地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 19-42.DOI: 10.13745/j.esf.sf.2022.10.18
何碧竹1,2(), 焦存礼3, 刘若涵1,4, 曹自成5, 蔡志慧1, 兰明杰5, 贠晓瑞1,3, 朱定5, 姜忠正5, 杨玉杰5, 李振宇1,6
收稿日期:
2022-08-20
修回日期:
2022-09-29
出版日期:
2023-07-25
发布日期:
2023-07-07
作者简介:
何碧竹(1965-),女,研究员,博士生导师,主要从事盆地构造分析及油气勘探目标评价研究。E-mail: hebizhu@cags.ac.cn;hebizhu@vip.sina.com
基金资助:
HE Bizhu1,2(), JIAO Cunli3, LIU Ruohan1,4, CAO Zicheng5, CAI Zhihui1, LAN Mingjie5, YUN Xiaorui1,3, ZHU Ding5, JIANG Zhongzheng5, YANG Yujie5, LI Zhenyu1,6
Received:
2022-08-20
Revised:
2022-09-29
Online:
2023-07-25
Published:
2023-07-07
摘要:
塔里木盆地新元古代构造-沉积发育对于了解克拉通初始发育及超深层油气勘探至关重要,因其埋深大,资料稀少,在盆地深埋区的研究极为困难,资料也存在一定的多解性。通过采用盆-山结合、地质-地球物理多种方法联合研究发现,新元古代塔里木盆地至少经历了3期构造旋回,形成3个沉积超层序和7~9个层序。盆地与盆缘新元古代沉积相带分布受断陷控制而变化差异较大,发育有陆棚相、冰川相、盆地相、碳酸盐岩台地相、潮坪相、扇三角洲相、滨浅海相和冲积扇-河流相等不同的沉积相,还发育有火成岩相。对南华纪-早寒武世之间主要的不整合结构构造及空间分布研究表明,盆缘及盆地内深埋区构造-沉积格架反映了伸展环境下的不整合结构构造特征,主要类型包括单斜低角度不整合、渐进角度不整合、断控角度不整合和平行不整合,它们进一步揭示了不同部位的构造作用过程。根据层序地层特征、新元古代断裂活动、不整合三元结构构造、震旦系及南华系地震地层学特征及波阻抗属性特征综合分析,重建了塔里木盆地深埋区震旦系、寒武系沉积前的构造古地理,各沉积相带的分布与南华纪晚期、震旦纪晚期断陷分布、沉降中心的分布和构造变形差异等有关。与Rodinia超大陆外向生长与裂解、Gondwana拼合响应,塔里木新元古代构造古地理演化经历了3个旋回:第一旋回为盆地内深裂陷启动期(900~760 Ma),第二旋回为深裂陷发育期(ca.750~630 Ma),第三旋回为裂陷快速扩张期及衰退期(630~520 Ma),3个旋回分别与塔里木陆块周缘新元古代早期俯冲相关的弧后伸展、中期裂谷盆地和晚期被动大陆边缘等大地构造环境转换相关。广盆存在的寒武系与震旦系或前震旦系不整合,揭示了震旦纪、寒武纪之交是塔里木地块由多个裂谷-断陷盆地向统一克拉通盆地的重要转换期。本研究形成了结构-多属性构造古地理重建恢复深埋区古构造、古地理的重要方法;根据相控条件预测了盆地内下寒武统及南华系有利烃源岩的发育区,对深层油气资源潜力评价有重要的意义。
中图分类号:
何碧竹, 焦存礼, 刘若涵, 曹自成, 蔡志慧, 兰明杰, 贠晓瑞, 朱定, 姜忠正, 杨玉杰, 李振宇. 塔里木盆地新元古代构造古地理及深层有利烃源岩发育区预测[J]. 地学前缘, 2023, 30(4): 19-42.
HE Bizhu, JIAO Cunli, LIU Ruohan, CAO Zicheng, CAI Zhihui, LAN Mingjie, YUN Xiaorui, ZHU Ding, JIANG Zhongzheng, YANG Yujie, LI Zhenyu. The paleotectonic and paleogeography reconstructions of the Tarim Basin in the Neoproterozoic and prediction of favorable deep source rock areas[J]. Earth Science Frontiers, 2023, 30(4): 19-42.
图1 塔里木盆地及周缘造山带主要构造单元及重点钻井、剖面位置图(据文献[11⇓⇓⇓⇓⇓⇓-18]修改) 显生宙一级构造单元:I-库车坳陷;II-塔北隆起;III-北部坳陷带;IV-中央隆起带;V-西南坳陷带;VI-东南断隆;VII-东南坳陷。露头剖面为绿色星,其编号为:1-尤尔美那克;2-磷矿沟;3-黑山;4-阿克美其克;见图3-5。红色虚线为露头与盆地内钻井的地层对比剖面AA',见图6。
Fig.1 Structural units of the Tarim Basin and adjacent areas and location of key wells and survey lines. Modified after [11⇓⇓⇓⇓⇓⇓-18].
![]() |
表1 塔里木盆地及周缘新元古代地层综合表(据文献[2,12,19-20,26-27,45⇓-47]修改)
Table 1 Composite stratigraphic column of Neoproterozoic strata in the Tarim Basin and surrounding area (modified after [2,12,19-20,26-27,45⇓-47]).
![]() |
图2 南华系典型沉积特征及南华系与震旦系不整合结构构造特征,尤尔美那克剖面,阿克苏地区 A-巧恩布拉克组内灰绿色冰碛岩与下伏薄层状浅灰绿色粉砂岩不整合;B-巧恩布拉克组水下冰碛岩顶部,薄-纹层状粉砂岩、粉砂质泥岩夹冰川坠石(原位砾石及印模);C-巧恩布拉克组灰绿色薄-纹层状砂岩、泥质粉砂岩互层沉积;D-巧恩布拉克组与尤尔美那克组不整合、尤尔美那克与苏盖特布拉克组不整合;E-尤尔美那克组陆上冰碛岩中含巧恩布拉克组水下冰碛岩巨砾。
Fig.2 Sedimentary features of Cryogenian rocks(A-E) and structural architecture features of unconformities between the Cryogenian and Ediacaran (A,D-E), the Youermeinak section, Aksu area
图3 震旦系苏盖特布拉克组典型沉积特征及其相关不整合结构构造,阿克苏地区 A-苏盖特布拉克组与阿克苏群非整合接触,磷矿沟剖面;B-苏盖特布拉克组中层间正断层及顺层侵入的辉绿岩,磷矿沟剖面;C-褐红色含砾砂岩及粉砂岩,具有近同向的斜层理,苏盖特布拉克组下段,东二沟剖面;D-单向水流、双向水流、湍流多种类型的波痕,苏盖特布拉克组,东二沟剖面;E-震旦系苏盖特布拉克组与奇格布拉克组不整合结构构造,呈低角度单斜式不整合样式,不整合面下还存在大型软沉积变形构造-塑性挤入-挤出构造[43];F-震旦系奇格布拉克与寒武系玉尔吐斯组不整合,磷矿沟剖面。
Fig.3 Sedimentary characteristics of Sugaitebulak Fm. and related its unconformities, in the Ediacaran, Aksu area
图4 塔里木盆地西北缘及盆地中北部新元古界综合柱状图(据文献[12,19,28,43]修改)
Fig.4 Composite stratigraphic column of the Neoproterozoic northwestern margin and western and central parts of the Tarim Basin. Modified after [12,19,28,43].
图5 塔里木盆地重点钻井岩心揭示新元古界沉积岩特征,井位见图1 A-KT1井3 436.73~3 436.97 m,浅灰色含灰质粉砂质泥岩,含云质角砾,冰川相,冰碛岩,Z2h;B-XH1井5 861.89~5 862.01 m,灰色油迹角砾状白云岩,裂缝白色方解石半充填,潮坪相,Z2q;C-S44井5 464.50~5 464.76 m,浅灰色砾屑白云岩,冰川相,冰碛岩,Z2q ;D-XH1井6 113.62~6 113.84 m,灰色粉砂岩,潮坪相,Z1s;E-S20井5 396 m灰色板岩,深灰色泥岩与灰色粉砂岩,陆棚相,Z1s;F-YL1井4 543 m,灰色灰质粉砂岩,深水陆棚相,浊积岩,Z1s;G-QG1井5 751.98~5 752.14 m灰色油迹细晶白云岩,裂缝被白云石充填 孔洞被白云石-石英半充填,碳酸盐岩台地相,Z2q;H-TD1井4 728 m深灰色白云岩,潮坪相,Z2q。
Fig.5 Drill cores of the Neoproterozoic from the Tarim Basin (well locations see Figs.1 and 9)
图6 塔里木盆地及周缘新元古代地层层序对比及沉积相剖面 尤尔美那克、黑山剖面据文献[10,19,34]修改,LT1井修改自文献[32],露头剖面及钻井位置见图1。
Fig.6 West-east sedimentary succession from the Neoproterozoic to the Lower Cambrian along transect AA' (transect location see Fig.1). Youermeinake/Heishan sections modified after [10,19,34]; LT1 section modified after [32].
图7 塔里木盆地东部新元古界不整合结构构造及波阻抗剖面(a,b据文献[12]修改) a-地震地质解释剖面A-A',SYJS-英吉苏南断层,标注下行实线为现今塔里木盆地构造单元, 上行虚线为南华纪-震旦纪裂陷范围,剖面位置见图9;b-寒武系底反射层层拉平剖面,注释不整合结构构造特征,不整合结构类型图例下同,剖面中还标注了地震地层学特征,H、M、L分别代表高、中、低;A、F、C、I分别代表振幅、频率、连续性、波阻抗等;c-波阻抗反演剖面,剖面位置见图9。
Fig.7 Structural architecture features of unconformities between the Cryogenian and the Ediacaran and between the Ediacaran and Cambrian (a-b), and wave-impedance profile (c) at the east part of the Tarim Basin (profile locations see Fig.9)
图8 塔里木盆地新元古界不整合结构构造剖面及波阻抗剖面 a,b,c-不整合结构构造类型剖面特征,底图为寒武系底层拉平地震解释剖面C-C'、D-D'、E1-E',据文献[12]修改;d-波阻抗反演剖面E1-E';剖面位置见图9。
Fig.8 Structrual architecture features of unconformities between the Cryogenian and Ediacaran and between the Ediacaran and Cambrian(a-c), and the wave-impedance profile(d) in the Tarim Basin (profiles see in Fig.9)
图9 塔里木盆地新元古界不整合结构构造及地震地层学特征平面示意图(断裂系统据文献[12]修改) a-震旦系与南华系不整合结构构造及南华系地震属性特征;b-寒武系与震旦系不整合结构构造及震旦系地震属性特征。
Fig.9 Structural architecture features of unconformities and seismic stratigraphic attributes in the Neoproterzoic Tarim Basin. Fault systems modified after [12].
图10 塔里木盆地震旦系(A)、寒武系(B)沉积前构造古地理图 图A中火成岩年龄参考:① [11], ② [39], ③ [12], ④ [53], ⑤ [30]; ⑥ [70]; ⑦ [25], ⑧ [71]。图中还注明了南华系与震旦系(A)、震旦系与寒武系(B)之间不整合的结构构造。
Fig.10 Paleotectonic and paleogeographic maps of the pre-Ediacaran (A) and pre-Cambrian (B) Tarim Basin
图11 塔里木盆地新元古代构造-沉积旋回及裂陷发育过程 不整合结构、沉积充填、断裂作用等典型剖面以新元古代英吉苏断陷为例(i-iv), 盆地内及周缘的岩浆事件详见相关参考文献。
Fig.11 Tectono-sedimentary cycles and evolution of Neoproterozoic rift depressions, Tarim Basin (The Yingjisu faulted-depression is taken as an example (Profile i-iii indicate the three cycles in the Neoproterozoic, profile iv indicates the present features), and the relevant references of magmatic events are also marked.)
[1] |
CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40: 1-47.
DOI URL |
[2] | 孙枢, 王铁冠. 中国东部中-新元古界地质学与油气资源[M]. 北京: 科学出版社, 2016. |
[3] | GHORI K A R, CRAIG J, THUSU B, et al. Global Infracambrian petroleum systems: a review[M]// GRAIG J, THUROW J, THUSU B, et al. Global Neoproterozoic petroleum systems: the emerging potential in North Africa. London: the Geological Society, 2009: 110-136. |
[4] |
王铁冠, 韩克猷. 论中-新元古界的原生油气资源[J]. 石油学报, 2011, 32(1): 1-7.
DOI |
[5] | 魏国齐, 沈平, 杨威, 等. 四川盆地震旦系大气田形成条件与勘探远景区[J]. 石油勘探与开发, 2013, 40(2): 129-138. |
[6] |
管树巍, 吴林, 任荣, 等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22.
DOI |
[7] |
ZHU G Y, CHEN F R, CHEN Z Y, et al. Discovery and basic characteristics of high-quality source rocks found in the Yuertusi Formation of the Cambrian in Tarim Basin, China[J]. Journal of Natural Gas Geoscience, 2016, 1(1): 21-33.
DOI URL |
[8] | 肖序常, 汤耀庆, 王军, 等. 中国南天山造山带蓝片岩及其构造意义[J]. 地球学报, 1994, 15(增刊1): 64-64. |
[9] | 何登发, 李德生. 塔里木盆地构造演化与油气聚集[M]. 北京: 地质出版社, 1996. |
[10] | 贾承造, 王良书, 魏国齐. 塔里木盆地板块构造与大陆动力学[M]. 北京: 石油工业出版社, 2004. |
[11] |
XU Z Q, HE B Z, ZHANG C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162.
DOI URL |
[12] | 何碧竹, 焦存礼, 黄太柱, 等. 塔里木盆地新元古代裂陷群结构构造及其形成动力学[J]. 中国科学: 地球科学, 2019, 49(4): 635-655. |
[13] | 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993. |
[14] | 许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22. |
[15] | 张建新, 李怀坤, 孟繁聪, 等. 塔里木盆地东南缘(阿尔金山) “变质基底” 记录的多期构造热事件: 锆石U-Pb年代学的制约[J]. 岩石学报, 2011, 27(1): 23-46. |
[16] | 张传林, 李怀坤, 王洪燕. 塔里木地块前寒武纪地质研究进展评述[J]. 地质论评, 2012, 58(5): 923-936. |
[17] |
GE R F, ZHU W B, ZHENG B H, et al. Early Pan-African magmatism in the Tarim Craton: insights from zircon U-Pb-Lu-Hf isotope and geochemistry of granitoids in the Korla area, NW China[J]. Precambrian Research, 2012, 212/213: 117-138.
DOI URL |
[18] |
XU B, ZOU H B, CHEN Y, et al. The Sugetbrak basalts from northwestern Tarim Block of Northwest China: geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236: 214-226.
DOI URL |
[19] | 高振家, 王务严, 彭昌文, 等. 新疆阿克苏-乌什地区震旦系[M]. 乌鲁木齐: 新疆人民出版社, 1986. |
[20] |
石开波, 刘波, 田景春, 等. 塔里木盆地震旦纪沉积特征及岩相古地理[J]. 石油学报, 2016, 37(11): 1343-1360.
DOI |
[21] |
吴林, 管树巍, 杨海军, 等. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力[J]. 石油学报, 2017, 38(4): 375-385.
DOI |
[22] | 高振家, 陈晋镳, 陆松年, 等. 前寒武纪地质(第6号):新疆北部前寒武系[M]. 北京: 地质出版社, 1993. |
[23] | 高振家, 朱诚顺. 新疆前寒武纪地质[M]. 乌鲁木齐: 新疆人民出版社, 1984. |
[24] |
XU B, JIAN P, ZHENG H F, et al. U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of Northwest China: implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations[J]. Precambrian Research, 2005, 136(2): 107-123.
DOI URL |
[25] |
XU B, XIAO S H, ZOU H B, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J]. Precambrian Research, 2009, 168(3/4): 247-258.
DOI URL |
[26] | 高林志, 王宗起, 许志琴, 等. 塔里木盆地库鲁克塔格地区新元古代冰碛岩锆石SHRIMP U-Pb年龄新证据[J]. 地质通报, 2010, 29(2): 205-213. |
[27] | 高林志, 郭宪璞, 丁孝忠, 等. 中国塔里木板块南华纪成冰事件及其地层对比[J]. 地球学报, 2013, 34(1): 39-57. |
[28] | 刘若涵, 何碧竹, 焦存礼, 等. 新疆阿克苏地区新元古代沉积特征对裂谷发育过程的指示[J]. 岩石学报, 2020, 36(10): 3225-3242. |
[29] | 梁狄刚, 张水昌, 张宝民, 等. 从塔里木盆地看中国海相生油问题[J]. 地学前缘, 2000, 7(4): 534-547. |
[30] | 何金有, 邬光辉, 李启明, 等. 塔里木盆地震旦系石油地质特征及勘探方向[J]. 新疆石油地质, 2010, 31(5): 482-484. |
[31] |
ZHU G Y, YAN H H, CHEN W Y, et al. Discovery of Cryogenian interglacial source rocks in the northern Tarim, NW China: implications for Neoproterozoic paleoclimatic reconstructions and hydrocarbon exploration[J]. Gondwana Research, 2020, 80: 370-384.
DOI URL |
[32] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[33] |
张光亚, 刘伟, 张磊, 等. 塔里木克拉通寒武纪-奥陶纪原型盆地、岩相古地理与油气[J]. 地学前缘, 2015, 22(3): 269-276.
DOI |
[34] | 贾承造, 张师本, 吴绍祖. 塔里木盆地及周边地层[M]. 北京: 科学出版社, 2004. |
[35] | 何秀彬, 徐备, 袁志云. 新疆柯坪地区新元古代晚期地层碳同位素组成及其对比[J]. 科学通报, 2007, 52(1): 107-113. |
[36] | 张传林, 陆松年, 于海锋, 等. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据[J]. 中国科学D辑: 地球科学, 2007, 37(2): 145-154. |
[37] | 王飞, 王博, 舒良树. 塔里木西北缘阿克苏地区大陆拉斑玄武岩对新元古代裂解事件的制约[J]. 岩石学报, 2010, 26(2): 547-558. |
[38] |
ZHANG Z C, KANG J L, KUSKY T, et al. Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, Northwest Tarim Block, China: implications for the onset of Rodinia supercontinent breakup[J]. Precambrian Research, 2012, 220/221: 158-176.
DOI URL |
[39] | CAI Z H, HE B Z, MEERT J G, et al. Neoproterozoic tectonic transition from subduction-related convergence to continental extension of the Tarim Block, NW China[J]. Precambrian Research, 2021, 362: 106278. |
[40] |
WU L, GUAN S W, REN R, et al. Neoproterozoic glaciations and rift evolution in the Northwest Tarim Craton, China: new constraints from geochronological, geochemical, and geophysical data[J]. International Geology Review, 2021, 63(1): 1-20.
DOI URL |
[41] | 邓浩博, 田景春, 张翔, 等. 塔里木盆地西北缘阿克苏地区震旦系沉积相特征及沉积模式[J]. 东北石油大学学报, 2019, 43(3): 20-32, I0002. |
[42] | 钱一雄, 杜永明, 陈代钊, 等. 塔里木盆地肖尔布拉克剖面奇格布拉克组层序界面与沉积相研究[J]. 石油实验地质, 2014, 36(1): 1-8. |
[43] | HE B Z, JIAO C L, CAI Z H, et al. Soft-sediment deformation structures (SSDS) in the Ediacaran and lower Cambrian succession of the Aksu area, NW Tarim Basin, and their implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110237. |
[44] | 康建威, 牟传龙, 周恳恳, 等. 塔里木盆地北缘阿克苏地区震旦系露头层序地层研究[J]. 沉积与特提斯地质, 2016, 36(2): 47-54. |
[45] | 郑碧海, 朱文斌, 舒良树, 等. 阿克苏前寒武纪蓝片岩原岩产出的大地构造背景[J]. 岩石学报, 2008, 24(12): 2839-2848. |
[46] |
ZHU W B, ZHENG B H, SHU L S. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: insights from LA-ICP-MS zircon U-Pb ages and geochemical data[J]. Precambrian Research, 2011, 185(3/4): 215-230.
DOI URL |
[47] |
YONG W J, ZHANG L, HALL C M, et al. The 40Ar/39Ar and Rb-Sr chronology of the Precambrian Aksu blueschists in western China[J]. Journal of Asian Earth Sciences, 2013, 63: 197-205.
DOI URL |
[48] | 高振家. 再论天山地区前寒武纪地层问题[J]. 新疆地质, 1990, 8(1): 80-90. |
[49] |
WU G H, XIAO Y, BONIN B, et al. Ca.850 Ma magmatic events in the Tarim Craton: age, geochemistry and implications for assembly of Rodinia supercontinent[J]. Precambrian Research, 2018, 305: 489-503.
DOI URL |
[50] |
HE J Y, QING H R, XU B. The unconformity-related palaeokarst in the uppermost Ediacaran carbonate rocks in the northwestern Tarim Block, NW China: implication for sedimentary evolution during the Ediacaran-Cambrian transition[J]. International Geology Review, 2019, 61(7): 839-852.
DOI URL |
[51] | 杨恩林, 吴攀, 吕新彪, 等. 塔里木克拉通库鲁克塔格下寒武统底界年龄: 锆石LA-ICP-MS U-Pb定年[J]. 地质学报, 2021, 95(11): 3256-3265. |
[52] | 李曰俊, 孙龙德, 胡世玲, 等. 塔里木盆地塔参1井底部花岗闪长岩的40Ar-39Ar年代学研究[J]. 岩石学报, 2003, 19(3): 530-536. |
[53] | 邬光辉, 张承泽, 汪海, 等. 塔里木盆地中部塔参1井花岗闪长岩的锆石SHRIMP U-Pb年龄[J]. 地质通报, 2009, 28(5): 568-571. |
[54] |
XIA B, ZHANG L F, DU Z X, et al. Petrology and age of Precambrian Aksu blueschist, NW China[J]. Precambrian Research, 2019, 326: 295-311.
DOI |
[55] |
ZHANG C L, ZOU H B, WANG H Y, et al. Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block, NW China: interaction between plate subduction and mantle plume?[J]. Precambrian Research, 2012, 222/223: 488-502.
DOI URL |
[56] |
HE J W, ZHU W B, GE R F, et al. Detrital zircon U-Pb ages and Hf isotopes of Neoproterozoic strata in the Aksu area, northwestern Tarim Craton: implications for supercontinent reconstruction and crustal evolution[J]. Precambrian Research, 2014, 254: 194-209.
DOI URL |
[57] |
COHEN K M, FINNEY S C, GIBBARD P L, et al. The ICS international chronostratigraphic chart[J]. Episodes, 2013, 36: 199-204.
DOI URL |
[58] | HUTTON J. Theory of the Earth, or, an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe[M]. Edinburgh: Royal Society Edinburgh Transactional, 1788, 109-304. |
[59] |
TOMKEIEFF S I. Unconformity: an historical study[J]. Proceedings of the Geologists’ Association, 1962, 73(4): 383-417.
DOI URL |
[60] | VAIL P R, MITCHUM R M, THOMPSON S. Seismic stratigraphy and global changes of sea level. Part 3: relative changes of sea level from coastal onlap[M]//Seismic stratigraphy:applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977: 63-97. |
[61] | 尹赞勋, 张守信, 谢翠华. 论褶皱幕[M]. 北京: 科学出版社, 1978. |
[62] | BROWN L F J, FISHER W L. Seismic stratigraphic interpretation and petroleum exploration[J]. AAPG Continuing Education Course, Note Series, 1979, 16: 1-181. |
[63] |
何登发. 塔里木盆地的地层不整合面与油气聚集[J]. 石油学报, 1995, 16(3): 14-21.
DOI |
[64] |
潘钟祥. 不整合对于油气运移聚集的重要性[J]. 石油学报, 1983, 4(4) : 1-10.
DOI |
[65] |
YOUNG G M, CALDWELL W G E. A new look at an old unconformity: field and geochemical data from James Hutton’s original unconformity on the Isle of Arran, Scotland[J]. Proceedings of the Geologists’ Association, 2009, 120(1): 65-75.
DOI URL |
[66] | 林畅松, 李思田, 刘景彦, 等. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J]. 岩石学报, 2011, 27(1): 210-218. |
[67] |
RAFINI S, MERCIER E. Forward modelling of foreland basins progressive unconformities[J]. Sedimentary Geology, 2002, 146(1/2): 75-89.
DOI URL |
[68] | 何碧竹, 许志琴, 焦存礼, 等. 塔里木盆地构造不整合成因及对油气成藏的影响[J]. 岩石学报, 2011, 27(1): 253-265. |
[69] |
HE B Z, JIAO C L, XU Z Q, et al. The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NW China) during the late Early and Middle Paleozoic[J]. Gondwana Research, 2016, 30: 191-206.
DOI URL |
[70] |
LONG X P, YUAN C, SUN M, et al. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: evidence from Neoproterozoic granitoids in the Kuluketage area, NW China[J]. Precambrian Research, 2011, 187(1/2): 1-14.
DOI URL |
[71] |
ZHANG C L, LI H K, SANTOSH M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China: petrology, geochemistry, Nd isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47, 5-20.
DOI URL |
[72] |
ZHU W B, ZHANG ZY, SHU L S, et al. SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: implications for the long-lasting breakup process of Rodinia[J]. Journal of the Geological Society, 2008, 165(5): 887-890.
DOI URL |
[73] | 朱文斌, 葛荣峰, 舒良树. 塔里木克拉通北缘前寒武纪构造岩浆事件与地壳演化[M]. 北京: 科学出版社, 2017. |
[74] | CAI Z H, JIAO C L, HE B Z, et al. Archean-Paleoproterozoic tectonothermal events in the central Tarim Block: constraints from granitic gneisses revealed by deep drilling wells[J]. Precambrian Research, 2020, 347: 105776. |
[75] | 吴根耀, 李曰俊, 王国林, 等. 新疆西部巴楚地区晋宁期的洋岛火山岩[J]. 现代地质, 2006, 20(3): 361-369. |
[76] |
GUO Z J, YIN A, ROBINSON A, et al. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim Basin[J]. Journal of Asian Earth Sciences, 2005, 25(1): 45-56.
DOI URL |
[77] |
WANG C, ZHANG J H, LI M, et al. Generation of ca. 900-870 Ma bimodal rifting volcanism along the southwestern margin of the Tarim Craton and its implications for the Tarim-North China connection in the Early Neoproterozoic[J]. Journal of Asian Earth Sciences, 2015, 113: 610-625.
DOI URL |
[78] | LV P, YU S Y, PENG Y B, et al. Paleoproterozoic multiple magmatic-metamorphic events in the Dunhuang Block, eastern Tarim Craton: implications for assembly of the Columbia supercontinent[J]. Precambrian Research, 2020, 351: 105949. |
[79] | 张建新, 路增龙, 毛小红, 等. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识: 兼谈原特提斯洋的起源[J]. 岩石学报, 2021, 37(1): 74-94. |
[80] | GEHRELS G E, YIN A, WANG X F. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B9): 881-896. |
[81] |
YU S Y, ZHANG J X, REAL P, et al. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau: constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks[J]. Journal of Asian Earth Sciences, 2013, 73: 372-395.
DOI URL |
[82] |
SANTOSH M, HU C N, HE X F, et al. Neoproterozoic arc magmatism in the southern Madurai Block, India: subduction, relamination, continental outbuilding, and the growth of Gondwana[J]. Gondwana Research, 2017, 45: 1-42.
DOI URL |
[83] |
HOFFMAN P F. Did the breakout of Laurentia turn Gondwanaland inside-out?[J]. Science, 1991, 252(5011): 1409-1412.
PMID |
[84] |
MEERT J G, TORSVIK T H. The making and unmaking of a supercontinent: Rodinia revisited[J]. Tectonophysics, 2003, 375(1/2/3/4): 261-288.
DOI URL |
[85] |
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
DOI URL |
[86] |
LI Z X, EVANS D A D, HALVERSON G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology, 2013, 294: 219-232.
DOI URL |
[87] |
ZHAO G C, WANG Y J, HUANG B C, et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of pangea[J]. Earth-Science Reviews, 2018, 186: 262-286.
DOI URL |
[88] |
WANG C, LIU L, YANG W Q, et al. Provenance and ages of the Altyn Complex in Altyn Tagh: implications for the early Neoproterozoic evolution of northwestern China[J]. Precambrian Research, 2013, 230: 193-208.
DOI URL |
[89] |
LI Z X, LI X H, KINNY P, et al. The breakup of Rodinia: did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 1999, 173(3): 171-181.
DOI URL |
[90] |
LI S Z, ZHAO S J, LIU X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75.
DOI URL |
[91] |
HUANG B C, XU B, ZHANG C X, et al. Paleomagnetism of the Baiyisi volcanic rocks (ca. 740 Ma) of Tarim, northwest China: a continental fragment of Neoproterozoic western Australia?[J]. Precambrian Research, 2005, 142(3/4): 83-92.
DOI URL |
[92] |
WEN B, EVANS A D D, LI Y X. Neoproterozoic paleogeography of the Tarim Block: an extended or alternative “missing-link” model for Rodinia?[J]. Earth and Planetary Science Letters, 2017, 458: 92-106.
DOI URL |
[93] |
ZHAO P, HE J Y, DENG C L, et al. Early Neoproterozoic (870-820 Ma) amalgamation of the Tarim Craton (northwestern China) and the final assembly of Rodinia[J]. Geology, 2021, 49(11): 1277-1282.
DOI URL |
[94] | HE J Y, PAN X D, LI S J, et al. Early Neoproterozoic continuous oceanic subduction along the northern margin of the Tarim Block: insights from ca. 910-870 Ma arc-related magmatism in the Aksu area, NW China[J]. Precambrian Research, 2021, 360: 106236. |
[95] | 胡霭琴, 韦刚健, 江博明, 等. 天山0.9 Ga新元古代花岗岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地球化学, 2010, 39(3): 197-212. |
[96] |
HUANG B T, HE Z Y, ZHANG Z M, et al. Early Neoproterozoic granitic gneisses in the Chinese eastern Tianshan: petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 113: 339-352.
DOI URL |
[97] |
GAO J, WANGX S, KLEMD R, et al. Record of assembly and breakup of Rodinia in the southwestern Altaids: evidence from neoproterozoic magmatism in the Chinese western Tianshan orogen[J]. Journal of Asian Earth Sciences, 2015, 113: 173-193.
DOI URL |
[98] | 耿元生, 旷红伟, 杜利林, 等. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义[J]. 岩石学报, 2020, 36(8): 2276-2312. |
[99] | 邓兴梁, 舒良树, 朱文斌, 等. 新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J]. 岩石学报, 2008, 24(12): 2800-2808. |
[100] |
ZHANG C L, LI Z X, LI X H, et al. Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block of NW China: age, geochemistry, and implications for the rifting of Rodinia[J]. International Geology Review, 2006, 48(2): 112-128.
DOI URL |
[101] |
GE R F, ZHU W B, WILDE S A, et al. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton[J]. Tectonics, 2014, 33(3): 302-329.
DOI URL |
[102] |
SHU L S, DENG X L, ZHU W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China: new geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 42(5): 774-790.
DOI URL |
[103] |
TORSVIK T H, COCKS L R M. Gondwana from top to base in space and time[J]. Gondwana Research, 2013, 24(3/4): 999-1030.
DOI URL |
[104] | 郭群英, 邬光辉, 冯晓军, 等. 塔里木盆地新元古代伸展-挤压构造旋回[J]. 新疆地质, 2015, 33(3): 335-339. |
[105] |
TENG X, ZHANG J X, MAO X H, et al. The earliest Cambrian UHT metamorphism in the Qaidam Block, western China: a record of the final assembly of Greater Gondwana?[J]. Gondwana Research, 2020, 87: 118-137.
DOI URL |
[106] |
CAWOOD P A, JOHNSON M R W, NEMCHIN A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.
DOI URL |
[107] |
HE Z Y, ZHANG Z M, ZONG K Q, et al. Neoproterozoic granulites from the northeastern margin of the Tarim Craton: petrology, zircon U-Pb ages and implications for the Rodinia assembly[J]. Precambrian Research, 2012, 212/213: 21-33.
DOI URL |
[108] |
ZHANGC L, LI Z X, LI X H, et al. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: age, geochemistry, petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 35(2): 167-179.
DOI URL |
[109] | 何登发, 袁航, 李涤, 等. 吐格尔明背斜核部花岗岩的年代学、地球化学与构造环境及其对塔里木地块北缘古生代伸展聚敛旋回的揭示[J]. 岩石学报, 2011, 27(1): 133-146. |
[110] | 罗新荣, 石福品, 樊卫东, 等. 新疆库鲁克塔格新元古代花岗岩年龄和地球化学[J]. 资源调查与环境, 2007, 28(4): 235-241. |
[111] | 李德生. 中国多旋回叠合油气盆地的理论与勘探实践[J]. 新疆石油地质, 2013, 34(5): 497-503, 495. |
[112] |
何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59.
DOI |
[113] |
何治亮, 陆建林, 林娟华, 等. 中国海相盆地原型-改造分析与油气有序聚集模式[J]. 地学前缘, 2022, 29(6): 60-72.
DOI |
[114] | 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13. |
[1] | 翟明国, 胡波, 彭澎, 赵太平. 华北中—新元古代的岩浆作用与多期裂谷事件[J]. 地学前缘, 20140101, 21(1): 100-119. |
[2] | 谷雨, 吴俊, 樊太亮, 吕峻岭. 塔北-塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[3] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[4] | 陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶. 基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示[J]. 地学前缘, 2024, 31(4): 340-353. |
[5] | 李光洁, 陈永清, 尚志, 刘世博. 扬子地块西缘峨山新元古代高分异I型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39. |
[6] | 王俊鹏, 曾联波, 徐振平, 王珂, 曾庆鲁, 张知源, 张荣虎, 蒋俊. 成岩流体对超深致密砂岩储层构造裂缝充填及溶蚀改造的影响:以塔里木盆地克拉苏油气田为例[J]. 地学前缘, 2024, 31(3): 312-323. |
[7] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[8] | 李丹, 常健, 邱楠生, 熊昱杰. 塔里木盆地台盆区超深层热演化及对储层的影响[J]. 地学前缘, 2023, 30(6): 135-149. |
[9] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[10] | 邱楠生, 常健, 冯乾乾, 曾帅, 刘效妤, 李慧莉, 马安来. 我国中西部盆地深层-超深层烃源岩热演化研究[J]. 地学前缘, 2023, 30(6): 199-212. |
[11] | 陈泽亚, 陈践发, 黎茂稳, 付娆, 师肖飞, 徐学敏, 伍建军. 塔里木台盆区下古生界天然气甲烷氢同位素组成特征及地质意义[J]. 地学前缘, 2023, 30(6): 232-246. |
[12] | 马安来, 漆立新. 顺北地区四号断裂带奥陶系超深层油气地球化学特征与相态差异性成因[J]. 地学前缘, 2023, 30(6): 247-262. |
[13] | 朱秀香, 曹自成, 隆辉, 曾溅辉, 黄诚, 陈绪云. 塔里木盆地顺北地区走滑断裂带压扭段和张扭段油气成藏实验模拟及成藏特征研究[J]. 地学前缘, 2023, 30(6): 289-304. |
[14] | 李慧莉, 高键, 曹自成, 朱秀香, 郭小文, 曾帅. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义[J]. 地学前缘, 2023, 30(6): 316-328. |
[15] | 陈强路, 马中良, 黎茂稳, 席斌斌, 郑伦举, 庄新兵, 袁坤, 马晓潇, 许锦. 塔里木盆地北部奥陶系超深层液态烃演化与保存机制:来自模拟实验的证据[J]. 地学前缘, 2023, 30(6): 329-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||