地学前缘 ›› 2022, Vol. 29 ›› Issue (3): 1-10.DOI: 10.13745/j.esf.sf.2022.1.47
收稿日期:
2022-01-10
修回日期:
2022-02-02
出版日期:
2022-05-25
发布日期:
2022-04-28
作者简介:
王焰新(1963—),男,教授,中国科学院院士,博士生导师,主要从事环境水文地质研究工作。E-mail: yx.wang@cug.edu.cn
基金资助:
WANG Yanxin(), LI Junxia, XIE Xianjun
Received:
2022-01-10
Revised:
2022-02-02
Online:
2022-05-25
Published:
2022-04-28
摘要:
我国是世界上已知面积最大的水源性高碘国家,碘的长期过量摄入对居民健康产生极大威胁。在不同的环境水文地质条件下,高碘地下水成因模式可概括为:埋藏-溶解型、压密-释放型和蒸发-浓缩型。基于对高碘地下水成因机理的认识,我们利用大数据模型预测了全国高碘地下水赋存情况,发现其高风险区(p>0.5)约占国土面积的19.8%,且涵盖了全部已知的高碘地下水分布区。开展地下水系统中有机碘形态定量表征、碘的水文地球化学行为微观机理识别和迁移活化过程定量模拟研究,将深化对高碘地下水成因与分布规律的认识,为供水水质安全和预防水源性高碘甲肿提供重要的科学依据。
中图分类号:
王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10.
WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater[J]. Earth Science Frontiers, 2022, 29(3): 1-10.
图2 高碘地下水成因模式及华北平原、大同盆地典型案例(据文献[14]修改)
Fig.2 Genetic models of high iodine groundwater with examples of case studies of the North China Plain and Datong Basin. Modified after [14].
图3 全国高碘地下水分布预测图(碘浓度>100 μg/L)(据文献[61]修改)
Fig.3 Probability prediction maps of iodine concentrations (exceeding 100 μg/L) in groundwater in China. Modified after [61].
[1] | 韩云波, 唐当柱. 我国全民补碘的现况[J]. 职业与健康, 2020, 36(8): 1142-1145, 1149. |
[2] | 史亮晶, 申元英. 不同水碘地区居民碘营养状况和甲状腺相关疾病的研究进展[J]. 疾病预防控制通报, 2019, 34(2): 93-96. |
[3] |
PEARCE E N, ANDERSSON M, ZIMMERMANN M B. Global iodine nutrition: where do we stand in 2013?[J]. Thyroid, 2013, 23(5): 523-528.
DOI URL |
[4] |
VOUTCHKOVA D D, ERNSTSEN V, HANSEN B, et al. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark[J]. Science of the Total Environment, 2014, 493: 432-444.
DOI URL |
[5] |
VOUTCHKOVA D D, ERNSTSEN V, KRISTIANSEN S M, et al. Iodine in major Danish aquifers[J]. Environmental Earth Sciences, 2017, 76(13): 1-16.
DOI URL |
[6] |
VOUTCHKOVA D D, KRISTIANSEN S M, HANSEN B, et al. Iodine concentrations in Danish groundwater: historical data assessment 1933-2011[J]. Environmental Geochemistry and Health, 2014, 36(6): 1151-1164.
DOI URL |
[7] |
ÁLVAREZ F, REICH M, PÉREZ-FODICH A, et al. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin[J]. Geochimica et Cosmochimica Acta, 2015, 161: 50-70.
DOI URL |
[8] |
SMEDLEY P L, NICOLLI H B, MACDONALD D M J, et al. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina[J]. Applied Geochemistry, 2002, 17(3): 259-284.
DOI URL |
[9] |
HAMILTON S M, GRASBY S E, MCINTOSH J C, et al. The effect of long-term regional pumping on hydrochemistry and dissolved gas content in an undeveloped shale-gas-bearing aquifer in southwestern Ontario, Canada[J]. Hydrogeology Journal, 2015, 23(4): 719-739.
DOI URL |
[10] |
TOGO Y S, TAKAHASHI Y, AMANO Y, et al. Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution[J]. Geochimica et Cosmochimica Acta, 2016, 191: 165-186.
DOI URL |
[11] |
LV S M, XIE L J, XU D, et al. Effect of reducing iodine excess on children’s goiter prevalence in areas with high iodine in drinking water[J]. Endocrine, 2016, 52(2): 296-304.
DOI URL |
[12] | 孟凡刚, 申红梅, 刘守军, 等. 2015年全国水源性高碘地区监测结果分析[J]. 中华地方病学杂志, 2017, 36(9): 657-661. |
[13] |
TENG W P, SHAN Z Y, TENG X C, et al. Effect of iodine intake on thyroid diseases in China[J]. The New England Journal of Medicine, 2006, 354(26): 2783-2793.
DOI URL |
TENG W, SHAN Z, TENG X, et al. Effect of iodine intake on thyroid diseases in China[J]. New, 2006, 354(26): 2783-2793. | |
[14] |
WANG Y X, LI J X, MA T, et al. Gan. Genesis of geogenic contaminated groundwater: as, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(24): 1-39.
DOI URL |
[15] |
LI J X, WANG Y X, XIE X J, et al. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J]. Journal of Hydrology, 2016, 543: 293-304.
DOI URL |
[16] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong Basin, China: evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468/469: 738-745.
DOI URL |
[17] | LI J X, QIAN K, YANG Y J, et al. Iodine speciation and its potential influence on iodine enrichment in groundwater from North China plain[J]. Earth and Planetary Science, 2017, 17: 312-315. |
[18] |
DUAN L, WANG W K, SUN Y B, et al. Iodine in groundwater of the Guanzhong Basin, China: sources and hydrogeochemical controls on its distribution[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
DOI URL |
[19] |
TANG Q, XU Q, ZHANG F C, et al. Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi Province, North China[J]. Journal of Geochemical Exploration, 2013, 135: 117-123.
DOI URL |
[20] |
WANG Y X, ZHENG C M, MA R. Review: safe and sustainable groundwater supply in China[J]. Hydrogeology Journal, 2018, 26(5): 1301-1324.
DOI URL |
[21] |
FUGE R, JOHNSON C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.
DOI URL |
[22] |
HOU X, HANSEN V, ALDAHAN A, et al. A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta, 2009, 632(2): 181-196.
DOI URL |
[23] | YEAGER C M, AMACHI S, GRANDBOIS R, et al. Microbial transformation of iodine: from radioisotopes to iodine deficiency[J]. Advances in Applied Microbiology, 2017, 101: 83-136. |
[24] |
FUGE R, JOHNSON C C. The geochemistry of iodine: a review[J]. Environmental Geochemistry Health, 1986, 8(2): 31-54.
DOI URL |
[25] | GILFEDDER B, LAI S, PETRI M, et al. Iodine speciation in rain, snow and aerosols and possible transfer of organically bound iodine species from aerosol to droplet phases[J]. Atmospheric Chemistry and Physics, 2008, 8: 7977-8008. |
[26] | LI J, WANG Y, XIE X, et al. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China[J]. Environmental Science Processes & Impacts, 2013, 15(4): 848-859. |
[27] | GILFEDDER B S, PETRI M, BIESTER H. Iodine speciation in rain and snow: implications for the atmospheric iodine sink[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D7): D07301. |
[28] |
KODAMA S, TAKAHASHI Y, OKUMURA K, et al. Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides[J]. Science of the Total Environment, 2006, 363(1/2/3): 275-284.
DOI URL |
[29] |
SHIMAMOTO Y S, TAKAHASHI Y, TERADA Y. Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan[J]. Environmental Science & Technology, 2011, 45(6): 2086-2092.
DOI URL |
[30] |
KAPLAN D I, DENHAM M E, ZHANG S, et al. Radioiodine biogeochemistry and prevalence in groundwater[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(20): 2287-2335.
DOI URL |
[31] |
TSUNOGAI S, SASE T. Formation of iodide-iodine in the ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1969, 16(5): 489-496.
DOI URL |
[32] |
COUNCELL T B, LANDA E R, LOVLEY D R. Microbial reduction of iodate[J]. Water, Air, and Soil Pollution, 1997, 100(1/2): 99-106.
DOI URL |
[33] | LI J X, WANG Y T, XUE X B, et al. Mechanistic insights into iodine enrichment in groundwater during the transformation of iron minerals in aquifer sediments[J]. Science of the Total Environment, 2020, 745: 140922. |
[34] |
HOROWITZ A, SUFLITA J M, TIEDJE J M. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms[J]. Applied and Environmental Microbiology, 1983, 45(5): 1459-1465.
DOI URL |
[35] |
OBA Y, FUTAGAMI T, AMACHI S. Enrichment of a microbial consortium capable of reductive deiodination of 2,4,6-triiodophenol[J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 310-317.
DOI URL |
[36] |
AMACHI S, MURAMATSU Y, AKIYAMA Y, et al. Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters[J]. Microbial Ecology, 2005, 49(4): 547-557.
DOI URL |
[37] |
WAKAI S, ITO K, IINO T, et al. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility[J]. Microbial Ecology, 2014, 68(3): 519-527.
DOI URL |
[38] |
ZHAO D, LIM C P, MIYANAGA K, et al. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria[J]. Applied Microbiology and Biotechnology, 2013, 97(5): 2173-2182.
DOI URL |
[39] |
SEKI M, OIKAWA J, TAGUCHI T, et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils[J]. Environmental Science & Technology, 2013, 47(1): 390-397.
DOI URL |
[40] |
WATTS R J, FINN D D, CUTLER L M, et al. Enhanced stability of hydrogen peroxide in the presence of subsurface solids[J]. Journal of Contaminant Hydrology, 2007, 91(3/4): 312-326.
DOI URL |
[41] |
LI H P, YEAGER C M, BRINKMEYER R, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation[J]. Environmental Science & Technology, 2012, 46(9): 4837-4844.
DOI URL |
[42] |
FOX P M, DAVIS J A, LUTHER G W III. The kinetics of iodide oxidation by the manganese oxide mineral birnessite[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2850-2861.
DOI URL |
[43] |
ALLARD S, VON GUNTEN U, SAHLI E, et al. Oxidation of iodide and iodine on birnessite (δ-MnO2) in the pH range 4-8[J]. Water Research, 2009, 43(14): 3417-3426.
DOI URL |
[44] |
BOWLEY H E, YOUNG S D, ANDER E L, et al. Iodine binding to humic acid[J]. Chemosphere, 2016, 157: 208-214.
DOI URL |
[45] |
SCHLEGEL M L, REILLER P, MERCIER-BION F, et al. Molecular environment of iodine in naturally iodinated humic substances: insight from X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5536-5551.
DOI URL |
[46] |
XU C, CHEN H M, SUGIYAMA Y, et al. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry[J]. Science of the Total Environment, 2013, 449: 244-252.
DOI URL |
[47] |
STEINBERG S M, SCHMETT G T, KIMBLE G, et al. Immobilization of fission iodine by reaction with insoluble natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 175-183.
DOI URL |
[48] |
STEINBERG S M, KIMBLE G M, SCHMETT G T, et al. Abiotic reaction of iodate with sphagnum peat and other natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 185-191.
DOI URL |
[49] | LUTHER G W, WU J, CULLEN J B. Redox chemistry of iodine in seawater: frontier molecular orbital theory considerations[M]// HUANG C P, O'MELIA C R, MORGAN J J. Aquatic chemistry:interfacial and interspecies processes. Washington DC: American Chemical Society, 1995: 135-155. |
[50] |
SHETAYA W H, YOUNG S D, WATTS M J, et al. Iodine dynamics in soils[J]. Geochimica et Cosmochimica Acta, 2012, 77: 457-473.
DOI URL |
[51] |
DAI J L, ZHANG M, HU Q H, et al. Adsorption and desorption of iodine by various Chinese soils: II. iodide and iodate[J]. Geoderma, 2009, 153(1/2): 130-135.
DOI URL |
[52] |
DAI J L, ZHANG M, ZHU Y G. Adsorption and desorption of iodine by various Chinese soils : I. iodate[J]. Environment International, 2004, 30(4): 525-530.
DOI URL |
[53] | LIN J X, DAI L P, WANG Y, et al. Quaternary marine transgressions in Eastern China[J]. Journal of Palaeogeography, 2012, 1(2): 105-125. |
[54] |
GONG H L, PAN Y, ZHENG L Q, et al. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971-2015)[J]. Hydrogeology Journal, 2018, 26(5): 1417-1427.
DOI URL |
[55] | 石建省, 郭娇, 孙彦敏, 等. 京津冀德平原区深层水开采与地面沉降关系空间分析[J]. 地质论评, 2006, 52(6): 804-809. |
[56] | 朱菊艳, 郭海朋, 李文鹏, 等. 华北平原地面沉降与深层地下水开采关系[J]. 南水北调与水利科技, 2014, 12(3): 165-169. |
[57] |
XUE X, LI J, XIE X, et al. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain[J]. Water Research, 2019, 159: 480-489.
DOI URL |
[58] | RODRíGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. |
[59] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850.
DOI URL |
[60] |
CAO H L, XIE X J, WANG Y X, et al. Predicting geogenic groundwater fluoride contamination throughout China[J]. Journal of Environmental Sciences, 2022, 115: 140-148.
DOI URL |
[61] | LIU H X, LI J X, CAO H L, et al. Prediction modeling of geogenic iodine contaminated groundwater throughout China[J]. Journal of Environmental Management, 2022, 303: 114249. |
[62] |
ZHANG E Y, WANG Y Y, QIAN Y, et al. Iodine in groundwater of the North China Plain: spatial patterns and hydrogeochemical processes of enrichment[J]. Journal of Geochemical Exploration, 2013, 135: 40-53.
DOI URL |
[63] | 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5): 8-15. |
[64] |
SHIMAMOTO Y S, TAKAHASHI Y. Superiority of K-edge XANES over LIII-edge XANES in the speciation of iodine in natural soils[J]. Analytical Sciences, 2008, 24(3): 405-409.
DOI URL |
[65] | HU Q H, MORAN J E, BLACKWOOD V. Geochemical cycling of iodine species in soils[M]// PREEDY V R, BURROW G N, WATSON R. Comprehensive handbook of iodine. Amsterdam: Elsevier, 2009: 93-105. |
[66] |
YANG Y J, PENG Y E, CHANG Q, et al. Selective identification of organic iodine compounds using liquid chromatography- high resolution mass spectrometry[J]. Analytical Chemistry, 2016, 88: 1275-1280.
DOI URL |
[67] |
SUFLITA J M, HOROWITZ A, SHELTON D R, et al. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 218(4577): 1115-1117.
DOI URL |
[1] | 吴浩, 杨晨, 吴彦旺, 李才, 刘飞, 林兆旭. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示[J]. 地学前缘, 2024, 31(6): 261-281. |
[2] | 周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6. |
[3] | 马建华, 刘金锋, 周永章, 郑益军, 陆可飞, 林星雨, 王汉雨, 张灿. 面向地质封存及其泄漏风险评价的CO2物联网在线监测[J]. 地学前缘, 2024, 31(4): 139-146. |
[4] | 王汉雨, 周永章, 许娅婷, 王维曦, 曹伟, 刘永强, 贺炬翔, 陆可飞. 基于微服务架构的城市土壤污染物联网监测及可视化系统研发[J]. 地学前缘, 2024, 31(4): 165-182. |
[5] | 刘伟, 张洪瑞, 罗迪柯, 贾鹏飞, 靳立杰, 周永刚, 梁云汉, 王子圣, 李春稼. 安哥拉地块北部Dondo地区古元古代花岗岩岩石成因:Columbia超大陆聚合的响应[J]. 地学前缘, 2024, 31(4): 237-257. |
[6] | 王成彬, 王明果, 王博, 陈建国, 马小刚, 蒋恕. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36. |
[7] | 张焕宝, 贺海洋, 杨仕教, 李亚林, 毕文军, 韩世礼, 郭钦鹏, 杜青. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428. |
[8] | 王岩, 王登红, 王成辉, 黎华, 刘金宇, 孙赫, 高新宇, 金雅楠, 秦燕, 黄凡. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘, 2024, 31(4): 438-455. |
[9] | 王堃屹, 周永章. 粤西庞西垌地区非结构化地质信息机器可读表达与致矿异常区域智能预测[J]. 地学前缘, 2024, 31(4): 47-57. |
[10] | 曹胜桃, 胡瑞忠, 周永章, 刘建中, 谭亲平, 高伟, 郑禄林, 郑禄璟, 宋威方. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72. |
[11] | 朱彪彪, 曹伟, 虞鹏鹏, 张前龙, 郭兰萱, 原桂强, 韩枫, 王汉雨, 周永章. 基于CiteSpace的地质大数据与人工智能研究热点及前沿分析[J]. 地学前缘, 2024, 31(4): 73-86. |
[12] | 陈国超, 张晓飞, 裴先治, 裴磊, 李佐臣, 刘成军, 李瑞保. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
[13] | 陈可, 邵拥军, 刘忠法, 张俊柯, 李永顺, 陈雨莹. 岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘, 2024, 31(3): 199-217. |
[14] | 张家志, 姜在兴, 徐杰, 魏思源, 宋立舟, 刘桐, 沈志晗, 姜晓龙, 李永飞, 张玺. 朝阳盆地白垩系九佛堂组火山沉积作用及其对有机质富集的影响[J]. 地学前缘, 2024, 31(3): 284-297. |
[15] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||