地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 401-409.DOI: 10.13745/j.esf.sf.2021.9.60
收稿日期:
2021-07-15
修回日期:
2021-08-12
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
孙建奇
作者简介:
张梦琪(1990—),女,博士后,主要从事东亚春季降水变异机理及预测研究工作。E-mail: zhangmengqi@mail.iap.ac.cn
基金资助:
ZHANG Mengqi1(), SUN Jianqi1,2,3,*(
), GAO Yongqi1
Received:
2021-07-15
Revised:
2021-08-12
Online:
2022-09-25
Published:
2022-08-24
Contact:
SUN Jianqi
摘要:
本文研究了前期冬季北极海冰与中国东部春季极端降水频次的联系及其可能机制,并进一步探讨了海冰异常信号对极端降水的预测价值。结果表明,前冬戴维斯海峡—巴芬湾区域海冰异常与中国东部春季极端降水频次经验正交分解第一模态(EOF1)之间存在密切联系。当前冬戴维斯海峡—巴芬湾区域海冰异常偏多时,冬季大气环流呈现出类北大西洋涛动(NAO)正位相的异常分布,并伴随经向的北大西洋三极型海温异常。该海温异常可以从冬季持续到春季,进而激发出从北大西洋到欧亚中纬度的纬向遥相关波列,在东亚地区引起气旋型环流异常。该气旋型环流异常会引起中国东部地区湿度显著增加,上升运动增强,从而为该地区极端降水的发生提供了有利的背景条件。相反,当前冬戴维斯海峡—巴芬湾区域海冰异常偏少时,其滞后引起的春季环流异常则不利于中国东部地区极端降水的发生。进一步的交叉检验结果表明,前冬戴维斯海峡—巴芬湾区域海冰异常信号对中国东部春季极端降水具有重要的预测价值。
中图分类号:
张梦琪, 孙建奇, 郜永祺. 前冬戴维斯海峡—巴芬湾区域海冰异常对中国东部春季极端降水频次的可能影响及预测价值[J]. 地学前缘, 2022, 29(5): 401-409.
ZHANG Mengqi, SUN Jianqi, GAO Yongqi. Possible influence and predictive value of preceding winter sea ice anomalies in the Davis Strait-Baffin Bay for spring extreme precipitation frequency in eastern China[J]. Earth Science Frontiers, 2022, 29(5): 401-409.
图2 1979—2017年中国东部春季极端降水频次PC1回归的前冬(a)和春季(b)海冰异常(%) 图中打点区域表示通过0.05 的显著性水平检验;方框代表DSBB SICI的定义区域。
Fig.2 Regressions of Arctic sea ice cover (SIC) anomalies (%) in (a) preceding winter and (b) spring against the PC1 of eastern China spring extreme precipitation frequency during 1979-2017
图3 1979—2017年10月—次年5月北极海冰气候态均值(%)(a-h)和标准差(%)(i-p)。 注:方框代表DSBB SICI的定义区域。
Fig.3 Climatological mean (%) (a-h) and standard deviation (%) (i-p) of Arctic SIC from November to following May during 1979-2017
图4 1979—2017年前冬DSBB SICI回归的前冬(左列)和春季(右列)大气环流异常场 a,c—200 hPa位势高度(m)和风场(m/s);b,d—850 hPa位势高度(m)和风场(m/s)。深色和浅色阴影分别代表通过0.05和0.1的显著性水平检验。风场只显示通过0.1显著性水平检验的部分。
Fig.4 Regressions of atmospheric circulation anomalies in preceding winter (left panel) and spring (right panel) against the preceding winter DSBB SICI during 1979-2017.
图5 1979—2017年前冬(a)和春季(b)海温异常与前冬DSBB SICI的相关系数图 打点区域代表通过0.05的显著性水平检验。方框为MNA SSTI的定义区域。
Fig.5 Correlations of SST anomalies in preceding winter (a) and spring (b) against the preceding winter DSBB SICI during 1979-2017.
图6 1979—2017年春季MNA SSTI回归的春季500 hPa位势高度(m)和波活动通量(m2/s2)(a)和850 hPa 位势高度(m)和风场(m/s)(b) 深色和浅色阴影代表通过0.05和0.1的显著性水平检验。风场只显示通过0.1显著性水平检验的部分。
Fig.6 Regressions of spring 500 hPa geopotential height (m) and wave activity flux (m2/s2) (a) and 850 hPa geopotential height (m) and wind (m/s) (b) against the spring MNA SSTI during 1979-2017.
图7 1979—2017年前冬DSBB SICI回归的春季925 hPa比湿(10-2 g/kg)(a)和500 hPa垂直速度(10-3 Pa/s)(b) 打点区域代表通过0.05的显著性水平检验。
Fig.7 Regressions of spring 925 hPa specific humidity (10-2 g/kg) (a) and 500 hPa vertical velocity (10-3 Pa/s) (b) against the preceding winter DSBB SICI during 1979-2017.
图8 1979—2017年前冬DSBB SICI回归的中国东部春季极端降水频次 打点区域代表通过0.1的显著性水平检验。
Fig.8 Regression of eastern China spring extreme precipitation frequency against the preceding winter DSBB SICI during 1979-2017.
图9 1979—2017年观测的中国东部春季极端降水频次PC1(柱状图)和利用前冬DSBB SICI通过交叉检验方法预测的中国东部春季极端降水频次PC1(折线)
Fig.9 Time series of PC1 of eastern China spring extreme precipitation frequency in observation during 1979-2017 (bars) and the hindcasted PC1 by the preceding winter DSBB SICI, based on the leave-one-out cross-validation method (line).
[1] | ALEXANDER L V, ZHANG X, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D5): D05109. |
[2] |
PAPALEXIOU S M, MONTANARI A. Global and regional increase of precipitation extremes under global warming[J]. Water Resources Research, 2019, 55(6): 4901-4914.
DOI URL |
[3] |
ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7): 1096-1108.
DOI URL |
[4] |
ZHANG D Q, FENG G L, HU J G. Trend of extreme precipitation events over China in last 40 years[J]. Chinese Physics B, 2008, 17(2): 736-742.
DOI URL |
[5] |
WANG H J, SUN J Q, CHEN H P, et al. Extreme climate in China: facts, simulation and projection[J]. Meteorologische Zeitschrift, 2012, 21(3): 279-304.
DOI URL |
[6] |
WANG F, YANG S, HIGGINS W, et al. Long-term changes in total and extreme precipitation over China and the United States and their links to oceanic-atmospheric features[J]. International Journal of Climatology, 2014, 34(2): 286-302.
DOI URL |
[7] | 孙建奇, 敖娟. 中国冬季降水和极端降水对变暖的响应[J]. 科学通报, 2013, 58(8): 674-679. |
[8] | 张永领, 丁裕国. 我国东部夏季极端降水与北太平洋海温的遥相关研究[J]. 南京气象学院学报, 2004, 27(2): 244-252. |
[9] | 龚志强, 封国林. 中国近1000年旱涝的持续性特征研究[J]. 物理学报, 2008, 57(6): 3920-3931. |
[10] | 杨金虎, 江志红, 王鹏祥, 等. 太平洋SSTA同中国东部夏季极端降水事件变化关系的研究[J]. 海洋学报(中文版), 2010, 32(1): 23-33. |
[11] |
WANG Y, YAN Z W. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1118-1128.
DOI URL |
[12] | 李明刚, 管兆勇, 韩洁, 等. 近50 a华东地区夏季极端降水事件的年代际变化[J]. 大气科学学报, 2012, 35(5): 591-602. |
[13] | 余锦华, 祁淼, 孙齐颖, 等. 中国东部夏季极端降水统计特征及其与El Niño的联系[J]. 大气科学学报, 2018, 41(1): 77-84. |
[14] |
CAO F Q, GAO T, DAN L, et al. Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle-lower reaches of the Yangtze River Basin[J]. Climate Dynamics, 2019, 53(5/6): 3109-3129.
DOI URL |
[15] | 杨涵洧, 龚志强, 王晓娟, 等. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 2021, 45(3): 683-696. |
[16] | 刘明竑, 任宏利, 张文君, 等. 超强厄尔尼诺事件对中国东部春夏季极端降水频率的影响[J]. 气象学报, 2018, 76(4): 539-553. |
[17] | 沈迪桑, 陈海山. 中国东部春季极端降水与同期欧亚大陆地表感热的可能联系[J]. 气候与环境研究, 2018, 23(1): 103-112. |
[18] |
LI F, WANG H J. Relationship between Bering Sea ice cover and East Asian winter monsoon year-to-year variations[J]. Advances in Atmospheric Sciences, 2013, 30(1): 48-56.
DOI URL |
[19] |
WANG H J, HE S P. The North China/northeastern Asia severe summer drought in 2014[J]. Journal of Climate, 2015, 28(17): 6667-6681.
DOI URL |
[20] |
FAN K, XIE Z M, WANG H J, et al. Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea[J]. Climate Dynamics, 2018, 51(11/12): 4439-4450.
DOI URL |
[21] |
LI X X, SUN J Q, ZHANG M Q, et al. Possible connection between declining Barents sea ice and interdecadal increasing Northeast China precipitation in May[J]. International Journal of Climatology, 2021, 41(14): 6270-6282.
DOI URL |
[22] |
TIAN B Q, FAN K, YANG H Q. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system[J]. Climate Dynamics, 2018, 51(7/8): 2793-2805.
DOI URL |
[23] |
DAI H X, FAN K. Skilful two-month-leading hybrid climate prediction for winter temperature over China[J]. International Journal of Climatology, 2020, 40(11): 4922-4943.
DOI URL |
[24] |
KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.
DOI URL |
[25] |
RAYNER N A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D14): 4407.
DOI URL |
[26] | 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003, 58(S1): 1-10. |
[27] |
TAKAYA K, NAKAMURA H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 2001, 58(6): 608-627.
DOI URL |
[28] |
NORTH G R, BELL T L, CAHALAN R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699-706.
DOI URL |
[29] |
WU Z W, LI X X, LI Y J, et al. Potential influence of Arctic Sea ice to the interannual variations of East Asian spring precipitation[J]. Journal of Climate, 2016, 29(8): 2797-2813.
DOI URL |
[30] |
WALLACE J M, GUTZLER D S. Teleconnections in the geopotential height field during the northern hemisphere winter[J]. Monthly Weather Review, 1981, 109(4): 784-812.
DOI URL |
[31] |
CAI M, YANG S, VAN DEN DOOL H M, et al. Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective[J]. Tellus A: Dynamic Meteorology and Oceanography, 2007, 59(1): 127-140.
DOI URL |
[32] |
MARSHALL J, KUSHNIR Y, BATTISTI D, et al. North Atlantic climate variability: phenomena, impacts and mechanisms[J]. International Journal of Climatology, 2001, 21(15): 1863-1898.
DOI URL |
[33] |
HU Z Z, HUANG B H. Air-sea coupling in the North Atlantic during summer[J]. Climate Dynamics, 2006, 26(5): 441-457.
DOI URL |
[34] |
KWON Y O, ALEXANDER M A, BOND N A, et al. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review[J]. Journal of Climate, 2010, 23(12): 3249-3281.
DOI URL |
[35] |
WILLS S M, THOMPSON D W J, CIASTO L M. On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic[J]. Journal of Climate, 2016, 29(10): 3719-3730.
DOI URL |
[36] |
MATSUMURA S, UEKI S, HORINOUCHI T. Contrasting responses of midlatitude jets to the North Pacific and North Atlantic warming[J]. Geophysical Research Letters, 2019, 46(7): 3973-3981.
DOI URL |
[37] |
PENG S L, MYSAK L A, DEROME J, et al. The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the Northwest Atlantic[J]. Journal of Climate, 1995, 8(2): 137-157.
DOI URL |
[38] |
SMALL R J, TOMAS R A, BRYAN F O. Storm track response to ocean fronts in a global high-resolution climate model[J]. Climate Dynamics, 2014, 43(3/4): 805-828.
DOI URL |
[1] | 邓军, 王长明, 李文昌, 杨立强, 王庆飞. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 20140101, 21(1): 52-64. |
[2] | 陈运泰. 特大地震及其引发的超级海啸的启示[J]. 地学前缘, 20140101, 21(1): 120-131. |
[3] | 周琦, 吴冲龙. 基于大数据的智慧探矿模式实验研究与进展[J]. 地学前缘, 2024, 31(6): 350-367. |
[4] | 梁文翔, 骆震, 陈伏龙, 王统霞, 安杰, 龙爱华, 何朝飞. 基于CMIP6多模式集合的内陆河径流模拟及预估[J]. 地学前缘, 2024, 31(6): 450-461. |
[5] | 李云涛, 丁文龙, 韩俊, 黄诚, 王来源, 孟庆修. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[6] | 袁峰, 李晓晖, 田卫东, 周官群, 汪金菊, 葛粲, 国显正, 郑超杰. 三维成矿预测关键问题[J]. 地学前缘, 2024, 31(4): 119-128. |
[7] | 叶育鑫, 刘家文, 曾婉馨, 叶水盛. 基于本体指导的矿产预测知识图谱构建研究[J]. 地学前缘, 2024, 31(4): 16-25. |
[8] | 王成彬, 王明果, 王博, 陈建国, 马小刚, 蒋恕. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36. |
[9] | 张前龙, 周永章, 郭兰萱, 原桂强, 虞鹏鹏, 王汉雨, 朱彪彪, 韩枫, 龙师尧. 找矿知识图谱的智能化应用:以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15. |
[10] | 谷浩, 杨泽强, 高猛, 唐相伟, 王东晓, 刘奎松, 杨树人, 郭跃闪, 王云, 王功文. 河南围山城金银矿集区三维地质建模与成矿预测[J]. 地学前缘, 2024, 31(3): 245-259. |
[11] | 祝富杰, 曲龙泽, 李平, 魏文侠, 李培中, 王立夫, 李本行, 王姣, 任更波, 吴志能, 马小东. 恶臭污染的测定方法与预测模型研究进展[J]. 地学前缘, 2024, 31(2): 13-19. |
[12] | 张娟, 谢润成, 杨敏, 高志前, 王明, 张长建, 王虹. 塔河油田主体区下奥陶统小尺度缝洞体形成机制与分布预测[J]. 地学前缘, 2023, 30(4): 51-64. |
[13] | 冯军, 张琪, 罗建民. 深度挖掘数据潜在价值提高找矿靶区定量优选精度[J]. 地学前缘, 2022, 29(4): 403-411. |
[14] | 任瑞军, 苗永康, 王延光. 川东北嘉陵江组嘉四-五段杂卤石地震识别及属性预测方法[J]. 地学前缘, 2021, 28(6): 125-133. |
[15] | 陈宁生, 田树峰, 张勇, 王政. 泥石流灾害的物源控制与高性能减灾[J]. 地学前缘, 2021, 28(4): 337-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||