地学前缘 ›› 2023, Vol. 30 ›› Issue (4): 51-64.DOI: 10.13745/j.esf.sf.2022.10.13

• 深层海相碳酸盐岩油气地质 • 上一篇    下一篇

塔河油田主体区下奥陶统小尺度缝洞体形成机制与分布预测

张娟1,2(), 谢润成3, 杨敏2, 高志前1, 王明2, 张长建2, 王虹2   

  1. 1.中国地质大学(北京) 能源学院, 北京 100083
    2.中国石油化工股份有限公司西北油田分公司, 新疆 乌鲁木齐 830011
    3.成都理工大学 能源学院, 四川 成都 610059
  • 收稿日期:2022-08-10 修回日期:2022-09-21 出版日期:2023-07-25 发布日期:2023-07-07
  • 作者简介:张 娟(1985-),女,副研究员,主要从事碳酸盐岩油气藏开发地质研究工作。E-mail: zjuan.xbsj@sinopec.com
  • 基金资助:
    中国石油化工股份有限公司科技部项目(P21063-2);中国石油化工股份有限公司科技部项目(P20017)

Formation mechanism and distribution prediction of fine-fracture pores in the Lower Ordovician in Tahe oilfield

ZHANG Juan1,2(), XIE Runcheng3, YANG Min2, GAO Zhiqian1, WANG Ming2, ZHANG Changjian2, WANG Hong2   

  1. 1. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
    2. Northwest Oilfield Company, Sinopec, ürümqi 830011, China
    3. College of Energy, Chengdu University of Technology, Chengdu 610059, China
  • Received:2022-08-10 Revised:2022-09-21 Online:2023-07-25 Published:2023-07-07

摘要:

塔河油田奥陶系碳酸盐岩储层的开发方向已逐渐从地震反射的“串珠型”缝洞储层转移到“非串珠”型的小缝洞储层,确定小尺度缝洞的形成机制和发育规律是提高此类储量动用率的关键。本次研究对塔河油田主体区岩心和薄片开展了缝洞描述,确定了小尺度缝洞的裂缝成因类型、缝洞参数和充填性质等特征。研究区裂缝划分为构造裂缝和非构造成因裂缝,呈高角度或垂直产状,构造裂缝充填程度弱于风化裂缝;孔洞的充填程度相对较高,但仍存在残留的孔隙空间。基于古岩溶地貌、局部残丘构造幅度的刻画、断裂特征分析和构造应力场模拟,确定了小尺度缝洞体的形成机制。小尺度缝洞的形成受古岩溶地貌、局部残丘构造幅度、断裂和构造应力场综合控制。地貌相对高部位利于岩溶的发生,主体东区地貌整体较主体西区高,缝洞相对西区更发育。残丘构造幅度也影响了岩溶储层的分布差异,残丘缓翼构造坡度相对较缓,利于水岩充分反应,更利于岩溶储层形成。主大断裂控制大尺度溶洞的形成,同时大溶洞和断裂又控制着小尺度缝洞的发育,深部小尺度缝洞受断裂控制的发育深度可达T74界面以下200 m深度。构造应力场影响着构造裂缝的分布,构造裂缝的形成又为孔洞的形成提供了溶蚀通道,间接控制着小尺度缝洞体的分布。在小尺度缝洞形成机制分析的基础上,建立了基于非线性神经网络深度学习算法的小尺度缝洞预测方法,确定了小尺度缝洞平面分布,预测结果与单井缝洞发育情况和初期产液能力相匹配。研究成果为油田整体动用小尺度缝洞储量奠定了技术基础。

关键词: 小尺度缝洞, 形成机制, 缝洞预测, 塔河油田, 下奥陶统, 鹰山组, 主体区

Abstract:

The development direction of the Ordovician carbonate reservoirs in the Tahe Oilfield has gradually shifted from the seismic-reflected “bead-type” fracture/pore reservoirs to the “non-bead”-type fine-fracture/pore reservoirs. Determining the fine-fracture/pore formation mechanism and development is the key to improving tight-reservoir utilization. In this study, fine-fracture/pore characterization were carried out on core and thin sections, and the fracture genetic types, fracture parameters and filling properties of fine fractures were determined. The fracture types in the study area were classified as “tectonic fracture” and “non-tectonic fracture” according to the fracture origin, and the fractures are highly angular or vertically produced. The tectonic fractures are less filled compared to weathered fractures; whilst cavity filling is relatively high, but residual porosity can result from coarser crystals in the cavity. The formation mechanism of the fine-fracture/pore reservoirs in the study area was determined based on the analyses of pore-control factors, such as paleokarst geomorphology, local residual mound structure and fracture characteristics, combined with tectonic stress-field simulation. Fracture and pore are more developed at higher elevation in the east than in the west of the main area as highland areas are conducive to karst development. Local residual mound also influence karst development as its gentle slope allows rock and water to interact more fully which favors reservoir formation. The major faults control the formation of large caves, whilst large caves and faults control the development of fine fractures which can reach as deep as 200 m below the T74 interface. Tectonic stress fields influence the distribution of tectonic fractures, and tectonic fractures provide the dissolution channel for the formation of pores and thus indirectly controls the distribution of fine-fracture/pore reservoirs. A prediction method for fine-fracture/pore is developed based on nonlinear neural network deep learning algorithm to determine the planar distribution of fine-fracture/pores, and the prediction results agree with the single-well pore distribution data as well as the initial single-well oil production data. This research lays the technical foundation for a full utilization of fine-fracture/pore reserves in the oilfield.

Key words: fine-fracture/pores, formation mechanism, fracture/pore prediction, Tahe oilfield, Lower Ordovician, Yingshan Formation, main zone

中图分类号: