地学前缘 ›› 2023, Vol. 30 ›› Issue (6): 1-13.DOI: 10.13745/j.esf.sf.2023.2.35
• 深层-超深层碳酸盐岩储层形成环境、发育机理和成因模式 • 上一篇 下一篇
马永生1(), 蔡勋育1, 李慧莉2, 朱东亚2, 张军涛2, 杨敏3, 段金宝4, 邓尚2, 尤东华5, 武重阳2, 陈森然6
收稿日期:
2023-01-30
修回日期:
2023-02-27
出版日期:
2023-11-25
发布日期:
2023-11-25
作者简介:
马永生(1961—),男,博士,正高级工程师,中国工程院院士,主要从事石油天然气地质研究及勘探生产实践等工作。E-mail: mays@sinopec.com
基金资助:
MA Yongsheng1(), CAI Xunyu1, LI Huili2, ZHU Dongya2, ZHANG Juntao2, YANG Min3, DUAN Jinbao4, DENG Shang2, YOU Donghua5, WU Chongyang2, CHEN Senran6
Received:
2023-01-30
Revised:
2023-02-27
Online:
2023-11-25
Published:
2023-11-25
摘要:
在深层碳酸盐岩层系中,已陆续发现了塔河、普光、元坝、安岳等一系列大型油气田,并形成了碳酸盐岩“三元控储”等成储理论认识。近年来,四川和塔里木盆地相继在超过7 000 m甚至8 000 m的超深层中发现了优质碳酸盐岩储层。深层储层类型更加多样,控储因素中,相带、流体、压力和断裂,以及它们之间相互作用的内涵更为丰富。结合近期大量新的超深钻探资料,持续开展了深层-超深层碳酸盐岩成储机理的研究。通过塔里木盆地塔河-顺北地区奥陶系和四川盆地二叠系栖霞组、茅口组的深化研究,进一步揭示了构造破裂和多类型流体耦合改造储集体的成储机制;通过上震旦统四川盆地灯影组和塔里木盆地奇格布拉克组的系统分析,揭示了新元古代“白云石海”沉积环境、早期溶蚀和早期油气充注在成储与孔隙保持中的关键作用;通过开展含膏岩层系白云岩成储的物理模拟实验,揭示了膏盐岩封盖及超压、较为封闭的环境下,白云石重结晶作用显著改善了储集物性。深层-超深层储层发育机理新认识丰富了“三元控储”理论,有效引领了超深层,乃至特深层的油气勘探。断控和断-溶双控储集体、古老微生物丘滩相白云岩储层,尤其是寒武系厚层膏盐岩之下的微生物丘滩相白云岩储层,在中西部叠合盆地海相碳酸盐岩层系中广泛分布,有望成为万米特深层钻探的主要对象。
中图分类号:
马永生, 蔡勋育, 李慧莉, 朱东亚, 张军涛, 杨敏, 段金宝, 邓尚, 尤东华, 武重阳, 陈森然. 深层-超深层碳酸盐岩储层发育机理新认识与特深层油气勘探方向[J]. 地学前缘, 2023, 30(6): 1-13.
MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata[J]. Earth Science Frontiers, 2023, 30(6): 1-13.
图2 顺北84X井断控缝洞储集体井震和岩心特征 A—过顺北84X井地震剖面解析及录井信息标定; B—顺北84X井过断面测井解释地震标定;C—顺北84X井揭示断面内部核带结构地质模式; D—第二和第三回次取心结构特征。
Fig.2 Cores, drill well, and seismic characteristics of fault-controlled fractured-cavity reservoir in well SHB84X
图3 塔里木盆地断裂-热流体硅化碳酸盐岩储层特征 A—富硅热液流体改造形成的硅化灰岩,顺托1井,一间房组,7 704.48~7 704.58 m;B—硅化灰岩的内部蚀变特征,黑色区域为残余孔洞-孔隙,浅灰色部分以方解石为主,深灰色部分为石英矿物,顺托1井,一间房组,A中硅化蚀变区域CT横向切片(扫描分辨率41 μm);C—硅化蚀变区域具有大量孔隙,黑色沥青质充填,顺托1井,一间房组,A中硅化蚀变区域的铸体薄片;D—硅化灰岩裂缝与基质中石英普遍发育,石英呈黑色不发光,顺北53x井,一间房组,7 750.00 m,阴极发光照片;E—硅化灰岩中石英与方解石流体包裹体均一温度分布特征,顺北53x井,一间房组,7 750.00 m。
Fig.3 Characteristics of fault-hydrothermal silicified carbonate reservoirs in the Tarim Basin
图4 四川盆地二叠系典型断裂-热液白云岩储层特征 A—斑马状热液白云岩,灰色为基质,白色为鞍形白云石充填物,裂缝及溶孔发育,普仁1井,栖霞组,3 579.45 m;B—细晶白云岩,具有颗粒幻影结构,粒间孔发育,普仁1井,栖霞组,3 580.50 m;C—鞍形白云石U-Pb定年数据,普仁1井,栖霞组;D—灰色粉细晶白云岩,裂缝发育有白色鞍形白云石充填,存在残余储集空间,泰来6井,茅口组,5 506.50 m;E—裂缝内中充填的鞍形白云石,有残余空间,泰来6井,茅口组,5 506.20 m;F—鞍形白云石U-Pb定年数据,泰来6井,茅口组。
Fig.4 Characteristic of typical fault-hydrothermal dolomite reservoirs in Permian, Sichuan Basin
图5 上震旦统典型微生物岩储层特征 A—微生物凝块岩格架间溶蚀孔洞,四川盆地金石1井,灯影组二段,4.31.91 m;B—富含溶蚀孔洞的藻纹层白云岩,四川盆地元深1井,灯影组四段,8 680.3 m;C—富含溶蚀孔洞的微生物粘结白云岩,四川盆地福1井,灯影组二段,7 048.5 m;D、E和F—富含格架间孔隙的微生物凝块岩,塔里木盆地东二沟剖面(D)和肖尔布拉克剖面(E和F);G—微生物凝块岩晶间孔、晶间溶孔发育,四川盆地福1井,灯影组四段,7 047.87 m;H—微生物顺层格架孔,四川盆地元深1井,灯组二段,8 610.2 m;I—微生物粘结白云岩中的溶蚀孔洞,四川盆地仁探1井,灯影组四段,8 131.15 m。
Fig.5 Characteristics of typical microbial microbialite reservoirs in the Upper Sinian
图6 双压反应釜流体超压组与流体常压组白云石重结晶实验结果对比 A—不同压力条件下基于CT扫描分析的孔隙数据;B—流体超压实验组孔隙CT扫描特征;C—流体超压实验组白云石扫描电镜特征;D—流体常压实验组孔隙CT扫描特征;E—流体常压实验组白云石扫描电镜特征。
Fig.6 Comparison of dolomite recrystallization experiment results under fluid overpressure and normal pressure conditions in the two-pressure reactor
[1] | SCHMOKER J W, HALLY R B. Carbonate porosity versus depth: a predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66(12): 2561-2570. |
[2] |
EHRENBERG S N, NADEAU P H, STEEN O. Petroleum reservoir porosity versus depth: influence of geological age[J]. AAPG Bulletin, 2009, 93(10): 1281-1296.
DOI URL |
[3] | 马永生, 黎茂稳, 蔡勋育, 等. 海相深层油气富集机理与关键工程技术基础研究进展[J]. 石油实验地质, 2021, 43(5): 737-748. |
[4] | 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. |
[5] | ZHU D Y, LIU Q Y, ZHANG J T, et al. Types of fluid alteration and developing mechanism of deep marine carbonate reservoirs[J]. Geofluids, 2019, 2019(1/2): 1-18. |
[6] |
ZHAO W Z, SHEN A J, QIAO Z F, et al. Carbonate karst reservoirs of the Tarim Basin, Northwest China: types, features, origins, and implications for hydrocarbon exploration[J]. Interpretation, 2014, 2(3): SF65-SF90.
DOI URL |
[7] |
SHEN A J, ZHAO W Z, HU A P, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 597-608.
DOI URL |
[8] |
MA Y S, GUO X S, GUO T L, et al. The Puguang gas field: new giant discovery in the mature Sichuan Basin, Southwest China[J]. AAPG Bulletin, 2007, 91(5): 627-643.
DOI URL |
[9] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
DOI |
[10] |
ZHU D Y, MENG Q Q, JIN Z J, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244.
DOI URL |
[11] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[12] |
EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
DOI URL |
[13] | 翟晓先, 云露. 塔里木盆地塔河大型油田地质特征及勘探思路回顾[J]. 石油与天然气地质, 2008, 29(5): 565-573. |
[14] | 马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和 “三元控储” 模式: 以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1087-1094. |
[15] | 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12. |
[16] | 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644, 763. |
[17] |
马永生, 何治亮, 赵培荣, 等. 深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
DOI |
[18] |
张煜, 毛庆言, 李海英, 等. 顺北中部超深层断控缝洞型油气藏储集体特征与实践应用[J]. 中国石油勘探, 2023, 28(1): 1-13.
DOI |
[19] | 李映涛, 邓尚, 张继标, 等. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例[J]. 地学前缘, 2023, 30(6): 80-94. |
[20] |
YOU D H, HAN J, HU W X, et al. Characteristics and formation mechanisms of silicified carbonate reservoirs in well SN4 of the Tarim Basin[J]. Energy Exploration and Exploitation, 2018, 36(4): 820-849.
DOI URL |
[21] | 尤东华, 韩俊, 胡文瑄, 等. 塔里木盆地顺南501井鹰山组白云岩储层特征与成因[J]. 沉积学报, 2018, 36(6): 1206-1217. |
[22] |
QIU N S, CHANG J, ZHU C Q, et al. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China[J]. Earth-Science Reviews, 2022, 224: 103884.
DOI URL |
[23] |
ZOU Y, YOU D H, CHEN B, et al. Carbonate U-Pb geochronology and clumped isotope constraints on the origin of hydrothermal Dolomites: a case study in the middle Permian Qixia Formation, Sichuan Basin, South China[J]. Minerals, 2023, 13(2): 223.
DOI URL |
[24] |
YANG T B, AZMY K, HE Z L, et al. Fault-controlled hydrothermal dolomitization of Middle Permian in southeastern Sichuan Basin, SW China, and its temporal relationship with the Emeishan Large Igneous Province: new insights from multi-geochemical proxies and carbonate U-Pb dating[J]. Sedimentary Geology, 2022, 439: 106215.
DOI URL |
[25] | 韩月卿, 张军涛, 潘磊. 川东南中二叠统茅口组白云岩特征与成因机理[J]. 地学前缘, 2023, 30(6): 45-56. |
[26] |
RIDING R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
DOI URL |
[27] |
GROTZINGER J, AL-RAWAHI Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultante of Om[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
DOI URL |
[28] |
MANCINI E A, MORGAN W A, HARRIS P M M, et al. Introduction: AAPG Hedberg research conference on microbial carbonate reservoir characterization: conference summary and selected papers[J]. AAPG Bulletin, 2013, 97(11): 1835-1847.
DOI URL |
[29] |
BELL E A, BOEHNKE P, HARRISON T M, et al. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14518-14521.
DOI PMID |
[30] |
NUTMAN A P, BENNETT V C, FRIEND C R L, et al. Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures[J]. Nature, 2016, 537(7621): 535-538.
DOI |
[31] |
PETRASH D A, BIALIK O M, BONTOGNALI T R R, et al. Microbially catalyzed dolomite formation: from near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
DOI URL |
[32] |
WANG J B, HE Z L, ZHU D Y, et al. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: constraints on terminal Ediacaran “dolomite seas”[J]. Sedimentary Geology, 2020, 406: 105722.
DOI URL |
[33] |
ZHU D Y, LIU Q Y, WANG J B, et al. Transition of seawater conditions favorable for development of microbial hydrocarbon source - reservoir assemblage system in the Precambrian[J]. Precambrian Research, 2022, 374: 106649.
DOI URL |
[34] |
HOOD A V S, WALLACE M W, REED C P, et al. Enigmatic carbonates of the Ombombo Subgroup, Otavi Fold Belt, Namibia: a prelude to extreme Cryogenian anoxia?[J]. Sedimentary Geology, 2015, 324: 12-31.
DOI URL |
[35] |
SHUSTER A M, WALLACE M W, HOOD A V, et al. The tonian beck spring dolomite: marine dolomitization in a shallow, anoxic sea[J]. Sedimentary Geology, 2018, 368: 83-104.
DOI URL |
[36] |
HOOD A V, WALLACE M W. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation[J]. Sedimentary Geology, 2012, 255/256: 56-71.
DOI URL |
[37] |
HOOD A V S, WALLACE M W, DRYSDALE R N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39(9): 871-874.
DOI URL |
[38] |
ZHU D Y, LIU Q Y, WANG J B, et al. Stable carbon and oxygen isotope data of Late Ediacaran stromatolites from a hypersaline environment in the Tarim Basin (NW China) and their reservoir potential[J]. Facies, 2021, 67(3): 1-25.
DOI |
[39] |
ZHU D Y, LIU Q Y, HE Z L, et al. Early development and late preservation of porosity linked to presence of hydrocarbons in Precambrian microbialite gas reservoirs within the Sichuan Basin, southern China[J]. Precambrian Research, 2020, 342: 105694.
DOI URL |
[40] | CROIZÉ D, RENARD F, GRATIER J P. Compaction and porosity reduction in carbonates: a review of observations, theory, and experiments[M]//Advances in geophysics. Amsterdam: Elsevier, 2013: 181-238. |
[41] |
LEACH D L, PLUMLEE G S, HOFSTRA A H, et al. Origin of late dolomite cement by CO2-saturated deep basin brines: evidence from the Ozark region, central United States[J]. Geology, 1991, 19(4): 348-351.
DOI URL |
[42] |
BEHAR F, VANDENBROUCKE M, TEERMANN S C, et al. Experimental simulation of gas generation from coals and a marine kerogen[J]. Chemical Geology, 1995, 126(3/4): 247-260.
DOI URL |
[43] |
HAO F, ZHANG X F, WANG C W, et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141: 154-177.
DOI URL |
[44] |
WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
DOI URL |
[45] | 周进高, 徐春春, 姚根顺, 等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发, 2015, 42(2): 158-166. |
[46] | 付金华, 吴兴宁, 孙六一, 等. 鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义[J]. 天然气工业, 2017, 37(3): 9-16. |
[47] | 张军涛, 金晓辉, 谷宁, 等. 鄂尔多斯盆地北部地区马家沟组岩溶储层的差异性和发育模式[J]. 石油与天然气地质, 2021, 42(5): 1159-1168, 1242. |
[48] | 段金宝, 潘磊, 石司宇, 等. 川东涪陵地区15号走滑断裂带几何学、运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68. |
[1] | 刘艳祥, 吕文雅, 曾联波, 李睿琦, 董少群, 王兆生, 李彦录, 王磊飞, 冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘, 2024, 31(5): 103-116. |
[2] | 邬忠虎, 孟祥瑞, 蓝宝锋, 刘敬寿, 巩磊, 杨玉翰. 基于CT试验的黔北凤冈地区牛蹄塘组含方解石脉页岩的力学行为研究[J]. 地学前缘, 2024, 31(5): 117-129. |
[3] | 董少群, 曾联波, 冀春秋, 张延兵, 郝静茹, 徐小童, 韩高松, 徐辉, 李海明, 李心琦. 超深层致密砂岩裂缝测井识别深度核方法[J]. 地学前缘, 2024, 31(5): 166-176. |
[4] | 韩鹏远, 丁文龙, 杨德彬, 邓光校, 王震, 马海陇, 吕晶, 耿甜. 塔河油田奥陶系碳酸盐岩储层裂缝表征与主控因素分析[J]. 地学前缘, 2024, 31(5): 209-226. |
[5] | 巩磊, 秦欣楠, 高帅, 付晓飞, 宿晓岑, 王杰. 变质岩潜山多尺度裂缝发育特征及裂缝网络结构模式:以渤中Z变质岩潜山为例[J]. 地学前缘, 2024, 31(5): 332-343. |
[6] | 王俊鹏, 曾联波, 徐振平, 王珂, 曾庆鲁, 张知源, 张荣虎, 蒋俊. 成岩流体对超深致密砂岩储层构造裂缝充填及溶蚀改造的影响:以塔里木盆地克拉苏油气田为例[J]. 地学前缘, 2024, 31(3): 312-323. |
[7] | 鲁鹏达, 李泽奇, 田腾振, 吴娟, 孙玮, 乔占峰, 王永生, 刘树根, 邓宾. 四川盆地震旦系灯影组二段葡萄-花边结构成因及其对储层控制作用[J]. 地学前缘, 2023, 30(6): 14-31. |
[8] | 曾帅, 邱楠生, 李慧莉, 马安来, 朱秀香, 贾京坤, 张梦霏. 塔里木盆地顺托果勒地区奥陶系碳酸盐岩超压差异分布研究[J]. 地学前缘, 2023, 30(6): 305-315. |
[9] | 刘震, 朱茂林, 潘高峰, 夏鲁, 卢朝进, 刘明洁, 刘静静, 侯英杰. 鄂尔多斯盆地中南部地区延长组砂岩溶蚀增孔模型的建立与应用[J]. 地学前缘, 2023, 30(2): 96-108. |
[10] | 唐华风, 王寒非, BenKENNEDY, 张芯语, MarcosROSSETTI, AlanPatrickBISCHOFF, AndrewNICOL. 水下喷发火山碎屑岩储层特征及主控因素:以新西兰Taranaki盆地中新世Kora火山为例[J]. 地学前缘, 2021, 28(1): 375-387. |
[11] | 潘荣,朱筱敏,谈明轩,张剑锋,李勇,邸宏利. 库车坳陷克拉苏冲断带深部巴什基奇克组致密储层孔隙演化定量研究[J]. 地学前缘, 2018, 25(2): 159-169. |
[12] | 魏巍,朱筱敏,朱世发,孙书洋,吴健平,王名巍,吕思翰. 湖相富火山物质复杂储层的岩石学特征及成岩作用:以二连盆地阿南凹陷下白垩统腾一段为例[J]. 地学前缘, 2018, 25(2): 147-158. |
[13] | 张立强,严一鸣,罗晓容,王振彪,张海祖. 库车坳陷依奇克里克地区下侏罗统阿合组致密砂岩储层的成岩差异性特征研究[J]. 地学前缘, 2018, 25(2): 170-178. |
[14] | 施振生,李熙喆,董大忠,邱振,卢斌,梁萍萍. 致密砂岩储层成岩作用与孔隙演化:以川西南上三叠统为例[J]. 地学前缘, 2018, 25(2): 179-190. |
[15] | 吴松涛,朱如凯,李勋,金旭,杨智,毛治国. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018, 25(2): 191-203. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||