地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 322-333.DOI: 10.13745/j.esf.sf.2021.9.56
收稿日期:
2021-08-15
修回日期:
2021-09-26
出版日期:
2022-09-25
发布日期:
2022-08-24
作者简介:
张 晓(1984—),女,博士,讲师,主要从事古气候模拟方向的研究工作。E-mail: xzhang@nuist.edu.cn
基金资助:
Received:
2021-08-15
Revised:
2021-09-26
Online:
2022-09-25
Published:
2022-08-24
摘要:
千年尺度气候突变事件是第四纪冰期普遍存在的气候现象。这些事件可以被分为两类,一类为Dansgaard-Oeschger Event (DO事件),另一类为海因里希(Heinrich Stadial,HS)事件,后者有时也被认为是一种特殊的DO事件,因此也被称为 HS-DO事件。HS事件期间北大西洋冰架的融化一般对应DO振荡的冷相位,这与通常认为的冰架在较冷气候下体积增加并不相符。这两类事件在北大西洋重建数据中表现得最为明显,但其气候影响具有全球性。由于没有显著的外强迫驱动这两类气候突变事件,自20世纪90年代首次被确认以来,HS-DO事件一直是古气候界关注的重点,且人们对其触发机理仍没有定论。本文基于目前对这两类千年事件的研究现状,集中总结了目前已有的可反映千年事件的重建数据,利用已有的模拟工作,重点回顾了现有的机制理论,评述了目前研究DO事件以及HS-DO事件的局限性,并对其后续工作,尤其是模拟部分,进行了展望。
中图分类号:
张晓, 张旭. 第四纪两类千年尺度气候振荡现象及机理研究[J]. 地学前缘, 2022, 29(5): 322-333.
ZHANG Xiao, ZHANG Xu. Two types of millennial-scale climate oscillations during the last Quaternary and their triggering mechanism[J]. Earth Science Frontiers, 2022, 29(5): 322-333.
图1 重建AMOC强度及格陵兰岛气温(据文献[80]修改) 顶部折线: 基于百慕大沉积物中231Pa/230Th重建的AMOC强度; 底部折线: 格陵兰岛NGRIP冰芯重建温度。H1-H5a 为HS冰阶,数字1-17为DO间冰阶。其中DO5-8为MIS3期间典型的间冰阶。H5a为一次较弱的非经典HS冰阶。
Fig.1 Reconstruction of AMOC intensity and Greenland temperature. Modified after [80].
图3 海冰驱动说中模拟的物理量变化(据文献[99]修改) 物理量自上而下为:北大西洋环流强度(Sv);海冰覆盖率(占北海面积百分比,%);格陵兰岛地表温度(℃);冰盖高度(km)。1 atm=1.01325×105 Pa。
Fig.2 Changes of simulated physical quantities in sea ice driving theory. Modified after [99].
图4 5 km位势高度场灰色区域为模式中冰期冰盖范围 (单位:位势10 m)(据文献[101]修改)
Fig.4 The gray area of 5km geopotential height field is the range of ice sheet in the middle glacial period of the model. Modified after [101].
[1] |
DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434): 218-220.
DOI URL |
[2] |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
DOI URL |
[3] |
SEVERINGHAUS J P, SOWERS T, BROOK E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice[J]. Nature, 1998, 391(6663): 141-146.
DOI URL |
[4] |
WOLFF E W, CHAPPELLAZ J, BLUNIER T, et al. Millennial-scale variability during the last glacial:the ice core record[J]. Quaternary Science Reviews, 2010, 29(21/22): 2828-2838.
DOI URL |
[5] |
ALLEY R B, MEESE D A, SHUMAN C A, et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event[J]. Nature, 1993, 362(6420): 527-529.
DOI URL |
[6] | CUFFEY K M, CLOW G D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition[J]. Journal of Geophysical Research: Oceans, 1997, 102(C12): 26383-26396. |
[7] |
CURRY W B, OPPO D W. Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic Deep Water production during the Last Glacial Cycle[J]. Paleoceanography, 1997, 12(1): 1-14.
DOI URL |
[8] |
DOKKEN T M, NISANCIOGLU K H, LI C, et al. Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas[J]. Paleoceanography, 2013, 28(3): 491-502.
DOI URL |
[9] |
RASMUSSEN T L, THOMSEN E. The role of the North Atlantic Drift in the millennial timescale glacial climate fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 101-116.
DOI URL |
[10] |
SCHIEMANN R, DEMORY M E, SHAFFREY L C, et al. The resolution sensitivity of northern Hemisphere blocking in four 25-km atmospheric global circulation models[J]. Journal of Climate, 2017, 30(1): 337-358.
DOI URL |
[11] | THOMAS E R, WOLFF E W, MULVANEY R, et al. Anatomy of a Dansgaard-Oeschger warming transition: high-resolution analysis of the North Greenland Ice Core Project ice core[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D8): D08102. |
[12] | SCHULZ M, PAUL A, TIMMERMANN A. Relaxation oscillators in concert: a framework for climate change at millennial timescales during the Late Pleistocene[J]. Geophysical Research Letters, 2002, 29(24): 46-1. |
[13] |
ALLEY R B, CLARK P U. The Deglaciation of the northern Hemisphere: a global perspective[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 149-182.
DOI URL |
[14] |
BUIZERT C, SCHMITTNER A. Southern Ocean control of glacial AMOC stability and Dansgaard-Oeschger interstadial duration[J]. Paleoceanography, 2015, 30(12): 1595-1612.
DOI URL |
[15] |
VOELKER A H L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database[J]. Quaternary Science Reviews, 2002, 21(10): 1185-1212.
DOI URL |
[16] |
CHIANG J C H. The tropics in paleoclimate[J]. Annual Review of Earth and Planetary Sciences, 2009, 37(1): 263-297.
DOI URL |
[17] |
WANG X F, AULER A S, EDWARDS R L, et al. Interhemispheric anti-phasing of rainfall during the last glacial period[J]. Quaternary Science Reviews, 2006, 25(23/24): 3391-3403.
DOI URL |
[18] | WANG X F, AULER A S, EDWARDS R L, et al. Millennial-scale precipitation changes in southern Brazil over the past 90 000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701. |
[19] |
CHENG H, SINHA A, CRUZ F W, et al. Climate change patterns in Amazonia and biodiversity[J]. Nature Communications, 2013, 4: 1411.
DOI URL |
[20] |
KANNER L C, BURNS S J, CHENG H, et al. High-latitude forcing of the south American summer monsoon during the last glacial[J]. Science, 2012, 335(6068): 570-573.
DOI URL |
[21] |
WANG X F, AULER A S, EDWARDS R L, et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7018): 740-743.
DOI URL |
[22] |
CAMPOS M C, CHIESSI C M, PRANGE M, et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America[J]. Quaternary Science Reviews, 2019, 225: 105990.
DOI URL |
[23] | STRÍKIS N M, CRUZ F W, BARRETO E A S, et al. South American monsoon response to iceberg discharge in the North Atlantic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15): 3788-3793. |
[24] |
WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
DOI URL |
[25] |
ZHOU H Y, ZHAO J X, FENG Y X, et al. Heinrich event 4 and Dansgaard/Oeschger events 5-10 recorded by high-resolution speleothem oxygen isotope data from central China[J]. Quaternary Research, 2014, 82(2): 394-404.
DOI URL |
[26] |
ZHAO K, WANG Y J, EDWARDS R L, et al. High-resolution stalagmite δ18O records of Asian monsoon changes in central and Southern China spanning the MIS 3/2 transition[J]. Earth and Planetary Science Letters, 2010, 298(1/2): 191-198.
DOI URL |
[27] |
CAI Y J, AN Z S, CHENG H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8): 621.
DOI URL |
[28] |
DEPLAZES G, LÜCKGE A, PETERSON L C, et al. Links between tropical rainfall and North Atlantic climate during the last glacial period[J]. Nature Geoscience, 2013, 6(3): 213-217.
DOI URL |
[29] | MULITZA S, PRANGE M, STUUT J B, et al. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning[J]. Paleoceanography, 2008, 23(4): PA4206. |
[30] |
ANDERSEN K K, AZUMA N, BARNOLA J M, et al. High-resolution record of northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147-151.
DOI URL |
[31] | CAI Y J, FUNG I Y, EDWARDS R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252, 000 Y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10): 2954-2959. |
[32] |
STOCKER T F. The seesaw effect[J]. Science, 1998, 282(5386): 61-62.
DOI URL |
[33] |
BARBANTE C, BARNOLA J M, BECAGLI S, et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7116): 195-198.
DOI URL |
[34] |
LANDAIS A, MASSON-DELMOTTE V, STENNI B, et al. A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica[J]. Quaternary Science Reviews, 2015, 114: 18-32.
DOI URL |
[35] |
BLUNIER T, BROOK E J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period[J]. Science, 2001, 291(5501): 109-112.
DOI URL |
[36] |
PARRENIN F, MASSON-DELMOTTE V, KÖHLER P, et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming[J]. Science, 2013, 339(6123): 1060-1063.
DOI URL |
[37] |
BUIZERT C, ADRIAN B, AHN J, et al. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661-665.
DOI URL |
[38] | STOCKER T F, JOHNSEN S J. A minimum thermodynamic model for the bipolar seesaw[J]. Paleoceanography, 2003, 18(4): 1087. |
[39] |
PEDRO J B, JOCHUM M, BUIZERT C, et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling[J]. Quaternary Science Reviews, 2018, 192: 27-46.
DOI URL |
[40] |
MARKLE B R, STEIG E J, BUIZERT C, et al. Global atmospheric teleconnections during Dansgaard-Oeschger events[J]. Nature Geoscience, 2017, 10(1): 36-40.
DOI URL |
[41] |
CORRICK E C, DRYSDALE R N, HELLSTROM J C, et al. Synchronous timing of abrupt climate changes during the last glacial period[J]. Science, 2020, 369(6506): 963-969.
DOI URL |
[42] |
ROSEN J L, BROOK E J, SEVERINGHAUS J P, et al. An ice core record of near-synchronous global climate changes at the Bølling transition[J]. Nature Geoscience, 2014, 7(6): 459-463.
DOI URL |
[43] |
BROECKER W, BOND G, KLAS M, et al. Origin of the northern Atlantic's Heinrich events[J]. Climate Dynamics, 1992, 6(3/4): 265-273.
DOI URL |
[44] |
BOND G, HEINRICH H, BROECKER W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period[J]. Nature, 1992, 360(6401): 245-249.
DOI URL |
[45] |
BOND G C, LOTTI R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation[J]. Science, 1995, 267(5200): 1005-1010.
DOI URL |
[46] |
GROUSSET F E, LABEYRIE L, SINKO J A, et al. Patterns of ice-rafted detritus in the glacial North Atlantic (40-55°N)[J]. Paleoceanography, 1993, 8(2): 175-192.
DOI URL |
[47] |
ZHOU Y X, MCMANUS J F, JACOBEL A W, et al. Enhanced iceberg discharge in the western North Atlantic during all Heinrich events of the last glaciation[J]. Earth and Planetary Science Letters, 2021, 564: 116910.
DOI URL |
[48] |
ROSELL-MELÉ A, MASLIN M A, MAXWELL J R, et al. Biomarker evidence for “Heinrich” events[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1671-1678.
DOI URL |
[49] |
BARD E, ROSTEK F, TURON J L, et al. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic[J]. Science, 2000, 289(5483): 1321-1324.
DOI URL |
[50] |
CHAPPELL J. Sea level changes forced ice breakouts in the Last Glacial Cycle: new results from coral terraces[J]. Quaternary Science Reviews, 2002, 21(10): 1229-1240.
DOI URL |
[51] |
YOKOYAMA Y, ESAT T M, LAMBECK K. Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 579-587.
DOI URL |
[52] |
KEIGWIN L D, LEHMAN S J. Deep circulation change linked to Heinrich event 1 and Younger Dryas in a middepth North Atlantic Core[J]. Paleoceanography, 1994, 9(2): 185-194.
DOI URL |
[53] |
VIDAL L, LABEYRIE L, CORTIJO E, et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 13-27.
DOI URL |
[54] |
VIDAL L, LABEYRIE L, VAN WEERIN G T C E. Benthic δ18O records in the North Atlantic over the Last Glacial Period (60-10 kyr): evidence for brine formation[J]. Paleoceanography, 1998, 13(3): 245-251.
DOI URL |
[55] |
ELLIOT M, LABEYRIE L, DUPLESSY J C. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60-10 ka)[J]. Quaternary Science Reviews, 2002, 21(10): 1153-1165.
DOI URL |
[56] |
MCMANUS J F, FRANCOIS R, GHERARDI J M. et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837.
DOI URL |
[57] |
OPPO D W, CURRY W B, MCMANUS J F. What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1?[J]. Paleoceanography, 2015, 30(4): 353-368.
DOI URL |
[58] |
CORTIJO E, LABEYRIE L, VIDAL L, et al. Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N[J]. Earth and Planetary Science Letters, 1997, 146(1/2): 29-45.
DOI URL |
[59] |
SCHULZ, VON RAD, ERLENKEUSER, et al. Correlation between Arabian Sea and Greenland climate oscillations of the past 110 000 years[J]. Nature, 1998, 393(6680): 54-57.
DOI URL |
[60] |
ARZ H W, PÄTZOLD J, WEFER G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil[J]. Quaternary Research, 1998, 50(2): 157-166.
DOI URL |
[61] |
CACHO I, GRIMALT J O, PELEJERO C, et al. Dansgaard-oeschger and heinrich event imprints in alboran sea paleotemperatures[J]. Paleoceanography, 1999, 14(6): 698-705.
DOI URL |
[62] |
KANNER L C, BURNS S J, CHENG H. High-latitude processes in the northern and southern Hemispheres both influence the South American Summer Monsoon[J]. Science, 335: 570-573.
DOI URL |
[63] |
AHN J, BROOK E J. Atmospheric CO2 and climate from 65 to 30 ka B.P[J]. Geophysical Research Letters, 2007, 34(10): L10703.
DOI URL |
[64] |
PORTER S C, AN Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529): 305-308.
DOI URL |
[65] | 吕连清, 方小敏, 鹿化煜, 等. 青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化[J]. 科学通报, 2004, 49(11):1091-1098. |
[66] | 贾楠, 孙立广, 袁林喜, 等. Heinrich 3事件的实证:浙江舟山群岛泥裂[J]. 地学前缘, 2009, 16(6):146-153. |
[67] |
DEPLAZES G, LÜCKGE A, STUUT J B W, et al. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography, 2014, 29(2): 99-114.
DOI URL |
[68] |
MULLER J, KYLANDER M, WÜST R A J, et al. Possible evidence for wet Heinrich phases in tropical NE Australia: the Lynch's Crater deposit[J]. Quaternary Science Reviews, 2008, 27(5/6): 468-475.
DOI URL |
[69] |
MULLER J, MCMANUS J F, OPPO D W, et al. Strengthening of the Northeast Monsoon over the Flores Sea, Indonesia, at the time of Heinrich event 1[J]. Geology, 2012, 40(7): 635-638.
DOI URL |
[70] |
KAGEYAMA M, MERKEL U, OTTO-BLIESNER B, et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study[J]. Climate of the Past, 2013, 9(2): 935-953.
DOI URL |
[71] |
LIU Z Y, LU Z Y, WEN X Y, et al. Evolution and forcing mechanisms of El Niño over the past 21 000 years[J]. Nature, 2014, 515(7528): 550-553.
DOI URL |
[72] | ZHU J, LIU Z Y, BRADY E C, et al. Investigating the direct meltwater effect in terrestrial oxygen-isotope paleoclimate records using an isotope-enabled earth system model[J]. Geophysical Research Letters, 2017, 44(24): 12501-12510. |
[73] | DRIJFHOUT S, GLEESON E, DIJKSTRA H A, et al. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19713-19718. |
[74] |
SIDORENKO D, RACKOW T, JUNG T, et al. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: model formulation and mean climate[J]. Climate Dynamics, 2015, 44(3/4): 757-780.
DOI URL |
[75] |
MARTIN T, PARK W, LATIF M. Southern Ocean forcing of the North Atlantic at multi-centennial time scales in the Kiel Climate Model[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 114: 39-48.
DOI URL |
[76] |
PELTIER W R, VETTORETTI G. Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic[J]. Geophysical Research Letters, 2014, 41(20): 7306-7313.
DOI URL |
[77] |
VETTORETTI G, PELTIER W R. Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard-Oeschger warming events[J]. Geophysical Research Letters, 2016, 43(10): 5336-5344.
DOI URL |
[78] |
VETTORETTI G, PELTIER W R. Fast physics and slow physics in the nonlinear Dansgaard-Oeschger relaxation oscillation[J]. Journal of Climate, 2018, 31(9): 3423-3449.
DOI URL |
[79] |
ZHANG X, LOHMANN G, KNORR G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514): 290-294.
DOI URL |
[80] |
ZHANG X, PRANGE M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability[J]. Quaternary Science Reviews, 2020, 242: 106443.
DOI URL |
[81] |
ZHANG X, PRANGE M, MERKEL U, et al. Spatial fingerprint and magnitude of changes in the Atlantic meridional overturning circulation during marine isotope stage 3[J]. Geophysical Research Letters, 2015, 42(6): 1903-1911.
DOI URL |
[82] |
BAGNIEWSKI W, MEISSNER K J, MENVIEL L. Exploring the oxygen isotope fingerprint of Dansgaard-Oeschger variability and Heinrich events[J]. Quaternary Science Reviews, 2017, 159: 1-14.
DOI URL |
[83] | 王绍武, 谢志辉. 千年尺度气候变率的研究[J]. 地学前缘, 2002, 9(1):143-153. |
[84] |
BURCKEL P, WAELBROECK C, GHERARDI J M, et al. Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial[J]. Geophysical Research Letters, 2015, 42(2): 411-418.
DOI URL |
[85] |
HENRY L G, MCMANUS J F, CURRY W B, et al. North Atlantic Ocean circulation and abrupt climate change during the last glaciation[J]. Science, 2016, 353(6298): 470-474.
DOI URL |
[86] | CLEMENT A C, PETERSON L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46(4): RG4002. |
[87] | MARCOTT S A, CLARK P U, PADMAN L, et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events[J]. ACS Omega, 2011, 108(33): 13415-13419. |
[88] |
MANABE S, STOUFFER R J. Two stable equilibria of a coupled ocean-atmosphere model[J]. Journal of Climate, 1988, 1(9): 841-866.
DOI URL |
[89] |
RAHMSTORF S. Ocean circulation and climate during the past 120, 000 years[J]. Nature, 2002, 419(6903): 207-214.
DOI URL |
[90] |
MENVIEL L, TIMMERMANN A, FRIEDRICH T, et al. Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing[J]. Climate of the Past, 2014, 10(1): 63-77.
DOI URL |
[91] |
ZHANG X, PRANGE M, MERKEL U, et al. Instability of the Atlantic overturning circulation during marine isotope stage 3[J]. Geophysical Research Letters, 2014, 41(12): 4285-4293.
DOI URL |
[92] |
HU A, MEEHL G A, HAN W, et al. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability[J]. Proceedings of the National Academy of Sciences USA, 2012, 109(17): 6417-6422.
DOI URL |
[93] |
ZHANG X, KNORR G, LOHMANN G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7): 518-523.
DOI URL |
[94] | EISENMAN I, BITZ C M, TZIPERMAN E. Rain driven by receding ice sheets as a cause of past climate change[J]. Paleoceanography, 2009, 24(4): PA4209. |
[95] |
TIMMERMANN A, GILDOR H, SCHULZ M, et al. Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses[J]. Journal of Climate, 2003, 16(15): 2569-2585.
DOI URL |
[96] |
JEAN L S. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9(1): 83-104.
DOI URL |
[97] |
MUGLIA J, SKINNER L C, SCHMITTNER A. Weak overturning circulation and high southern Ocean nutrient utilization maximized glacial ocean carbon[J]. Earth and Planetary Science Letters, 2018, 496: 47-56.
DOI URL |
[98] |
JONKERS L, MOROS M, PRINS M A, et al. A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events[J]. Quaternary Science Reviews, 2010, 29(15/16): 1791-1800.
DOI URL |
[99] | KASPI Y, SAYAG R, TZIPERMAN E. A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events[J]. Paleoceanography, 2004, 19(3): PA3004. |
[100] | BRAUN H, DITLEVSEN P, CHIALVO D R. Solar forced Dansgaard-Oeschger events and their phase relation with solar proxies[J]. Geophysical Research Letters, 2008, 35(6): L06703. |
[101] |
CARL W. Abrupt climate change: an alternative view[J]. Quaternary Research, 2006, 65(2): 191-203.
DOI URL |
[102] |
BANDERAS R, ÁLVAREZ-SOLAS J, MONTOYA M. Role of CO2 and southern ocean winds in glacial abrupt climate change[J]. Climate of the Past, 2012, 8(3): 1011-1021.
DOI URL |
[103] |
ALLEY R B, ANANDAKRISHNAN S, JUNG P. Stochastic resonance in the North Atlantic[J]. Paleoceanography, 2001, 16(2): 190-198.
DOI URL |
[104] |
PETERSEN S V, SCHRAG D P, CLARK P U. A new mechanism for Dansgaard-Oeschger cycles[J]. Paleoceanography, 2013, 28(1): 24-30.
DOI URL |
[105] | REIN B, LÜCKGE A, REINHARDT L, et al. El Niño variability off Peru during the last 20 000 years[J]. Paleoceanography, 2005, 20(4): PA4003. |
[106] |
STOTT L, POULSEN C, LUND S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579): 222-226.
DOI URL |
[107] | LEDUC G, VIDAL L, CARTAPANIS O, et al. Modes of eastern equatorial Pacific thermocline variability: implications for ENSO dynamics over the last glacial period[J]. Paleoceanography, 2009, 24(3): PA3202. |
[108] |
CLEMENT A C, CANE M A, SEAGER R. An orbitally driven tropical source for abrupt climate change[J]. Journal of Climate, 2001, 14(11): 2369-2375.
DOI URL |
[109] |
MERKEL U, PRANGE M, SCHULZ M. ENSO variability and teleconnections during glacial climates[J]. Quaternary Science Reviews, 2010, 29(1/2): 86-100.
DOI URL |
[110] |
SEAGER R, HARNIK N, KUSHNIR Y, et al. Mechanisms of hemispherically symmetric climate variability[J]. Journal of Climate, 2003, 16(18): 2960-2978.
DOI URL |
[111] |
BALDINI J U L, BROWN R J, MCELWAINE J N. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?[J]. Scientific Reports, 2015, 5: 17442.
DOI URL |
[112] |
LI C, BORN A. Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events[J]. Quaternary Science Reviews, 2019, 203: 1-20.
DOI URL |
[113] |
BROWN N, GALBRAITH E D. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing[J]. Climate of the Past, 2016, 12(8): 1663-1679.
DOI URL |
[114] |
KLOCKMANN M, MIKOLAJEWICZ U, MAROTZKE J. Two AMOC states in response to decreasing greenhouse gas concentrations in the coupled climate model MPI-ESM[J]. Journal of Climate, 2018, 31(19): 7969-7984.
DOI URL |
[115] |
KLEPPIN H, JOCHUM M, OTTO-BLIESNER B, et al. Stochastic atmospheric forcing as a cause of Greenland climate transitions[J]. Journal of Climate, 2015, 28(19): 7741-7763.
DOI URL |
[116] |
KLUS A, PRANGE M, VARMA V, et al. Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM[J]. Climate Dynamics, 2019, 53(1/2): 97-113.
DOI URL |
[117] |
GALBRAITH E, LAVERGNE C. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of Late Cenozoic ice ages[J]. Climate Dynamics, 2019, 52(1/2): 653-679.
DOI URL |
[118] |
KAWAMURA K, ABE-OUCHI A, MOTOYAMA H, et al. State dependence of climatic instability over the past 720 000 years from Antarctic ice cores and climate modeling[J]. Science Advances, 2017, 3(2): e1600446.
DOI URL |
[119] |
BAKKER P, SCHMITTNER A, LENAERTS J T M, et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting[J]. Geophysical Research Letters, 2016, 43(23): 12252-12260.
DOI URL |
[120] |
CHEN X Y, TUNG K K. Global surface warming enhanced by weak Atlantic overturning circulation[J]. Nature, 2018, 559(7714): 387-391.
DOI URL |
[121] |
SMEED D A, JOSEY S A, BEAULIEU C, et al. The north Atlantic Ocean is in a state of reduced overturning[J]. Geophysical Research Letters, 2018, 45(3): 1527-1533.
DOI URL |
[122] |
VALDES P. Built for stability[J]. Nature Geoscience, 2011, 4(7): 414-416.
DOI URL |
[1] | 李佩, 张春霞, 罗浩, 刘志成, 高战武. 青藏高原东南缘昭通盆地晚中新世到上新世古环境演化过程[J]. 地学前缘, 2024, 31(4): 326-339. |
[2] | 王成善, 高远, 王璞珺, 吴怀春, 吕庆田, 朱永宜, 万晓樵, 邹长春, 黄永建, 高有峰, 席党鹏, 王稳石, 贺怀宇, 冯子辉, 杨光, 邓成龙, 张来明, 王天天, 胡滨, 崔立伟, 彭诚, 余恩晓, 黄何, 杨柳, 毋正轩. 松辽盆地国际大陆科学钻探:白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430. |
[3] | 谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕. 小小地质微生物演绎跨圈层的相互作用[J]. 地学前缘, 2024, 31(1): 446-454. |
[4] | 张念念, 范天来, 黄春菊, 张明望, 李钰淳, 韦露, 余克服. 西沙群岛琛科2井珊瑚礁钻孔天文年代标尺的建立及天文周期记录[J]. 地学前缘, 2023, 30(6): 436-450. |
[5] | 邢智峰, 张湘赟, 李婉颖, 齐永安, 郑伟, 吴盼盼, 张立军. PTME后华北板块南缘生物复苏后期古环境特征:来自豫西登封中三叠统二马营组的证据[J]. 地学前缘, 2023, 30(5): 491-509. |
[6] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[7] | 杨昆昆, 李海燕, 赵汉卿, 褚润健, 刘光泓, 吴怀春, 张世红. 西澳大利亚新元古代Browne组—Hussar组旋回地层学研究[J]. 地学前缘, 2023, 30(3): 441-451. |
[8] | 田芝平, 张冉, 姜大膀. 全新世中期中国气候和东亚季风:PMIP4模式结果[J]. 地学前缘, 2022, 29(5): 355-371. |
[9] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[10] | 雷子炎, 葛倩, 陈东, 张泳聪, 韩喜彬, 叶黎明, 边叶萍, 许冬. 中全新世以来西南极阿蒙森海沉积物来源和古气候意义[J]. 地学前缘, 2022, 29(4): 179-190. |
[11] | 杨佳毅, 蒋富清, 颜钰, 郑昊, 常凤鸣. 上新世以来伊豆-小笠原海脊黏土矿物的来源与古气候意义[J]. 地学前缘, 2022, 29(4): 73-83. |
[12] | 张兰兰, 邱卓雅, 向荣, 杨艺萍, 陈木宏. 基于生物硅记录的孟加拉湾东南部末次冰期以来的古生产力变化[J]. 地学前缘, 2022, 29(4): 136-143. |
[13] | 张宗言, 刘祥, 李响, 柯学, 张楗钰, 徐亚东. 广东雷州半岛晚渐新世—早更新世孢粉共存因子分析及古气候变化重建[J]. 地学前缘, 2022, 29(2): 303-316. |
[14] | 李晓波, 张艳, 仝亚博. 燕辽东段侏罗、 白垩纪构造转变期古地理和古环境的初步分析[J]. 地学前缘, 2021, 28(2): 391-411. |
[15] | 王彤, 朱筱敏, 董艳蕾, 杨道庆, 苏彬, 谈明轩, 刘宇, 伍炜, 张亚雄. 陆相坳陷湖盆沉积对深时古气候的响应信号: 以准噶尔盆地西北缘安集海河组为例[J]. 地学前缘, 2021, 28(1): 60-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||