioresource Technology, 2016, 218: 859-866.
DOI URL |
[118] |
NOËL V, BOYE K, LEZAMA PACHECO J S, et al. Redox controls over the stability of U(IV) in floodplains of the upper Colorado River Basin[J]. Environmental Science and Technology, 2017, 51(19): 10954-10964.
DOI URL |
[119] |
RAWLINGS D E. Heavy metal mining using microbes[J]. Annual Review of Microbiology, 2002, 56: 65-91.
DOI URL |
[120] |
LI Q, SUN J, DING D X, et al. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(3): 1939-1946.
DOI URL |
[1] | 石鸿蕾, 王婉丽, 王贵玲, 邢林啸, 陆川, 赵佳怡, 刘禄, 宋嘉佳. 典型高温地热系统水热循环及锂同位素分馏过程模拟研究[J]. 地学前缘, 2024, 31(6): 104-119. |
[2] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[3] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[4] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[5] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[6] | 付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380. |
[7] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[8] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[9] | 梁慧芝, 郭朝晖, 张云霞, 徐锐. 含砷尾矿中砷铊矿相特征及其释放机制[J]. 地学前缘, 2024, 31(2): 20-30. |
[10] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[11] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[12] | 李海东, 田世洪, 刘斌, 胡鹏, 吴建勇, 陈正乐. 粤北地区琶江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 地学前缘, 2024, 31(2): 270-283. |
[13] | 刘超, 付晓飞, 李扬成, 王海学, 孙冰, 郝炎, 胡慧婷, 杨子成, 李依霖, 谷社峰, 周爱红, 马成龙. 烃源岩作为铀源岩的可能性:研究现状与展望[J]. 地学前缘, 2024, 31(2): 284-298. |
[14] | 吴锟言, 刘飚, 吴堑虹, 李欢. 岩浆热液白钨矿氧同位素组成研究:对流体源区与演化过程的示踪[J]. 地学前缘, 2024, 31(2): 299-312. |
[15] | 李柯然, 杨迪, 宋金民, 李智武, 金鑫, 刘芳, 杨雄, 刘树根, 叶玥豪, 范建平, 任佳鑫, 赵玲丽, 夏舜, 陈伟. 滇东北地区下寒武统龙王庙组白云石化模式研究:来自钙同位素模拟结果[J]. 地学前缘, 2024, 31(2): 313-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||