地学前缘 ›› 2021, Vol. 28 ›› Issue (4): 70-82.DOI: 10.13745/j.esf.sf.2020.10.20
收稿日期:
2020-09-29
修回日期:
2020-11-22
出版日期:
2021-07-25
发布日期:
2021-07-25
作者简介:
王 军(1970—),男,博士,研究员,主要从事景观生态学、生态修复与土地整治研究。E-mail: wangjun@lcrc.org.cn
基金资助:
WANG Jun(), ZHANG Xiao, GAO Yan
Received:
2020-09-29
Revised:
2020-11-22
Online:
2021-07-25
Published:
2021-07-25
摘要:
青藏高原是中国乃至全球对气候变化最敏感的地区之一,是全球平均海拔最高的地理单元,对周边地区起到重要的生态安全屏障作用。近年来,当地植被受到气候变化和人类活动的双重压力。本文基于文献检索分析青藏高原的植被生理、生态特征对气候变化和人为干扰的响应,并利用荟萃分析定量综述植被覆盖度变化对土壤理化性质的影响。在此基础上分析青藏高原植被与环境因子相互关系的研究尺度与方法。结果表明:(1)气温、降水、辐射等自然因素和放牧、农耕、筑路等人为活动均对青藏高原植被的碳交换、水分利用效率、元素含量与分布格局、物候、多样性等指标产生显著影响,植被的变化也同时影响着土壤的水热交换、水文过程和理化性质等;(2)在植被退化过程中,由高覆盖度向中覆盖度转变时对土壤理化性质产生的不利影响强于由中覆盖度转为低覆盖度时,高覆盖度地区的植被保护需要引起更多关注;(3)现有研究更多关注单一要素、单一尺度,未来应关注多要素间的相互耦合,通过合作与共享获取数据,开展多尺度对比和尺度效应研究,系统梳理和分析植被与环境因子的相互关系可为制定科学合理的生态修复策略提供科学依据。
中图分类号:
王军, 张骁, 高岩. 青藏高原植被动态与环境因子相互关系的研究现状与展望[J]. 地学前缘, 2021, 28(4): 70-82.
WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect[J]. Earth Science Frontiers, 2021, 28(4): 70-82.
研究尺度 | 数据来源 | 主要分析方法 | |
---|---|---|---|
大尺度 | 样带 | 样方调查 | 按退化梯度设置样地,分析地带性变化 |
遥感数据 | 结合样方调查、统计原理和跨区域生态样带实际测定相结合的方法分析生物量变化 | ||
全域 | GIMMS NDVI MODIS NDVI SPOT-VEG LANDSAT TM/ETM+ | 植被光谱模型反演植被生物物理参量,获取分布格局 长时间序列NDVI重建(最大值合成法、阈值法、均值迭代滤波法等) 监测序列变化可以用到线性回归法、影像差异法等 应用相关分析法、收敛交叉映射法等方法 应用残差分析法量化人类活动的影响等 | |
中小尺度 | 样点 | 样方调查 室内分析 | 生物量获取多采用标准收获法 土壤理化性质均采用土壤学常规实验方法测定 |
控制实验 | 人工增温增水试验多采用被动式增温方法(开顶式气室法) | ||
流域 | 放牧试验 | 对照实验、群落调查、标准收获法,随机区组设计等 |
表1 青藏高原不同尺度植被与环境因子关系研究的数据来源和常用方法
Table 1 Data sources and common methods for studying the relationship between vegetation and environmental factors on the Qinghai-Tibet Plateau at different research scales
研究尺度 | 数据来源 | 主要分析方法 | |
---|---|---|---|
大尺度 | 样带 | 样方调查 | 按退化梯度设置样地,分析地带性变化 |
遥感数据 | 结合样方调查、统计原理和跨区域生态样带实际测定相结合的方法分析生物量变化 | ||
全域 | GIMMS NDVI MODIS NDVI SPOT-VEG LANDSAT TM/ETM+ | 植被光谱模型反演植被生物物理参量,获取分布格局 长时间序列NDVI重建(最大值合成法、阈值法、均值迭代滤波法等) 监测序列变化可以用到线性回归法、影像差异法等 应用相关分析法、收敛交叉映射法等方法 应用残差分析法量化人类活动的影响等 | |
中小尺度 | 样点 | 样方调查 室内分析 | 生物量获取多采用标准收获法 土壤理化性质均采用土壤学常规实验方法测定 |
控制实验 | 人工增温增水试验多采用被动式增温方法(开顶式气室法) | ||
流域 | 放牧试验 | 对照实验、群落调查、标准收获法,随机区组设计等 |
[1] |
XU G C, ZHANG J X, LI P, et al. Vegetation restoration projects and their influence on runoff and sediment in China[J]. Ecological Indicators, 2018, 95:233-241.
DOI URL |
[2] | 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9):924-931. |
[3] | 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11):1203-1209. |
[4] | 郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展[J]. 地学前缘, 2002, 9(1):95-102. |
[5] | 邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11):1285-1292. |
[6] |
姚檀栋. “第三极环境(TPE)”国际计划: 应对区域未来环境生态重大挑战问题的国际计划[J]. 地理科学进展, 2014, 33(7):884-892.
DOI |
[7] | LI N, WANG G X, GAO Y H, et al. Warming effects on plant growth, soil nutrients, microbial biomass and soil enzymes activities of two alpine meadows in Tibetan Plateau[J]. Polish Journal of Ecology, 2011, 59(1):25-35. |
[8] |
AN S, CHEN X Q, ZHANG X Y, et al. Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet plateau[J]. Remote Sensing, 2020, 12(3):431.
DOI URL |
[9] |
DAI L C, KE X, GUO X W, et al. Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai-Tibet Plateau[J]. Ecology and Evolution, 2019, 9(10):6105-6115.
DOI URL |
[10] | LIU M, ZHANG Z C, SUN J, et al. Restoration efficiency of short-term grazing exclusion is the highest at the stage shifting from light to moderate degradation at Zoige, Tibetan Plateau[J]. Ecological Indicators, 2020, 114:106323. |
[11] | ROSENBERG M S, ADAMS D C, GUREVITCH J. MetaWin: statistical software for Meta-analysis. Version 2.0[M]. Sunderland: Sinauer Associates Inc, 2000. |
[12] |
XUE J, HE J, WANG L, et al. Plant traits and biomass allocation of gentiana hexaphylla on different slope aspects at the eastern margin of Qinghai-Tibet Plateau[J]. Applied Ecology and Environmental Research, 2018, 16(2):1835-1853.
DOI URL |
[13] |
SUN M, SU T, ZHANG S B, et al. Variations in leaf morphological traits of Quercus guyavifolia (Fagaceae) were mainly influenced by water and ultraviolet irradiation at high elevations on the Qinghai-Tibet plateau, China[J]. International Journal of Agriculture and Biology, 2016, 18(1):266-273.
DOI URL |
[14] | ZONG N, SHI P, JIANG J, et al. Responses of ecosystem CO2 fluxes to short-term experimental warming and nitrogen enrichment in an alpine meadow, northern Tibet Plateau[J]. The Scientific World Journal, 2013(11):415318. |
[15] |
MA F, XU T T, JI M F, et al. Responses of two endemic species of Hippophae at the Qinghai-Tibet Plateau to elevated CO2 concentration[J]. Photosynthetica, 2015, 53(3):395-402.
DOI URL |
[16] |
CUI X Y, NIU H S, WU J, et al. Response of chlorophyll fluorescence to dynamic light in three alpine species differing in plant architecture[J]. Environmental and Experimental Botany, 2006, 58(1/2/3):149-157.
DOI URL |
[17] |
CUI X Y, TANG Y H, GU S, et al. Leaf orientation, incident sunlight, and photosynjournal in the alpine species Suassurea superba and Gentiana straminea on the Qinghai-Tibet plateau[J]. Arctic, Antarctic, and Alpine Research, 2004, 36(2):219-228.
DOI URL |
[18] | LI Y N, SUN X M, ZHAO X Q, et al. Seasonal variations and mechanism for environmental control of NEE of CO2 concerning the Potentilla fruticosa in alpine shrub meadow of Qinghai-Tibet Plateau[J]. Science in China Series D: Earth Sciences, 2006, 49(2):174-185. |
[19] |
FU Y L, YU G R, SUN X M, et al. Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub[J]. Agricultural and Forest Meteorology, 2006, 137(3/4):234-244.
DOI URL |
[20] |
PENG F, XUE X, XU M H, et al. Warming-induced shift towards forbs and grasses and its relation to the carbon sequestration in an alpine meadow[J]. Environmental Research Letters, 2017, 12(4):044010.
DOI URL |
[21] | HU Y G, JIANG L L, WANG S P, et al. The temperature sensitivity of ecosystem respiration to climate change in an alpine meadow on the Tibet Plateau: a reciprocal translocation experiment[J]. Agricultural and Forest Meteorology, 2016, 216:93-104. |
[22] |
YANG Z P, GAO J X, ZHAO L, et al. Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau[J]. Plant and Soil, 2013, 367(1/2):687-700.
DOI URL |
[23] | MENG L H, YANG J, GUO W, et al. Differentiation in drought tolerance mirrors the geographic distributions of alpine plants on the Qinghai-Tibet Plateau and adjacent Highlands[J]. Scientific Reports, 2017, 7:42466. |
[24] | LI P, ZHANG Y X, WU X X, et al. Drought stress impact on leaf proteome variations of faba bean (Vicia faba L.) in the Qinghai-Tibet Plateau of China[J]. Biotech, 2018, 8(2):110. |
[25] | ZHANG T C, QIAO Q, NOVIKOVA P Y, et al. Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14):7137-7146. |
[26] |
HE J D, XUE J Y, GAO J, et al. Adaptations of the floral characteristics and biomass allocation patterns of Gentiana hexaphylla to the altitudinal gradient of the eastern Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2017, 14(8):1563-1576.
DOI URL |
[27] |
MA X X, HONG J T, WANG X D. C: N: P stoichiometry of perennial herbs’ organs in the alpine steppe of the northern Tibetan Plateau[J]. Journal of Mountain Science, 2019, 16(9):2039-2047.
DOI URL |
[28] |
JIANG L L, WANG S P, ZHE P, et al. Plant organic N uptake maintains species dominance under long-term warming[J]. Plant and Soil, 2018, 433(1/2):243-255.
DOI URL |
[29] |
FAN J W, HARRIS W, ZHONG H P. Stoichiometry of leaf nitrogen and phosphorus of grasslands of the Inner Mongolian and Qinghai-Tibet plateaus in relation to climatic variables and vegetation organization levels[J]. Ecological Research, 2016, 31(6):821-829.
DOI URL |
[30] | HONG J T, WANG X D, WU J B. Variation in carbon, nitrogen and phosphorus partitioning between above- and belowground biomass along a precipitation gradient at Tibetan Plateau[J]. Journal of Mountain Science, 2016, 13(4):661-671. |
[31] |
GUO Y, LIU L P, ZHENG L L, et al. Long-term grazing affects relationships between nitrogen form uptake and biomass of alpine meadow plants[J]. Plant Ecology, 2017, 218(9):1035-1045.
DOI URL |
[32] |
WU J S, ZHANG X Z, SHEN Z X, et al. Grazing-exclusion effects on aboveground biomass and water-use efficiency of alpine grasslands on the northern Tibetan Plateau[J]. Rangeland Ecology & Management, 2013, 66(4):454-461.
DOI URL |
[33] |
XIAO H, PENG Z, XU C L, et al. Yak and Tibetan sheep trampling inhibit reproductive and photosynthetic traits of Medicago ruthenica var. inschanica[J]. Environmental Monitoring and Assessment, 2018, 190(9):1-16.
DOI URL |
[34] | GAO Z Y, NIU F J, WANG Y B, et al. Root-induced changes to soil water retention in permafrost regions of the Qinghai-Tibet Plateau, China[J]. Journal of Soils and Sediments, 2018, 18(3):791-803. |
[35] |
JIANG L L, WANG S P, ZHE P, et al. Effects of grazing on the acquisition of nitrogen by plants and microorganisms in an alpine grassland on the Tibetan Plateau[J]. Plant and Soil, 2017, 416(1/2):297-308.
DOI URL |
[36] |
LIU H B, WU J P, TIAN X H, et al. Dynamic of aboveground biomass and soil moisture as affected by short-term grazing exclusion on eastern alpine meadow of Qinghai-Tibet Plateau, China[J]. Chilean Journal of Agricultural Research, 2016, 76(3):321-329.
DOI URL |
[37] | PENG F, XUE X, YOU Q G, et al. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem[J]. Ecology and Evolution, 2016, 6(23):8546-8555. |
[38] | 黄文洁, 曾桐瑶, 黄晓东. 青藏高原高寒草地植被物候时空变化特征[J]. 草业科学, 2019, 36(4):1032-1043, 919. |
[39] | 丁明军, 张镱锂, 孙晓敏, 等. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 2012, 57(33):3185-3194. |
[40] | 陈思宇, 梁天刚. 基于EVI2和多趋势分析法的高原草地植被物候动态监测研究[J]. 遥感技术与应用, 2019, 34(2):355-366. |
[41] | 管琪卉, 丁明军, 张华敏. 青藏地区高寒草地春季物候时空变化及其对气候变化的响应[J]. 山地学报, 2019, 37(5):639-648. |
[42] | YU L, HUANG L, SHAO X, et al. Warming-induced decline of Picea crassifolia growth in the Qilian mountains in recent decades[J]. PLoS One, 2015, 10(6):e0129959. |
[43] |
LIANG Q L, XU X T, MAO K S, et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains[J]. Journal of Biogeography, 2018, 45(6):1334-1344.
DOI URL |
[44] | 聂忆黄, 龚斌, 李忠. 青藏高原水源涵养能力时空变化规律[J]. 地学前缘, 2010, 17(1):373-377. |
[45] | LI X L, XUE Z P, GAO J. Environmental influence on vegetation properties of frigid wetlands on the Qinghai-Tibet Plateau, Western China[J]. Wetlands, 2016, 36(5):807-819. |
[46] |
SIGDEL S R, LIANG E Y, WANG Y F, et al. Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns[J]. Journal of Biogeography, 2020, 47(8):1816-1826.
DOI URL |
[47] |
ANDERSON K, FAWCETT D, CUGULLIERE A, et al. Vegetation expansion in the subnival Hindu Kush Himalaya[J]. Global Change Biology, 2020, 26(3):1608-1625.
DOI URL |
[48] | WANG C Y, WEI M, WU B D, et al. Alpine grassland degradation reduced plant species diversity and stability of plant communities in the Northern Tibet Plateau[J]. Acta Oecologica, 2019, 98:25-29. |
[49] | 陈婷, 梁四海, 钱开铸, 等. 近22年长江源区植被覆盖变化规律与成因[J]. 地学前缘, 2008, 15(6):323-331. |
[50] | ZHANG C H, WILLIS C G, KLEIN J A, et al. Recovery of plant species diversity during long-term experimental warming of a species-rich alpine meadow community on the Qinghai-Tibet Plateau[J]. Biological Conservation, 2017, 213:218-224. |
[51] |
TANG L, DONG S K, SHERMAN R, et al. Changes in vegetation composition and plant diversity with rangeland degradation in the alpine region of Qinghai-Tibet Plateau[J]. The Rangeland Journal, 2015, 37(1):107.
DOI URL |
[52] |
WANG G X, LIU G S, LI C J. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed[J]. Journal of Hydrology, 2012, 444/445:22-33.
DOI URL |
[53] |
WANG Y, ZHANG N, QIANG W Y, et al. Effects of reduced, ambient, and enhanced UV-B radiation on pollen germination and pollen tube growth of six alpine meadow annual species[J]. Environmental and Experimental Botany, 2006, 57(3):296-302.
DOI URL |
[54] |
LIU K, BASKIN J M, BASKIN C C, et al. Effect of diurnal fluctuating versus constant temperatures on germination of 445 species from the eastern Tibet Plateau[J]. PLoS One, 2013, 8(7):e69364.
DOI URL |
[55] |
BU H, CHEN X, WANG Y, et al. Germination time, other plant traits and phylogeny in an alpine meadow on the eastern Qinghai-Tibet Plateau[J]. Community Ecology, 2007, 8(2):221-227.
DOI URL |
[56] |
LIU W S, DONG M, SONG Z P, et al. Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau[J]. Annals of Applied Biology, 2009, 154(1):57-65.
DOI URL |
[57] |
LI S, DONG S K, SHEN H, et al. Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau[J]. Science of the Total Environment, 2019, 688:1405-1412.
DOI URL |
[58] |
TRISOS C H, MEROW C, PIGOT A L. The projected timing of abrupt ecological disruption from climate change[J]. Nature, 2020, 580(7804):496-501.
DOI URL |
[59] |
LI W J, LI J H, LIU S S, et al. Magnitude of species diversity effect on aboveground plant biomass increases through successional time of abandoned farmlands on the eastern Tibetan Plateau of China[J]. Land Degradation & Development, 2017, 28(1):370-378.
DOI URL |
[60] |
ZHOU J J, XIANG J, WANG L Y, et al. The impacts of groundwater chemistry on wetland vegetation distribution in the northern Qinghai-Tibet Plateau[J]. Sustainability, 2019, 11(18):5022.
DOI URL |
[61] | LIU B Y, SUN J, LIU M, et al. The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau[J]. PeerJ, 2019, 7:e7272. |
[62] |
LI C Y, PENG F, XUE X, et al. Productivity and quality of alpine grassland vary with soil water availability under experimental warming[J]. Frontiers in Plant Science, 2018, 9. DOI: 10.3389/fpls.2018.01790.
DOI |
[63] |
LI N, WANG G X, YANG Y, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau[J]. Soil Biology and Biochemistry, 2011, 43(5):942-953.
DOI URL |
[64] |
WANG J X, ZHONG M Y, WU R X, et al. Response of plant functional traits to grazing for three dominant species in alpine steppe habitat of the Qinghai-Tibet Plateau, China[J]. Ecological Research, 2016, 31(4):515-524.
DOI URL |
[65] |
WANG C T, ZHAO X Q, ZI H B, et al. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Applied Soil Ecology, 2017, 116:30-41.
DOI URL |
[66] |
WANG L, YU H Y, ZHANG Q, et al. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau[J]. Journal of Geographical Sciences, 2018, 28(12):1953-1964.
DOI |
[67] |
LUO L H, DUAN Q T, WANG L X, et al. Increased human pressures on the alpine ecosystem along the Qinghai-Tibet Railway[J]. Regional Environmental Change, 2020, 20(1):1-13.
DOI URL |
[68] |
WEN L, DONG S K, LI Y Y, et al. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai-Tibet Plateau (QTP), China[J]. Environmental Monitoring and Assessment, 2013, 185(10):8051-8064.
DOI URL |
[69] |
WEN L, DONG S K, LI Y Y, et al. Variation of botanical composition, forage production and nutrient values along a grassland degradation gradient in the alpine region of Qinghai-Tibet Plateau[J]. Phyton, 2013, 82(1):45-54.
DOI URL |
[70] | QIAO Y M, WANG Q J, WANG W Y. Yak (Bos grunniens L.) grazing effects on vegetation of alpine meadow with Potentilla fruticosa L. (Rosaceae) shrub in Qinghai-Tibet Plateau[J]. Polish Journal of Ecology, 2009, 57(4):769-777. |
[71] |
WANG H, ZHANG Y, CHEN G L, et al. Domestic pig uprooting emerges as an undesirable disturbance on vegetation and soil properties in a plateau wetland ecosystem[J]. Wetlands Ecology and Management, 2018, 26(4):509-523.
DOI URL |
[72] | ZHOU H K, TANG Y H, ZHAO X Q, et al. Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau[J]. Pakistan Journal of Botany, 2006, 38(4):1055-1069. |
[73] |
PENG F, XUE X, YOU Q G, et al. Change in the trade-off between aboveground and belowground biomass of alpine grassland: implications for the land degradation process[J]. Land Degradation & Development, 2020, 31(1):105-117.
DOI URL |
[74] |
DAI L C, GUO X W, KE X, et al. Moderate grazing promotes the root biomass in Kobresia meadow on the northern Qinghai-Tibet Plateau[J]. Ecology and Evolution, 2019, 9(16):9395-9406.
DOI URL |
[75] |
LI G Y, JIANG C H, CHENG T, et al. Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China[J]. Journal of Environmental Management, 2019, 248:109257.
DOI URL |
[76] |
MIPAM T D, ZHONG L L, LIU J Q, et al. Productive over compensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau[J]. Frontiers in Plant Science, 2019, 10:925.
DOI URL |
[77] | LI W, CAO W X, WANG J L, et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau[J]. Ecological Engineering, 2017, 98:123-133. |
[78] | YAO X X, WU J P, GONG X Y, et al. Grazing exclosures solely are not the best methods for sustaining alpine grasslands[J]. PeerJ, 2019, 7:e6462. |
[79] |
LIU Y J, SHI G X, MAO L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytologist, 2012, 194(2):523-535.
DOI URL |
[80] |
ZHANG C H, WILLIS C G, MA Z, et al. Direct and indirect effects of long-term fertilization on the stability of the persistent seed bank[J]. Plant and Soil, 2019, 438(1/2):239-250.
DOI URL |
[81] |
GUO Z G, LONG R J, NIU F J, et al. Effect of highway construction on plant diversity of grassland communities in the Permafrost regions of the Qinghai - Tibet Plateau[J]. The Rangeland Journal, 2007, 29(2):161.
DOI URL |
[82] |
CHEN H, LI S C, ZHANG Y L. Impact of road construction on vegetation alongside Qinghai-Xizang highway and railway[J]. Chinese Geographical Science, 2003, 13(4):340-346.
DOI URL |
[83] |
WANG W Y, WANG Q J, WANG H C. The effect of land management on plant community composition, species diversity, and productivity of alpine Kobersia steppe meadow[J]. Ecological Research, 2006, 21(2):181-187.
DOI URL |
[84] | BAO G S, SUETSUGU K, WANG H S, et al. Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland[J]. Ecological Research, 2015, 30(3):507-515. |
[85] |
CHEN S Y, LIU W J, QIN X, et al. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin[J]. Environmental Research Letters, 2012, 7(4):045406.
DOI URL |
[86] | WANG G X, LIU G S, LI C J, et al. The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region[J]. Agricultural and Forest Meteorology, 2012, 162/163:44-57. |
[87] | 张杰, 李栋梁. 青藏高原夏季凝结潜热时空分布特征分析[J]. 地学前缘, 2009, 16(1):326-334. |
[88] | 廖艳, 杨忠芳, 夏学齐, 等. 青藏高原冻土土壤呼吸温度敏感性和不同活性有机碳组分研究[J]. 地学前缘, 2011, 18(6):85-93. |
[89] | GAO Z Y, LIN Z J, NIU F J, et al. Soil water dynamics in the active layers under different land-cover types in the permafrost regions of the Qinghai-Tibet Plateau, China[J]. Geoderma, 2020, 364:114176. |
[90] |
ZHANG W G, AN S Q, XU Z, et al. The impact of vegetation and soil on runoff regulation in headwater streams on the east Qinghai-Tibet Plateau, China[J]. CATENA, 2011, 87(2):182-189.
DOI URL |
[91] |
HOU J, WANG H Q, FU B J, et al. Effects of plant diversity on soil erosion for different vegetation patterns[J]. CATENA, 2016, 147:632-637.
DOI URL |
[92] | TIAN L H, WU W Y, ZHOU X, et al. The ecosystem effects of sand-binding shrub hippophae rhamnoides in alpine semi-arid desert in the northeastern Qinghai-Tibet Plateau[J]. Land, 2019, 8(12):183. |
[93] | ZHANG X, ZHAO W W, LIU Y X, et al. Spatial variations and impact factors of soil water content in typical natural and artificial grasslands: a case study in the Loess Plateau of China[J]. Journal of Soils and Sediments, 2017, 17(1):157-171. |
[94] | HAN X G, HU Z J, XIN G R, et al. Studies on the characteristics of vegetation and soil on mount Sejila, Tibet[J]. Pakistan Journal of Botany, 2014, 46(2):457-464. |
[95] |
ZHU J, YANG W, HE X. Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient[J]. PLoS One, 2013, 8(4):e62073.
DOI URL |
[96] |
LI X R, JIA X H, DONG G R. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China[J]. Journal of Arid Environments, 2006, 64(3):505-522.
DOI URL |
[97] |
ZHANG R Y, SHI X M, LI W J, et al. Responses of plant functional groups to natural nitrogen fertility on an alpine grassland in the Qinghai-Tibet Plateau[J]. Russian Journal of Ecology, 2016, 47(6):532-539.
DOI URL |
[98] | 傅伯杰, 陈利顶, 马克明. 景观生态学原理及应用[M]. 2版. 北京: 科学出版社, 2011. |
[99] | 王军, 钟莉娜. 生态系统服务理论与山水林田湖草生态保护修复的应用[J]. 生态学报, 2019, 39(23):8702-8708. |
[100] | 王振波, 李嘉欣, 郭义强, 等. 青藏高原山水林田湖草生态保护修复模式: 以拉萨河流域为例[J]. 生态学报, 2019, 39(23):8966-8974. |
[101] |
LI X L, GAO J, ZHANG J, et al. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting[J]. CATENA, 2019, 182:104142.
DOI URL |
[102] | SHANG Z H, HOU Y C, PAN D F, et al. Recruitment of seedlings versus ramets as affected by pasture degradation in alpine meadows and the implications for ecological restoration[J]. Plant Ecology & Diversity, 2015, 8(4):547-557. |
[1] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
[2] | 梁文翔, 骆震, 陈伏龙, 王统霞, 安杰, 龙爱华, 何朝飞. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[3] | 王鹏寿, 许民, 韩海东, 李振中, 宋轩宇, 周卫永. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446. |
[4] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[5] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[6] | 张进, 张北航, 赵衡, 云龙, 曲军峰, 王振义, 杨亚琦, 赵硕. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 2023, 30(5): 334-357. |
[7] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[8] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[9] | 宋轩宇, 许民, 康世昌, 孙立平. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469. |
[10] | 刘晓宇, 杨文采, 陈召曦, 瞿辰, 于常青. 青藏高原东部地块的属性与演化[J]. 地学前缘, 2023, 30(3): 233-241. |
[11] | 吴晨, 陈宣华, 丁林. 祁连造山带构造演化与新生代变形历史[J]. 地学前缘, 2023, 30(3): 262-281. |
[12] | 何朝飞, 骆成彦, 陈伏龙, 龙爱华, 唐豪. 基于CMIP6多模式的和田河流域未来气候变化预估[J]. 地学前缘, 2023, 30(3): 515-528. |
[13] | 贾承造, 陈竹新, 雷永良, 王丽宁, 任荣, 苏楠, 杨庚. 中国中西部褶皱冲断带构造变形机制与结构模型[J]. 地学前缘, 2022, 29(6): 156-174. |
[14] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[15] | 刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||